Exact Learning Boolean Functions
via the Monotone Theory

Nader H. Bshouty*

Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4

e-mail: bshouty@cpsc.ucalgary.ca

Abstract

We study the learnability of boolean functions from membership and equivalence queries.
We develop the Monotone Theory that proves

1) Any boolean function is learnable in time polynomial in its minimal DNF size, its
minimal CNF size and the number of variables n.

In particular,

2) Decision trees are learnable.

Our algorithms are in the model of exact learning with membership queries and un-
restricted equivalence queires. The hypotheses to the equivalence queries and the output
hypotheses are depth 3 formulas.

1 Introduction

One of the main open problems in machine learning is whether boolean functions are learnable
from membership and equivalence queries in time polynomial in the number of variables and their
(disjunctive normal form) DNF sizes (the minimum number of terms in an equivalent formula in
Disjunctive Normal Form). A more general line of research is whether all boolean functions are
learnable in time polynomial using other representations, such as (conjunctive normal form) CNF,
decision trees and multivariate polynomial. The latter problem for multivariate polynomials was
recently solved by Schapire and Sellie [SS]. They show that any boolean function is learnable in
time polynomial in n and its multivariate polynomial size.

Many results in the literature give evidence that learning boolean functions in different models
in time polynomial in the DNF size and the number of variables is hard [AK91, AHP92, PR94].
On the other hand, many other results gave subclasses of boolean functions that are learnable in
their DNF representations. Such subclasses include monotone DNF [A88] (DNF which contains

*This research was supported in part by the NSERC of Canada.

no negated variables), read-twice DNF [AP192,PR294] (DNF where each variable occurs at most
twice), Horn sentences [AFP92] (DNF where each term contains at most one negated variable),
k-DNF [V84] (DNF where each term contains at most & literals, for a constant k), O(log n)-term
DNF [BR92], where n is the number of variables (DNF with O(logn) terms) and read-k sat-j
DNF [AP292] (DNF where each variable appears at most k& times and every assignment to the
variables satisfies at most j terms, j and k are constants).

In this paper we develop new techniques for exact learning of boolean functions. We show

1. Any boolean function is learnable in time polynomial in its minimal DNF size, its minimal
CNF size and the number of variables n.

2. Decision trees are learnable.

This solves the open problem of learnability of decision trees.

Learning in this model implies learning in Valiant’s PAC model if membership queries are
available [A88], [V84]. It also implies that these classes are polynomial time predictable with a
polynomial mistake bound if membership queries are available [1.88].

Our algorithms are in the model of exact learning with membership queries and unrestricted
equivalence queires. The hypotheses to the equivalence queries and the output hypotheses are
depth 3 formulas.

2 The Learning Model

The learning criterion we consider is exact identification. There is a function f, called the target
function, which is a member of a class of functions C defined over the variable set {z1,...,2,}.
The goal of the learning algorithm is to halt and output a formula A that is logically equivalent
to f.

In a membership query the learning algorithm supplies an assignment a to the variables in
{z1,---,2,} as input to a membership oracle and receives in return the value of f(a).

In an (unrestricted) equivalence query the learning algorithm supplies any function & from a
class of functions H O (' as input to an equivalence oracle and the reply of the oracle is either
“yes”, signifying that h is equivalent to f, or a counterezample, which is an assignment b such

that h(b) # f(b).

For more about this model see [A88].

3 Results

We prove the following results.

Theorem 1. For assignments A = {ay,...,a:} let A(A) be the set of all boolean functions
that can be represented as CNF with clauses in which each clause is falsified by some assignment
in A. Then any f € A(A) is learnable in time polynomial in the number of variables, the DNF
size of f, and t.

Theorem 2. Any boolean function is learnable in time polynomial in the number of variables,

its DNF size, and its CNF size.

Theorem 3. The conjunction of any boolean function f with a boolean function g € A(A)
is learnable in time polynomial in the number of variables, the DNF size of fAg, the size of A,

and the CNF size of f.

The above theorems imply

Result 1. The class of k-almost monotone DNF is the class monotone DNF formulas that
allow the existence of at most (constant) k non-monotone terms. This class includes the monotone
DNF and the k-term DNF classes. Any k-almost monotone DNF is learnable in time polynomial
in its DNF size and n. Also any conjunction of functions from this class is learnable in time
polynomial in its DNF size and n.

Proof. If we change k-almost monotone DNF to CNF by taking the conjunction of all possible
disjunction of one literal from each term, we notice that every clause contains at most & negated
variables.

Let A = { all vectors of Hamming weight < k}. It is clear that any clause with at most &
negated variables is falsified by some assignment in A. Now using Theorem 1 the result follows.
A conjunction of any number of k-almost monotone DNF can also represented as CNF where
each clause has at most k negated variables.O

This result is a generalization of the learnability of monotone DNF and k-term DNF [A88].

Result 2. Any k-CNF, for k = O(logn), is learnable in time polynomial in its DNF size
and n. In particular, a conjunction of any number of O(logn)-term DNF' is learnable in time
polynomial in its DNF size and n. This implies that a conjunction of O(logn/loglogn) number
of O(logn)-term DNF is learnable in time polynomial in n.

Proof. An (n, k)—universal setis aset {b1,...,b:} C {0,1}" such that every subset of k vari-
ables assumes all of its 2 possible assignments in the b;’s. In [ABNR92,0793] an (n, k)—universal
set is constructed of size t = O(k23* logn). This size is polynomial when k = O(log n).

We show that the above classes are subset of A(A) where A is any (n, k)-universal set. Let f
be any k-CNF. Let C' = ;' V---V i , [< k be a clause in f where 2° = z when ¢ =0 and z
when ¢ = 1. Since A is an (n, k)-universal set there is a € A such that a;; = ¢; for j =1,...,1
and this assignment falsifies C'.

A conjunction of O(logn/loglogn) number of O(logn)-term DNF has DNF size at most
O(log n)CUeen/loglogn) — oy (n).0

This is a generalization of Blum and Rudich’s result for learning O(log n)-term DNF [BR92].

Result 3. A (constant) depth 2t + 1 (ki,..., ka)-formula is a formula that is a conjunction
of at most ky; formulas, each of which is a disjunction of at most ky;_; formulas, each of which
is (k1,..., kgi—g)-formula. A ()-formula is a term. The class of (ki,..., ks)-formulas, where

ki = ks = -+ = koyyq = O((logn)l/t) and ky = ky = -+ = ko = O((logn/loglogn)l/t) is

learnable in time polynomial in n. Also any circuit of depth t and fanin O((logn)'/*) for the OR
gates (no restriction on the AND-fanin) is learnable in time polynomial in its DNF size and n.

Proof. It is not hard to demonstrate that the above classes are subclasses of O(log(n))-
CNF.O

The only nontrivial large depth formulas (depth more than 2) that are proved to be learn-
able in the literature are read-once formulas over different basis [BHH92a, BHH92b, BHHK91].
Linial, Mansour and Nisan [LMN93] showed that constant depth circuits are PAC learnable with
membership queries in time n?°#(1°87) ynder the uniform distribution. The above formula is the

first nontrivial class of constant depth formulas that are learnable and have no read restrictions.

Result 4. Any boolean function is learnable in time polynomial in its decision tree size and
n. This implies that any decision tree of polynomial size is learnable in time polynomial in n.

Proof. The size of any decision tree of a boolean function f is polynomial in its DNF and
CNF size. By Theorem 2 the result follows.O

Several polynomial time learning algorithms have been given for learning certain restricted
subclasses of decision trees. Ehrenfeucht and Haussler [EH89] gave an algorithm for PAC- learn-
ing (without membership queries) decision trees of constant rank in time polynomial and gave
a PAC-learning algorithm for general polynomial size decision trees in time n®0°8™) (see also
[BI192,R87]). Kushilevitz and Mansour [KM91] gave a polynomial time PAC learning algorithm
with membership queries for decision trees under the uniform distribution. Hancock [H93] gave
a polynomial time algorithm for PAC learning read-k decision trees. Qur result implies PAC

learning of decision trees with membership queries under any distribution.

Result 5. A CDNF boolean function is a boolean function whose CNF size is polynomial in
its DNF size. Any CDNF boolean formula is learnable in time polynomial in its DNF size and
n. In particular, a polynomial size DNF' that has a polynomial size CNF' is learnable in time
polynomial in n. In the former case the learner need not know any information about the DNF
and the CNF size of the target formula.

Proof. Follows immediately from Theorem 2.0

Ehrenfeucht and Haussler [EH89] showed that polynomial size DNF that have polynomial size

CNF are PAC learnable under any distribution in time pOlog? n),

Result 6. Decision trees over terms are decision trees where each node contains a term.
Decision trees of constant depth over terms are learnable in time polynomial in n.

Proof. We show that depth k& decision trees over terms have DNF and CNF size at most
(2n)*. Then using theorem 2 the result follows. Any depth k decision tree (over variables) is a
k-DNF and k-CNF. Therefore if f is a decision tree over terms of depth k then it can written as
f=Vi_; D; where

Di =TiaN- - NN jia N T,

m; < k and T;; are terms. The DNF size of D; is at most n™* < n*. Since the depth of the tree
is k we have that the number of leaves in the tree is at most 2¥ and therefore the DNF size of f
is at most (2n)*. Duality implies the CNF size of f is at most (2n)*.0

4

This is a generalization of the learnability of k-term DNF, k-clause CNF and k-term decision
lists, [A88,R87]. It also implies that boolean multivariate polynomials with (not necessarily
monotone) k terms is learnable.

Result 7. Any conjunction of the formulas in results 1-6 is learnable in time polynomial in
its DNF size and n. For example, a conjunction of CDNF boolean functions with O(log n)-CNF
is learnable in time polynomial in its DNF size and n.

Proof. Follows from theorem 3 and the fact that the conjunction of a boolean function in
A(A) with a boolean function in A(B) is in A(AU B).O

All of the above results are for boolean functions. In a companion paper [B93] we study the
learnability of concept classes over nonboolean domains. We define DNFs, CNFs and decision
trees over any alphabet and show conditions for which the above results are true for any concept.
In particular, we show that

Result 8. Any polynomial size decision tree over any alphabet is learnable and any function
f X" — ¥ over any alphabet ¥ is learnable in time polynomial in its minimal decision tree size
and the number of variables.

This paper is organized as follows. In section 4 we give the monotone theory of boolean
functions and prove some preliminary results. In section 5 we present the first algorithm and
prove Theorem 1. In section 6 we present the second algorithm and prove Theorem 2. In section
7 we show how to combine the two algorithms into one general algorithm and prove Theorem 3.

4 The Monotone Theory

In this section we give the notation, definitions, and preliminary results, that we need to write
the algorithms and prove their correctness.

For a vector x, z; or z[i] is the i-th entry of z. For two vectors we write y < z if ‘y; = 1 implies
z; = 1’ for all 7. For an assignment a € {0,1}" we define x <, y if and only if z + a < y + a.
Here x + a is the group addition in GF'(2)™ (bitwise XOR).

A boolean function f is called a-monotone if f(x+a) is monotone. The (minimal) a-monotone

boolean function M,(f) of f is defined as follows:

M ={ § Qs =1

0 otherwise.

We write M for Mg. The following are properties of M,.
Lemma 1 . We have

1. Mu(f) = M(f(z + a))(z + a).
2. M,(fVg) = M.(f)VM.(g).
3. M.(fAg) = Ma(f)AM,(g).
4. f is a-monotone iff M,(f) = f.

5. f = MJ(f).
6. If f(a) =1 then M,(f) = 1.

7. For a DNF f = V& (afiA--- /\.’EZZ) (here z° = z and z' = z) we have

Ma(f) = \/ /\ L

. . iy
=1 Jici,j=0ae; ;

If all ¢; ; # a., ; for some term, then M,(f) = 1.

Proof. The proof is given in the Appendix.O

Another interesting property of the monotone boolean function of f is

Lemma 2 . We have

f= N M.
ae{0,1}7

Proof. If A,cq0,13» Ma(f)(®0) = 1 then for every a there exists y <, xo such that f(y) = 1. If
we choose a = xg then since y+a < 0 we must have y = a = zg and then f(zq) = 1. This implies
that A,eqo,13» Ma(f) = f. Since by (5) inlemma 1, f = M,(f) we have f = A,c(0.13» Ma(f).O

Using lemma 2 we define the Monotone dimension of a class of boolean functions C.

Definition 1 . Let C' be a class of boolean functions. We define the monotone dimension
d = Mdim(C) of C to be the minimal number of assignments a1, ..., aq such that for any f € C
we have

£= \Malh)

A set of assignments {ay,...,aq4} that satisfies the above equivalence for all f € C is called an
M-basis of C. (d need not be monimal).

The following lemma shows a simple way to find the M-basis and Mdim of a class.

Lemma 3 . Let C be a class of boolean functions. Then Mdim(C) is the minimal number
of assignments aq,...,aq such that for every f € (', there exist d monotone boolean functions
My, ..., My such that

f=M(z+a)N--- AMy(x + aq).

A set {aq,...,aq} that satisfies the above equivalence for any f € C (with possibly different M;)
is an M-basis for C'.

Proof. Let ay,...,a; be assignments that satisfy the conditions in the lemma. Let

g = /\ Maz(f)

i=1

If we show that for every f € C, g = f, then Mdim(C) = d and {a,...,as} is an M-basis for
C.
Since by (5) in lemma 1 f(z) = M,(f) for any a we have f(x) = g(z). Now by (3) and (4)

in lemma 1,

Mo (f) = Mo, (M(z + a;)) = Mi(z + a;),

6

and therefore g(z) = f(z).0

Lemma 4. A set of assignments A = {ay,...,ay} is an M-basis for C if and only if every
boolean function in C' can be represented as CNF such that every clause in this CNF is falsified
by some assignment in A.

In particular, if f = c¢;A--- Acs 1s any CNF of f and each clause ¢; is falsified by some a € A
then A is an M-basis for {f} and

f= N\ M)
a€A

Proof. If A= {ay,...,a4} is an M-basis for C then by lemma 3 every function f € C can be
written as f = My(z + a1)A--- AMy(x + a4) for some monotone M;. For 1 < i < d let ¢ be a
monotone clause in the monotone CNF representation of M;. Since c(z + a;) is a clause in the
CNF representation of M;(z + a;) and ¢(a; + a;) = ¢(0) = 0, this clause is falsified by a; € A.

Now suppose every boolean function in f € (' can be represented as CNF, f = ¢;A--- Acy
such that every clause ¢; in this CNF is falsified by some assignment a;(;y in A. Then it is clear
that M = ¢;(x + a(;)) is monotone and f can be written as

f=M(z+a)A--- AMy(x + aq)

where
M, (z) = /\ M!(z)
{ils(&)=r}

is monotone. By lemma 3, A is an M-basis for C'.O

For a function f, the DNF size (CNF size) of f, sizepnr(f), (sizecnr(f)), is the minimal
number of terms (clauses) over all possible DNF (CNF) formulas of f. For a decision tree T the
decision tree size of T', sizepr(T'), is the number of leaves in the tree. The decision tree size of
a boolean function f is

sizepr(f) = 1%1_1? sizepr(T).

Lemma 5. We have

1. sizepnp(M(f)) < sizepyr(f).

2. sizepr(f) > sizepnr(f) + sizeenr(f).
3. Mdim({f}) < sizeenr(f).

Proof. Part 1 follows from (7) in lemma 1. Part 2 follows from the fact that in a decision tree
each leaf that is labeled with 1 corresponds to one term in the corresponding DNF representation
of the tree and each leaf that is labeled with 0 corresponds to one clause in the corresponding
CNF representation of the tree. Part 3 follows from lemma 4.0

Let a be an assignment. We define Mpnr(a) = Ay.—1 @i for a # 0, and Mpnr(0,) =1 (0,
is the zero assignment). For a set of assignments S we define Mpyp(S) = VeesMpnr(a) if S is
not empty and Mpyr(0) = 0.

For an assignment @ and a variable x; we define the assignment b = a-,, where b; = a; for

t# 7 and b; =1+ a;.

The A-Algorithm
{ai,...,a;} is an M-basis for C.

1)S;« 0,H;«0fori=1,... ¢t
2) EQ(Ai_, H;) — v; If the answer is “YES” then stop.
3) 1 e {ilHy(v) = 0).
4) For each ¢ € I do
v; U;
Walk from v; toward a; while keeping f(v;) =1
S; « S; U{v; +a;}.
5) Hy « Mpyp(Si)(z+a;) fori=1,...,t.
6) Goto 2.

Figure 1: An algorithm that learns f from sizepnp(f)Mdim(C)n* membership queries and
sizepnr(f)Mdim(C) equivalence queries.

5 Learning A Class With Known M-basis

In this section we prove that any boolean function f in a class C' is learnable from sizepnp(f)
Mdim(C) n? membership queries and sizepnyr(f)Mdim(C) equivalence queries.

5.1 The A-Algorithm

The algorithm is given in Figure 1. In the algorithm the command EQ(Al_, H;)— v asks equiva-
lence query on the formula Al_, H;. If the answer is “YES” then the algorithm stops. Otherwise
the equivalence oracle returns the counterexample v. The routine Walk from v toward a while
keeping f(v) =1 takes two assignments v and a. It walks v towards a (flip an i-th bit in v that
disagrees with the i-th bit in a) while preserving the property that f(v) = 1. The routine stops
flipping bits when flipping any bit that disagree with a; changes the value of the function to
0. The output of the procedure is a vector v' where f(v') = 1 and for every v} # a; we have
f(v’,.)= 0. This procedure runs with at most n? membership queries.

2

5.1.1 Proof of correctness

Before we prove the correctness of the algorithm we prove the following.

Proposition A. Let f be a boolean function. If y is an assignment such that f(y) =1 and
for any ¢ where y; = 1 we have f(y-,) = 0, then for any DNF V{_,T; of f there exists a term
T: such that

M(T;,) = Mpnr(y).

Proof. If y =0, then there exists a term T'= z,, --- 2;, in f and M(T) =1 = Mpnr(0,).
Suppose ¥y = (y1,...,¥n) # 0,. Since f(y) = 1 we have Vi_,T;(y) = 1 and therefore there
exists T (y) = 1. Let Ty = x1Axg -+« Ay AZpmy 41\ -+ - A, (without loss of generality). Since
Tiw(y) =1 wehave yy = yo = -+ = Y, = 1 and Y41 = -+ = Ym, = 0. If y; = 1 for some

20

i > my then T; (y-.,) = 1 and therefore f(y-.,) = 1 which is a contradiction. Therefore, y; = 0
for ¢« > my and we have

M(Ty,) = 21N+ A, = Mpyr(y).0

Now, let f € C'and f = Vi (zZA--- /\:Eztit) where s = sizepnyr(f). Recall that 2° = z and

z' = z. Since {a1,...,a;} is an M-basis for C' we have

f= /\ -/Mai(f>- (1)
Let a; = (a;1,...,a;,). By (7) in lemma 1,

M(f(z + ar)) \/ /\ e, (2)

1= ljake —Cij

has at most s terms (If all ay., ; # ¢;;, then the i-th term is 1). Let

7;c = { /\ l'eij

]:ak,eij =Ciy

i=1,...,s}.

The set 7}, contains the terms of M(f(x + ax)). Notice that
(/\ T) z+a;) = My, (f).
TeT;

Let His,S:6,(i = 1,...,t),vs,Is and v; 5 for ¢ € Is be the variables H;,S;, (e = 1,...,t),v,1
and v; for ¢ € I, respectively, of the algorithm in the é-th iteration. We prove by induction that

1. vs 1s a positive counterexample.

2. Is 1s not empty.

3. Mpnr(vis+a;) € T\{Mpnr(s)|s € S;s-1} for i € Is.

4. {Mpnr(s)|s € Sis} CT; fori=1,.

5. His = My, (f) fori=1,...,t.

We prove 1-5 for the ¢ + 1 iteration. The same proot also applies for the first iteration. Since

by induction hypothesis 5, H; s = M,,(f), we have

A His = A\ Ma(f) = . ‘)

i=1 =1

(Also true for 6 = 1). Therefore vsyy is a positive counterexample. This proves 1 for 6 + 1.
Since Af_, H; s(vsy1) = 0 the set Is1q is not empty. This proves 2 for 6 + 1. Now we have for
all 2 €]§+1

H; s(vsg1) =0 (4)
and since vgyq 1s a positive counterexample,
f(vs4a) = 1. (5)
From (4) and (5) and by the definition of H; s we have for all ¢ € I544
Mpnr(Sis)(vssr + a;) = 0,

and
J((vsp1 + ai) +ai) = 1. (6)
By step 4 in the algorithm we have for every ¢ € I514
Vi 541+ @ < Uspq + ay, (7)
f(viss1) = f((viss1 + a;) + a;) = 1 and for every j where (v; 511 + a;)[j] = 1,
F((iss1)-e,) = (Vi1 + i)a, + ai) = 0. (8)
Since Mpnr(Sis)(x) is monotone, (6) and (7) imply that
Mpnr(Sis)(vise + a;) = 0. (9)

By proposition A, (8) implies that there exists a term 7" in the DNF of f(x + a;) such that
M(T) = Mpnr(vist1 + a;). Therefore,

Mpnr(vissr +a;) € T;. (10)

From (9) and (10) and the induction hypotheses 4, we get 3 for § + 1. Now since S; 541 =
Sis U{vissr +a;} for @ € Isyq and S; 541 = Sis for @ € I54q, the by induction hypothesis 4 and
(10) we get 4 for 6 + 1.

By 4 for 6 + 1 we have

Hispi(z+a;) = \/ Mbpnr(s)
SES; 541
= \/ T = M(f(xz+ a;)).
TET;
This proves 5 for 6 + 1. This completes the proof of 1-5.
Now, 1-5 shows that at each iteration for some : = 1,...,t we add one new term of 7; to

the formula H;. Since |7;| < s after at most A < st < sizepnp(f)Mdim(C) iterations of the
algorithm we will have

H;)\ = (A T) (z +a;) = My, (f),

TeT;

and Al_, H; = f. This completes the proof of the correctness of the algorithm.O

10

The CDNF-Algorithm

)
2) EQ(1) — v; If the answer is “YES” then stop.
Nt—t+1,H 0,5 «0,a, v
4) EQ(ANi; H;) — v; If the answer is “YES” then stop.
5) I «+ {i|H;(v) = 0}.
6) If I is empty then Goto 3.
7) For each i € I do

v; U

Walk from v; toward a; while keeping f(v;) =1
8) Hz — iMDNF(Si)(x + ai) for 1 = 1, ceey t.
9) Goto 4.

Figure 2: An algorithm that learns f from sizepyrp(f)sizecnrp(f)n® membership queries and
sizepnr(f)sizecnr(f) equivalence queries.

5.1.2 The Complexity of the A-Algorithm

It is clear that the algorithm runs with n?sizepnp(f)Mdim(C) membership queries and sizepnp(f)
Mdim(C') equivalence queries. The factor n? in the number of the membership queries is due to
the fact that the procedure Walk might ask n? membership queries each iteration.

6 Learning Boolean Functions

In this section we give an algorithm that learns any boolean function in time polynomial in the
number of variables, the DNF size of f and the CNF size of f with sizepnyr(f)sizeonr([f)n?
membership queries and sizepnp(f)sizecnr(f) equivalence queries.

6.1 The CDNF-Algorithm

To prove the correctness of the algorithm, we need the following proposition.

Proposition B. Let f be a boolean function and f = A;_, ¢; be a minimal size CNF for f.
Let r < s and {ay,---,a;} be a set of assignments such that for every ¢;, 1 < r < s, there exists
aj(iy such that ¢;(a;iy) = 0. Let H;, 2 = 1,...,1 be a boolean function that satisfies H; = M., (f).

11

If for an assignment a we have

(/:\IH) (a)=1 and f(a)=

then there exists a clause ¢;,¢ > r, that satisfies ¢;(a) = 0.
Proof. Since (Al_, H;)(a) = 1 we also have Al_ M (f(z + a;))(a + a;) = 1. If ¢;,(a) = 0 for
some ig < r, then by (3) and (4) in lemma 1

I = M(f(x+aju)))(a+ aju)
(/\ Mei(x + %‘(z‘o)))) (a+ ay)

=1
= M(cip(z + aj(iy)))(a+ ajiy)
= ¢y(a)=0

A contradiction. Therefore ¢;(a) = 1 for all ¢ < r. Since f(a) = 0 we must have ¢;(a) = 0 for
some ¢ > r.0

Now to prove the correctness of the CDNF-algorithm notice that steps 4-9 are identical, except
for step 6, to the steps of the A-algorithm. We have added lines 1-3 and 6 to find an M-basis for
{f}. Let H = A ¢; be a minimal size CNF for f. By proposition B each negative counterexample
a will falsify a new clause ¢; of H. After at most sizecnr(f) negative counterexamples we will

have: for every clause ¢; in H = f there exists a;(;) that satisfies ¢;(a;(;)) = 0. Now by lemma 4,
{a;} is an M-basis of {f} and therefore the A-algorithm learns f.O

7 Learning Conjunctions of Classes

In this section we combine the two algorithms into one algorithm that learns a conjunction of
any two classes such that the first is learnable using the A-algorithm and the second is learnable
using the CDNF-algorithm.

The algorithm is given in Figure 3.

Notice that we can build an M-basis for f; A f; from the union of each M-basis for f; and f5.
Since A is an M-basis for C and f; € (', A is also an M-basis for f;. Therefore we start with
the M-basis A and build a basis for f; from negative counterexamples.

8 Appendix

In this appendix we prove lemma 1.
1.
Ma(f)(w0) =1 (Fy <a o) fly) =1
(Fy+a<zo+a)f((ly+a)+a)=1
(Fz<azo+a)f(z+a)=1

M(f(z +a))(zo+a) =1

111t

12

A+CDNF-Algorithm
A ={ay,...,a,} is an M-basis for ;.

DterH 0,5 «0,i=1,...,¢
2) EQ(Ai—, H;) — v; If the answer is “YES” then stop.
3) I « {i|H;(v) = 0}.
4) If T is empty then
t+t+1,H; < 0,5; « 0.
a; + v.
Goto 2.
5) For each 7 € I do
v; ¢ U;
Walk from v; toward a; while keeping f(v;) =1
S; « S; U{v; + a;}.
6) H; < Mpnp(Si)(z+a;) fori=1,...,¢.
7) Goto 2.

Figure 3: An algorithm that learns f = fiNfy € CiACy from sizepnp(f)(Mdim(Cy) +
sizecnr(f2))n® membership queries and sizepnp(f)(Mdim(Cy) + sizeonr(f2)) equivalence
queries.

13

Ma(fVg)(zo) =1

11t

Ma(fAg)(zo) = 1

FTel
B

4. We have f is a-monotone if and only if f(x + @) is monotone. Let g(z) = f(z + a) and
z =y + a. Since ¢ is monotone

M (f)(z0) =1

5. Since zo <, o,
fleo) =12 (B <o 20)fly) = 1 = Ma(f)(z0) = L.
6. Since a <, o for any g
fla) =1 = (Vao)Fy <u 20)f(y) = 1 = (Vao) Ma(f(2))(z0) = 1 &= M, (f(x)) = 1.

7. First notice that the minimal (in the order <) assignment that satisfies t = z;A--- A
T ATy A -+ ANTs is (1,0,—,), where & € {0,1} is the assignment in {0,1}" such that all of
its entries are {. Also any assignment that satisfies ¢ is greater than (1,0,-,). Therefore
M(zAA - A2 AT A - - AT) = T A - - Ay

Now 7 follows immediately from 1 and 2.0

Acknowlegement . 1 would like to thank Dana Angluin, Sally Goldman, Tom Hancock,
Lisa Hellerstein, Martin Krikis, Sleiman Matar, Dan Roth and Tino Tamon for many useful
comments.

14

References

[A88]
[ABNR92]

[AFPY2]

[ATIP92]

[AK91]

[AP192]

[AP292]

[B192]

[B93]

[BHH92a]

[BHH92b)

[BHHKO1]

[BRO2]

Dana Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.
Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construc-

tion of asymptotically good low-rate error-correcting codes through pseudo-random
graphs, IFEFE Transactions on information theory, 38, 2:509-516, 1992.

Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of horn
clauses. Machine Learning, 9:147-164, 1992.

Howard Aizenstein, Lisa Hellerstein, and Leonard Pitt. Read thrice DNF is hard to
learn with membership and equivalence queries. In Proceedings of the 33rd Symposium
on Foundations of Computer Science, pages 523-532, 1992.

Dana Angluin and Michael Kharitonov. When won’t membership queries help? In
Proceedings of the Twenty Third Annual ACM Symposium on Theory of Computing,
pages 444-454, 1991.

Howard Aizenstein and Leonard Pitt. Exact learning of read-twice DNF formulas.
In Proceedings of the 32nd Symposium on Foundations of Computer Science, 1991.

Howard Aizenstein and Leonard Pitt. Exact learning of read-k disjoint DNF and
not-so-disjoint DNF. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 71-76, August 1992.

Avrim Blum. Rank-r decision trees are a subclass of r-decision lists [nformation
Processing Letters, 43, pages 183-185, 1992.

Nader H. Bshouty, Exact learning concepts via the monotone theory. In preparation.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arithmetic
read-once formulas. In Proceedings of the Twenty Fourth Annual ACM Symposium
on Theory of Computing, May 1992.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning Boolean read-
once formulas with arbitrary symmetric and constant fan-in gates. In Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, pages 1-15, August
1992.

Nader H. Bshouty, Thomas R. Hancock, Lisa Hellerstein, and Marek Karpinski.
Read-once threshold formulas, justifying assignments, and transformations. Technical
report, International Computer Science Institute TR-92-020, 1991.

Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with queries.
In Proceedings of the Twenty Fourth Annual ACM Symposium on Theory of Com-
puting, pages 382-389, May 1992.

15

[C793]

[EHS9]

(193]

[KM91]

[LMN93]

[1.88]

[PRO4]

[PRY4]

[R87]
593

[V84]

Gérard D. Cohen and Gilles Zémor, Intersecting codes and independent families.

Draft, 1993.

Andrzej Ehrenfeucht, and David Haussler. Learning decision tree from random ex-
amples. Information and Computation, 82, pages 231-246, 1989.

Thomas R. Hancock. Learning ku decision trees on the uniform distribution. In
Proceedings of the Sizth Annual Workshop on Computational Learning Theory, pages
352-360 July, 1993.

Eyal Kushilevitz, and Yishay Mansour. Learning decision trees using Fourier spec-
trum. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
1991.

Nathan Linial, Yishay Mansour and Noam Nisan. Constant depth circuits, Fourier
Transform, and Learnability. In Proceedings of the Thirtieth Annual Symposium
Foundation of Computer Science, 1989.

Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold

algorithm. Machine Learning, 2:285-318, 1988.

Krishnan Pillaipakkamnatt and Vijay Raghavan, On the limits of proper learnabil-
ity of subclasses of DNF formulas. Proceeding of the Seventh ACM Workshop on
Computational Learning Theory, 1994.

Krishnan Pillaipakkamnatt and Vijay Raghavan, Read twice DNF formulas are
properly learnable. TR-CS-93-59, Vanderbilt University.

Ronald L. Rivest, Learning decision lists. Machine Learning, 2, pages 229-246, 1987.

Robert E. Schapire and Linda M. Sellie, Learning sparse multivariate polynomials
over a field with queries and counterexamples, Proceeding of the Sixth ACM Workshop
on Computational Learning Theory, 1993.

Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134—
1142, November 1984.

16

