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Abstract

It will be shown that decomposition via Chinese Remaindering does not yield
polynomial size depth 3 threshold circuits for iterated multiplication of n n-—bit
numbers. This result will be achieved by proving that, in contrast to multiplication
of two n—bit numbers, powering, division, and other related problems, the resulting
subproblems, iterated multiplication modulo polylog(n)-bit numbers, do not have
polynomial size approximation schemes over the set of all threshold functions. We
use a lower bound argument based on probabilistic communication complexity.

1 Introduction

In the last years there has been proved a lot of interesting results on the power of small
depth threshold circuits [A89,HMPST87,GHK92,Y90,BHKS92]. A main observation is
that depth 3 threshold circuits are surprisingly powerful. So, it was shown by Allender
[A89] that ACy-functions can be realized by depth 3 threshold circuits of nearly poly-
nomial size. This could still be improved by Yao who proved that this is true even for
AC C—functions [Y90]. Another group of results concerns efficient small depth realizations
of arithmetic operations. For example, addition and comparison of two n—bit numbers can
be done by depth 2 threshold circuits with polynomially many edges [B90,AB91,BHKS92].
For other basic operations such as multiple addition, sorting, multiplication, squaring, po-
wering, and division of n—bit numbers there are known depth 3 threshold circuits with
polynomially many edges [BHKS92,H93]. A certain eyecatching exception is iterated mul-
tiplication, the multiplication of n n—bit numbers, for which the best known polynomial

size threshold circuits have depth 4 [BHKS92].



This paper was initiated by several unsuccessful trials made at several places to construct
more efficient threshold circuits for iterated multiplication. Is it really possible to con-
struct depth 3 polynomial size circuits for this problem? We give a negative answer of the
following type. The main and up to now only successful strategy for getting small depth
realizations of arithmetic operations is to decompose the problem via Chinese Remain-
dering and handle the resulting subproblems in parallel [BHKS92,H93]. Using methods
based on probabilistic communication complexity we show that in contrast to multiple
addition, multiplication and division in the case of iterated multiplication this strategy
does not lead to polynomial size depth 3 threshold circuits.

Observe that, unless there is a significant breakthrough in circuit lower bounds, an exhau-
stive negative answer cannot be expected because we don’t know any method for proving
even superlinear lower bounds on the size of depth 3 threshold circuits.

The paper is organized as follows. For making this article self-contained in section 2 we
review the main techniques developed in [H93,BHKS92| for designing small depth thres-
hold realizations, including the concepts of approximability and linear representations of
Boolean functions. In section 3 we describe a connection between 1-approximability of
multi-output functions and probabilistic communication complexity, which is the basis
for our lower bound results presented in section 4.

Still one technical remark. For sake of shortness at many places in the text there will occur
phrases like "Let ¢ : {0,1}" — {0,1} be a Boolean function, where C(g) € n°M .7
instead of "Let ¢ = (g, : {0,1}" — {0,1}) .y be a sequence of Boolean functions,

where C(g,) € n®M 7. Please do not get confused by this.

2 Preliminaries

2.1 Different notations of threshold realizations, and approxi-
mability

The basic processing elements of threshold circuits are Boolean threshold gates, T*, pro-
ducing one if and only if at least  of the n input bits are one. The complexity class T'Cy ,
k > 1, contains all problems having depth k threshold circuits with polynomially many
edges. A Boolean function ¢ : {0,1}" — {0,1} is called a threshold function if ¢ can be
realized by one single threshold gate.

Definition 2.1 We say that f : {0,1}" — {0,1} has a threshold representation over
the set G of Boolean functions over {0,1}" if f can be realized by a depth two circuit
consisting of gates performing functions from G at the bottom level and a threshold gate
at the top. The number of edges is called the weight of the representation.

Clearly, f € TCyy, if and only if f has a polynomial weight threshold representation
over T'Cq—1. It will be convenient to work with the following different (but equivalent)
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notation.

Lemma 2.1 (i) The function f has a threshold representation over G if and only if there
are functions ¢y,...,9; € G, real numbers r,wy,...,ws and a distance parameter
6 > 0 such that for all inputs x

f@)=1 = 3 wiga(e) > r 46

k=1

fl2)=0 = zs:'wkgk(x) <r-24

k=1

(i1) The function f has a threshold representation of polynomial weight over G if and
only if there is a representation as in (i), and s, 671, as well as |r|,|wy],...,|ws]|
are polynomially bounded in n. O

For constructing small depth threshold circuits it has been proved very usefull to investi-
gate approximability of functions over a given basis.

Definition 2.2 The function f is called G-approximable if for any ¢ > 0 there are
Giy--,9s € G, wy,...,ws € R, where s and w = Y_]_, |wi| are polynomially bounded in
n and €', such that for all z |f(z) — Y i_, wrgr(z)] < e

It can easily be proved that the G—approximability of f provides a polynomial weight
threshold representation of f over G. Our special interest is devoted to T'Cy j—approxima-
bility which is usually called k—approzimability. The special effect of saving depth is due
to the following fact.

Lemma 2.2 Suppose we are given G—approximable functions hq, ..., h,,, where m is po-
lynomually bounded in n. Further suppose that f has a polynomial weight threshold re-
presentation over {hy,... hy}. Then f has a polynomial weight threshold representation
over .

Proof: By definition there are § > 0 and reals r,w},...,w’ , where §~! and w' = 37, |w]|
are polynomially bounded in n such that for all inputs =

flay=1 = i'wghl(:ﬂ)2r+5 and f(z)=0 = iw}h;(;c)gr—é.

=1 =1

Now, for each [, 1 <[ < m, take a polynomial weight threshold representation of h; over
(G which approximates h; with error 22,. Combining these approximators according to

w,...,w! yields a polynomial weight threshold representation of f over GG. O




2.2 Linear representations of Boolean functions

Definition 2.3 A Boolean function f : {0,1}" — {0,1} is called to have a linear
representation of length q if there is a linear mappingl : R"™ — R and a set of pairwise
disjoint intervals [aq, bi], [ag, ba], ..., [aq, by] of the real line such that for all inputs x

q

fley=1 <= I(z) € [Jla;,b)].

=1
Observe that the linear mapping (1, ...,2,) = 3", 2'z; induces a linear representation
for each Boolean function f. The function f is symmetric if and only if it has a linear
representation with respect to I(z1,...,2,) = >i—; «;. Threshold functions have linear

representations of length 1. The known constructions of efficient threshold circuits of very
small depth make use of the following observation [BHKS92,H93].

Lemma 2.3 If f : {0,1}" — {0,1} has a linear representation of polynomial length
then f is 1-approximable.

Proof: Fix a linear mapping [ and a related set of intervals, say [ay, b1],[az, ba], . .. [ag, by,
realizing f as in Definition 2.3 where additionally ¢ € n°®). Observe that f can be written

as
q

fla) = D (@) +ti(2)) — g,

i=1
where the unbounded weight threshold functions ¢; and t! test whether {(z) > a; and
[(x) < b;, respectively. It has been shown in [GHR92] that arbitrary threshold functions
are l-approximable. In [GK93] there has been given an explicit construction of those ap-
proximators. Combining ;—qfapproximators for all ¢;, ¢’ with the above exact representation
gives an e—approximator for f. Hence, f is 1-approximable. O

2.3 Realizing operations by Chinese Remaindering

Realizing an operation F : {0,1}" — {0,1}", where m € n°(", by Chinese Remain-
dering means the following. Fix p-bit numbers ¢;...,¢, and set ) = []’_, ¢; such that
p € O(log(n)), Q@ > 2™, log(Q) € n®M), and that for all i # j € {1,...,r} the greatest
common divisor of ¢; and ¢; is one. The corresponding Chinese Remaindering Transfor-

mation CRT : {0,1}" — ({0,1}")" is defined
CRT(y) = (y mod q1,...,y mod q,).

Given F,qy...,q.,Q as above let FU9)(z) = F(z) mod ¢;.

Lemma 2.4 If for all j = 1,...,r each output bit of FU is k—approzimable then all
output bits of F' are (k + 1)—approzimable.



Proof: It is sufficient to show that CRT ™' : ({0,1}")" — {0,1}" the inverse transforma-
tion of Chinese Remaindering, has a linear representation of polynomial length. Such an
representation can be obtained using the well-known fact that C RT~! can be written as

CRT—l(y17...’y7") = Ze]y] mod Qa
7=1

where ey, ..., e, are fixed numbers from {1,...,¢ — 1}, the so—called orthogonal idempo-
tents, characterized by the property e; mod ¢; = 6; ;. O

For the sake of illustration we recall the proof in [H93] of 2—approximability of the mul-
tiplication of two n bit numbers mult, : {0,1}" x {0,1}* — {0, 1}*".

Lemma 2.5 Let n,m = 2n,Q,q1,...,q, be defined as above. Then for all 3 = 1,...,r
multly) is 1-approzimable.

Proof: For all n—bit numbers = (2,-1,...,20), ¥y = (Yn-1,...,%0) € {0,1}" define

n—1 n—1
lz,y) = Y ammi + ng; (Z ai'yz') )
1=0 1=0

where for all 7 = 1,...,n, a; = 2° mod ¢;. It can easily be checked that [ induces a linear
representation for each output bit of multly) and, as aq, ..., an, ¢; have polynomial size,

the length of this representation is polynomially bounded. O

How is the situation for #t.mult, : ({0,1}")" — {0, 1}”2, the multiplication of n n-bit
numbers? The best known realization of it.mult,(z', ..., "), which shows that it.mult, is
3—approximable, requires that ¢y, ..., ¢, are prime numbers. Further we need in advance
for each y = 1...r a number u; having multiplicative order ¢; — 1 in IF ;‘J. The first
step is to compute in parallel log, ', i =1...n, § = 1...r, this is 1-approximable.
Computing from this it.mult,(z',...,2™) mod ¢; via adding the discrete logarithms is
also 1-approximable. We obtain 2-approximability of all it.multl) and 3-approximabili-
ty of it.mult,.

The main result of this paper is that for all p-bit numbers ¢, where p € O(log(n)),
which have a prime factor not smaller than 5, it.mult,, mod ¢ is not 1-approximable, not
depending on how the binary code of the output is chosen. Consequently, realizing ¢t.mult
by Chinese Remaindering does not lead to polynomial size depth three circuits.

3 1-Approximability and Probabilistic Communica-
tion Complexity

This section is devoted to the proof of the following statement.



Theorem 1 Let g : {0,1}" — {0,1}™ be a 1-approzimable Boolean operation with m =
O(log(n)). Further let h : {0,1} — {0,1} be arbitrarily fized. Then the probabilistic
communication complexity of f = hog:{0,1}" — {0,1} with respect to an arbitrarily
fized partition of the set of input variables is at most O(mlog(n)).

We will work with the following definition of one—way probabilistic communication pro-
tocols, for more details see [HR88,K91]. Suppose we are given a Boolean function f =
flz1, ..oy, y1, ..., yn) in a fixed distributed form. Communication protocols for f refer
to a pair (P, P1) of processors of unbounded computational power which want to coope-
rate in computing f(z,y) under the restriction that P, only knows the left input half
x, and P; only knows the right input half y. A protocol II of length k£ works as follows.
In dependence of x and a private random string r, processor Fy computes a message
M = M(z,r) € {0, 1}]C and sends it to ;. Then processor P; decides in dependence
of w and y deterministically whether to accept or to reject the input. II computes the
function f with advantage € if for all inputs (z,y) it holds

1
flz,y)=1 == Prob[Il accepts (z,y)] > 5 +e.
1
flz,y) =0 = Prob[ll accepts (z,y)] < 5 €
Let us fix a number ¢ = 274" By definition, there are numbers s,w, W € n°W),

threshold functions T4,...,Ts : {0,1}"* x {0,1}" — {0,1} of weight < W, and real
functions ¢; = >i_; wjxTk, j = 1,...,m, fulfilling for all j & [w;r] < w, such that
‘gj(:v,y) — g}(:p,y)‘ < ¢ for all inputs z,y € {0,1}" and all 5, 1 <j < m.
Further observe that there is a uniquely defined multilinear mapping
K= > JXz*: R™— R
ae{O,l}m

which coincides with & on {0,1}™. Using Cramer’s rule it can be derived that all coeffi-
cients A\, are integers between —2" and 2.

We define f':{0,1}" x {0,1}" — R by f'=h'0og .

Observe that for all z,y € {0,1}" |f(z,y)— f'(z,y)| = |k (2) = k' (2')|, where z =
(91(2,9), - gm(2,y)) and 2" = (g1 (2,y), .-, g (2, y))-

Consequently,

|f(z,y) = fl(z,y)] < 22" max m|za—z’a| <
ae{o,l}

< 27" max{2, (1 +¢)™ — (1 — )™} < 2*™2em(1 + €)™ < 2.
By definition of € we obtain that for all z,y € {0,1}"

Fy) = Fe)] < 5 1)



Applying the distributive law to f' = A’ 0 ¢’ and simplifying the expression appropriately
the function f’ can be written as

= > viUs, (2)
JC{1,...,s}|J|<m
where Uy : {0,1}" x {0,1}" — {0,1} are defined as Uj(z,y) = Ajes Ti(z,y).
Observe that for all J C {1,...,s} it holds that

|‘UJ| € nO(m)’ (3>

and that by (1) f’ defines a threshold representation of f.

It is now quite straightforward (but somewhat technical) to construct from (1), (2), and
(3) a probability distribution R on the functions U; and some €* > 0, where ¢*~! € p©(™),
such that for all z,y € {0,1}"

Probr(f(z,y) =Us(z,y)] =2 5+¢ (4)

DO | —

(Observe that those U; for which vy < 0 have to be replaced by their negation.)

Now we are ready to define an efficient probabilistic communication protocol II for f.
Suppose that for all j, 1 < j < s, the threshold function 7 is defined as

n n
Ti(z,y)=1 <= Zai,jl?i + Zbi,jyz’ > cj,
=1 i=1
where a; ;, b; ;, ¢; are integers fulfilling -7, |a; ;| + X0 bij] + |e;| < WL

Given the input z to player Fy and y to player P, Py chooses randomly according to R
a function Uy =T, A... AT}, | < m, and sends the message

n n
j1#zai,j1$i# #jl#zaidlxi'
=1 i=1
Player P, can now compute 7}, (z,y),..., T (z,y) and, consequently, Uj(z,y). P; accepts
if Uy(z,y) = 1 and rejects otherwise. It can easily be checked that this protocol computes

f with advantage €*. The length of the protocol is bounded by O(m(log(s) + log(W)) =
O(mlog(n)). O

4 Iterated multiplication modulo small integers is not
1-approximable

This section is devoted to the proof of



Lemma 4.1 Let ¢ > 5 be an O(log(n))-bit prime number. Then there is no output repre-
sentation of it.mult, mod q of length logo(l) n such that all output bits are 1-approximable.

Using this lemma it is quite straightforward to show

Theorem 2 Let r be an O(log(n))-bit number having a prime factor not smaller than 5.
Then there is no output representation of it.mult, mod r of length logo(l) n such that all
output bits are 1-approximable.

Proof: Suppose there is a prime number ¢ > 5, a natural number r = r’¢q and an output
representation
it.mult, mod r : ({0,1}")" — {0,1}"™,

m = logo(l) n, for it.mult, mod r such that each output bit is 1-approximable. By Theo-
rem 1, this 1-approximator can be used to construct a l-approximator for each output
bit of t.mult, mod ¢. This contradicts Lemma 4.1. O

We will prove Lemma 4.1 by using the following lower bound result from [HR88] on the
probabilistic communication complexity of ip? defined by

ipi(:cl,...,:cn,yl,...,yn) =2y D ... D TpYn.

Lemma 4.2 For all ¢ > 0 fulfilling ¢ € 28°n it holds that the length of any probabi-
listic communication protocol computing ip2 with advantage € is Q(n). O

Consider now the function f : ({0,1}™)" — {0, 1}, over n n-bit numbers z™1), ... 2"
defined by
fW, .2y =1 = [I%,2% is a quadratic non-residue mod g.

We construct a partition of the n? input variables of f into subsets U and V such that
o ey . . .

for any € > 0, ¢! € 28 “n the length of any probabilistic communication protocol

computing f with advantage € is Q(n). By Theorem 1 this proves Lemma 4.1.

We do that by defining a rectangular reduction of ip? to f, i.e. we define mappings [ :
{0,1}" — {0,1}" and 7 : {0,1}" — {0,1}" such that either ip2(z,y) = f(I(z),7(y))
for all z,y € {0,1}", or ip2(z,y) = —f(l(z),r(y)) for all z,y € {0,1}". This is sufficient
as [ and r translate each protocol for f into a protocol of the same length for ip?. Before
defining U, V. [, r observe the following facts.

Lemma 4.3 For all primes q > 5 there is a natural number a,1 < a < g — 3, fulfilling

(5= () ()




Proof: As usual, (%) denotes the Legendre symbol defined as

a 0, if ¢ divides a
(—) = 1, if a i1s a quadratic residue modulo p
q —1, if a is a quadratic non-residue modulo p

The multiplicative group IF 7 can be written as {lLw,w?,...,w? !} for some w € F .

Clearly, a’ € IF ; is a quadratic residue modulo p if and only if log, a’ is even.

Consequently, it is sufficient to prove the existence of a, 1 < a < ¢ — 2, such that
(9) = (“‘H) But this follows straightforwardly from the fact that ( ) = (3) =1.0

q
We get [, by defining mappings {: {0,1} — {0,1} and #: {0,1} — {0,1,...,2" — 1}

and setting
(L) (@1 ey Ty Y1y s yn) = (H1) 4+ 2F(p1), .. U(2n) + 2F(yn)).
The corresponding partition (U, V) is given by putting all last bits of the n—bit input

numbers (M ... 2™ into U and the remaining input bits into V.

The mapping [ will be the identity, i.e., /(b) = b for b € {0,1}, and 7 will be defined as
r(0)=A and 7(1)= A+ 1 for some appropriate number A, 1 < A <p—1.

Now observe that f(z("), ..., (") =1 if and only if there is no ¢, 1 <4 <n, such that ¢
divides (9 and the number of those i with (xf;)) = —1 is odd.

Consequently, the mappings [ and r will do their job if A has one of the following proper-
ties.

(a) It holds (HOM2r0)) — (HOM2rL)) — (U2} ) opq (MEW) =
A1

This is equivalent to (%) = (

q

) 1 and (2{%2) = —1 and means that [,r

reduces ip? to f.

(b) It holds (M2 — (HO2r(0)) _ (H420)) — ) gpq (M0E2D) —

This is equivalent to (%) = (MTH) = —1 and (2{%2> = 1 and means that [,r

reduces 1p? to f, if n is odd. or . r reduces ip? to = f if n is even.
pTL M) M) M) p’]’L

By Lemma 4.3 there is some a, 1 < a < ¢ — 3, such that (%) = (“qi) # (“:—2) CItas
easy to check that A = ca mod ¢ where ¢ denotes the multiplicative inverse of 2 in IF
matches all our requirements. O
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