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Abstract

We prove an unexpected upper bound on a communication game
proposed by Jeff Edmonds and Russell Impagliazzo [2, 3] as an ap-
proach for proving lower bounds for time-space tradeoffs for branching
programs. Qur result is based on a generalization of a construction of
Erdos, Frankl and Rédl [5] of a large 3-hypergraph with no 3 distinct
edges whose union has at most 6 vertices.

1 Introduction

Suppose that we have two vectors v and v of length k. We want to decide
whether u = v, but our access to the bits is very limited—at any moment we
can see at most one bit of each pair of the bits u; and v;. You can imagine
the corresponding bits to be written on two sides of a card, so that we can
see all the cards but only one side of each card. After every flip we can write
down some information, but the memory is not reusable—after the next flip
we have to use new memory. We are charged for every bit of memory that
we use and for every time we flip one or more cards.

It seems natural to suppose that if we flip the cards only a few times, we
need a lot of memory. We prove an unexpected upper bound on the amount
of memory needed; our bound is asymptotically tight if the number of card
flips is constant. Our result is based on a construction of Erdos, Frankl and
Rodl [5], whose special case is a large (in the number of edges) 3-hypergraph
(a system of 3-element sets) with no 3 distinct edges whose union has at



most 6 vertices, and on a previous result of Rusza and Szemerédi [8]. This
special case of their construction corresponds to the case when only two flips
of the cards are allowed. Our main idea is a geometric interpretation of the
construction of a large set with no three element arithmetic progression due
to Behrend [1] and its generalization to higher dimensions. We discuss this
connection in Section 4.

In fact, Jeff Edmonds and Russell Impagliazzo proposed this game as a
tool for proving lower bounds in complexity of boolean functions and proved
that a reasonable lower bound on the sum of the number of flips and the num-
ber of bits of memory used during the game would imply a new lower bound
for branching programs [2, 3]. We give a simple protocol with O(log n) probes
which uses only O((logn)?) bits of memory. We discuss this connection and
protocol in Section 5.

First we describe the game more precisely and state some easy facts in
Section 2, and prove our upper bound in the communication game setting in
Section 3.

2 The game

Formally we describe the game as follows. FEach input z is divided into
some pieces (substrings) 1,...,x, in a fixed way (i.e., it is given which
coordinate belongs to which piece). Each piece corresponds to a single card.
Let ITy, ..., II7 be a sequence of subsets of [1,r] and let the inputs u and v be
given. Then IT,(u,v) denotes the input consisting of the pieces x; defined as
z; =wv; if ¢ € Il and 2; = w; if ¢ € II;. These input vectors are called probes,
and each of them corresponds to a choice of a visible side for each card. The
protocol is described by the T probes Ily,..., Il and a function F(u) on
the input vectors. If F(u) = F(Il;(u,v)) = ... = F(Ilz(u,v)), the protocol
answers “u = v”, if not, the answer is “u # v”. Let B be the number of
bits of memory that we need, i.e., the maximal length of F'(u) over all inputs
u. We are interested in the dependency of B on T and k. In the context
of time-space tradeoff, the most important quantity is the minimal possible
B + T, which corresponds to the total communication.

This corresponds to a protocol in which we first write down some infor-
mation about u, and then after each of T flips we just check whether the
current probe is consistent with that information. It is obvious that if we



discover inconsistency, the vectors are different. Thus a protocol is correct if
no two distinct vectors pass the test. In fact, here the use of memory is even
more restricted than in the version described in the introduction—effectively
the first time the protocol writes down arbitrary information F'(u) but then
after each flip we write down only a single bit indicating consistency of the
current probe. It is easy to show that this restriction increases the amount
of memory by at most the maximum of B and T', see [2].

We can describe the set of probes in another equivalent way, more con-
venient for our proof. For each i < rlet V; C [1,7] denote the set of indices
of the probes such that ¢ € V; iff the ¢th piece of II;(u,v) is v; (as opposed to
u; in other probes). We can assume that all sets V; are distinct, because the
pieces which appear in identical sets of probes can be joined (we can use one
card instead of two cards that are always flipped together). Also, for every 1,
V; is nonempty, as at least one probe has to look at v; in a correct protocol.
This means that r < 27 — 1.

In case of T' = 1, the game is just the usual complexity with one player
having access to u and the other player to v; it is easy to see that k bits of
memory are needed to test equality in that case. Similarly, it is easy to see
that B must be at least the length of any piece u;. If we fix all other pieces
to be all zeros, then every probe is either u; or v;, and a correct protocol
needs enough memory to distinguish any two distinct inputs u;. This shows

that B > k/r > k/(2T — 1).

We describe the best previously known protocol; it uses B = [k/T'] bits of
memory [2]. Set r = T and divide the input into r pieces of the same length
(we assume w.l.o.g. that k is divisible by r). Set II, = {t}, or equivalently
V; = {1} (i.e., each probe looks at just one piece of v and the rest comes
from u). Set F(u) = uy & uy § -+ & u, to be the bitwise parity of the
pieces. If the protocol answers “u = v”, we know that F(u) = F(Il;(u,v)) =
vy B ug P -+ B u, and hence u; = vy. The same argument is valid for other
pieces, hence u = v and the protocol is correct.

It is easy to prove that no protocol in which the function F' is linear
(over GF(2)) can be better. The equation F(u) = F(Ilj(u,v)) = ... =
F(Ip(u,v)) translates into a system of BT linear equations with 2k un-
knowns. If the protocol is correct, then the points in the k-dimensional
subspace defined by u = v are the only solutions of the system of equations,
and hence there have to be at least k equations. This gives B > k/T.



Jeff Edmonds conjectured that this is in fact optimal even for non-linear
protocols, i.e., B = Q(k/T) for every protocol [2]. We disprove this conjec-
ture. In fact, we prove that for constant 7' the easy lower bound is much
closer to the truth as our protocol needs only k/(27 — 1) + O(\/k) bits of
memory. If the number of probes is not bounded it is possible to achieve
B+ T = O(log k) using a very simple protocol. We discuss this protocol and
its consequences in Section 5.

3 The upper bound

Theorem 1 For each parameter d and for each T there exists a protocol
with T probes such that the number of bits of memory B is at most

T k
1+ =] | —— T+ 2d + 1 +log k)2*T1
<+d”2T—J+( 24+ 1+logh)

Corollary 2 For T constant and d = 'k the bound is k/(2T —1) + O(Vk).

Proof of Theorem 1. First we present the protocol.

Each input vector is divided into r = 27 — 1 pieces uy, ..., u, of the same
length [ = [k/r]. We define the probes by taking the sets V;, ¢ = 1,...,r
to be all nonempty subsets of [1, T]. (In other words, the probes intersect as
much as possible and the pieces are all of the same size—we have seen that
this is necessary in a good protocol.)

We represent each u; as a real vector of dimension [[/d], where d is the
parameter from the statement of the theorem, as follows. We partition u;,
a string of [ bits, into [I/d] substrings of d bits. Each coordinate is one of
these substrings (in a given order) interpreted as an integer from [0,2¢ — 1].
From now on we abuse the notation and by u; and v; we mean the vectors
described above, interpreted as points in the Euclidean space RIV/41.

Now we are ready to describe the function F(u). Let ||z|| denote the
Euclidean norm of a vector. Let ug denote the center of gravity of uq, ..., u,,
i.e., ug = (Xi_; u;)/r. The function F(u) consists of the concatenation of wug
and all the distances ||u; —u;|, 0 < e < g7 <.

As always, we first examine u and write down F(u) and then for each
probe we check if the value of F'is equal to F'(u). This finishes the description
of the protocol.



Let us compute the number of bits of F'(u). Instead of communicating
g, we can communicate the vector rug, as r is a scalar constant. Its coordi-
nates are integers from [0, 7(2% —1)], hence d+log r bits are sufficient for each
coordinate, a total of (d+logr)[l/d] < (1+T/d)[k/r|+T +d bits for all coor-
dinates. Instead of each distance we communicate its square multiplied by r2.
This is a non-negative integer bounded by r?(22 —1)[1/d] < r?221] < 2r22df,
hence it can be represented by at most 7'+ 2d + 1 + log k bits, a total of
(T +2d+log k) (H;) for all distances. This gives the bound in the theorem.

To prove the correctness of the protocol, we need to prove that if two
inputs v and v have the same value of F' for u and all probes IIy,..., Iy,
then u = v. The intuitive idea is that for a given piece v; we have sufficient
information about its distances from u;, j # ¢, to conclude that v; = u;.

We need a simple geometric lemma, which we prove later. Recall that
a point * € R” is affinely dependent on points xq,...,x, € R" if it can be
written as their linear combination }_/_; a;z; such that }>7_, a; = 1.

Lemma 3 Let x, x1,...,x, be points in Euclidean space R" such that x s
affinely dependent on x1,...,x,. Let y € R™ be a point satisfying ||z — ;|| =
ly —vi|| foralle=1,....r. Then z =y.

Now we finish the proof of the theorem using this lemma. We can assume
that the pieces of input are indexed in such a way that V; O V; implies: < j,
i.e., in the reverse topological order w.r.t. inclusion of the sets V;. (This
means for example that the piece vy appears in all probes.)

We prove by induction on ¢ = 1,...,r that u; = v;. Suppose that we are
proving the induction step for 2, i.e., we have to prove that u; = v;. We want
to use the lemma with @ = w;, {z1,...,2,} = {uo, ..., u,} —{w;}, and y = v;,.
From the construction we know that z is affinely dependent on the remaining
points. We need to prove that ||u; — u;|| = ||v; — u,|| for all j = 0,...,r,
J # t. We distinguish three cases.

First, let j > 2. Take any ¢ € V; — V;. By the assumption about the
indexing of the pieces we know that such ¢ exists. This means that (II;); = v,
and (I1;); = u; (we use (II;); as a shorthand for (II;(u,v));, i.e., the point
that represents the ith piece of the vector I1;(u, v)). Now using the fact that
Flu) = F(IT(u,v)) we get [[u; — ;] = |(TL); — (o) | = o — ]|

The second case is 0 < j < 2. Now take any ¢t € V;. By induction
assumption we already know that w; = v;, hence (II;); = u;. As in the
previous case, we get [lus — ] = [[(TT); = (M)l = 1o ~ o3 = f1os — ]|
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In the last case, j = 0, take again any ¢ € V;. We know that uy = (Il;)o
because ug is a part of F(u). The rest is again the same.

We have established the assumptions of the lemma, and its application
finishes the induction step. We can conclude that u = v, hence the theorem

holds. O

Proof of Lemma 3. First we prove that the vector y — z is orthogonal
to x; — z; for every ¢ and j. Using the assumption of the lemma we have

1
0 = Sy ==l = llz - @ill* + llz — [ = lly — 2[*)

= —yT;cZ- + xsz- — 27

zj+ylay = (e —y) (zi —z5).
This means that z is the projection of y on the affine subspace generated by
{z1,...,2,}. Using Pythagoras theorem, the projection of a point outside

the subspace is always closer to any point in that subspace, hence y has to
be identical with z. a

Let us point out that our protocol works for any r, as long as every two
pieces are distinguished by some probe. The choice of r = 27 — 1 is done to
optimize the bound.

We could have saved some communication in the protocol. Instead of
taking the center of wuy,...,u, it is possible to communicate the shift from
u, to the center of uy,...,u,_; and then to use this center instead of ug for
the distances. If we do this, it is not necessary to communicate the distances
from u, at all. It is also not necessary to communicate the distances to the
center, as they can be computed from the other distances. But all these
savings still leave us with ©(r?) distances to communicate.

4 The connection with extremal problems

In this section we describe how the communication game can be translated
into an extremal problem about hypergraphs and how that problem is related
to extremal problems about arithmetic progressions.

Suppose that the input is divided into pieces uq, ..., u, as before, and let
Uy, ..., U, be the sets of all possible values for each piece. We assume for
simplicity that all pieces have the same size, and denote m = |Uy| = ... =
U,| = 2¥/7. Let G be the complete r-partite r-hypergraph on these sets of



vertices. This means that each edge is a set of r points, exactly one from each
U;. Each edge of G naturally corresponds to some input vector (uy, ..., u,).

The function F(u) from the protocol corresponds to a coloring of the
hypergraph by 28 colors. The condition that the protocol is correct means
that for no v = (u1,...,u,), v = (v1,...,v,), all the edges corresponding to
u, Iy (u,v), ..., Hr(u,v) have the same color. In other words, some specific
patterns (or subhypergraphs) are not allowed to be monochromatic. (We
get more patterns, because some pieces of v and v may be equal and we get
degenerate versions of the original pattern.)

Note that we always need at least m colors, as the edges (u1, ..., ur_1, ur)
and (u1,...,ur—1,up) must always have different color, since this is a degen-
erate version of the prohibited pattern. (This is really just a translation of
the trivial lower bound into the new language, because this degenerate pat-
tern just corresponds to the case in which we change just one component of
u.) This also means that every hypergraph without a prohibited pattern has
at most m"~! edges (out of m” possible).

To prove a lower bound for the communication game it would be sufficient
to prove that any hypergraph with too many edges necessarily contains a
prohibited pattern. For the upper bound we not only need to find a large set
with no prohibited pattern, but to decompose the complete hypergraph into
a small number of such sets.

This kind of problems—to find a maximal size of a structure without a
given pattern—is well-studied in extremal combinatorics, so it is not surpris-
ing that at least the simplest cases of our problem have been studied. Most
of the information about it that we present now is from the survey Graham
and Rodl [6] and the paper by Erdos, Frankl and Rodl [5]. These papers also
contain simple proofs for some of the results that we mention below.

Let us look at the case T'= 2 and r = 3. Now the prohibited pattern are
the 3 edges (u1,u2,us), (u1,vq9,v3) and (vy,ve,u3). The degenerate version
of this pattern are any two edges that differ in a single point. We are now
interested in the maximal number of edges of a hypergraph that does not
contain any of these patterns.

For this case Rusza and Szemerédi [8] proved a slightly better bound than
the trivial one O(m?) mentioned above, namely they proved that the number
of edges is o(m?). This is proved using Szemerédi’s regularity lemma [9], and
unfortunately does not give a good bound for “o”.



This problem is actually related to a problem of finding a large set of
numbers which contains no arithmetic progression of length 3, as was noticed
first in [8]. Suppose that we have a set A C [0, (m — 1)/2] with no arithmetic
progression of length 3. Then we construct a hypergraph without a prohibited
pattern by taking Uy = Uy = Us = [0,(m — 1)] and putting in all edges of
the form (u,u 4 a,u + 2a) for a € A and u arbitrary (the addition is taken
modulo m), i.e., all arithmetic progressions with one element from each set
and modulus from A.

Obviously no degenerate prohibited pattern can appear, because if two
arithmetic progressions have two points identical, the third is identical as
well. Little checking shows that the non-degenerate prohibited pattern cor-
responds exactly to the situation where the moduli a, ¢, and «” are an
arithmetic progression of length 3. So, if we have a large set A, we have a
large hypergraph. How large can A be? The best known bounds on the size
of such A are

The lower bound is a classical result from Behrend [1], the upper bound is
due to Heath-Brown [7]. Improving these bounds is considered to be a very
hard problem.

To have a small coloring, we need to decompose the interval [0,m] into
a small number of such sets, but that turns out to be easy. We also need
to color the edges that are not arithmetic progressions, but that is trivial by
using a new set of m/|A| colors for edges of the form (u,u + a,u + 2a + ¢),
for every constant ¢, a total of m?/|A| colors. Thus the construction based

on the largest known set |A| gives us a coloring by m20W1°8™) colors, which
corresponds to communicating k/3 + O(v/k) bits in our game.

Our upper bound for the communication game is based on this construc-
tion, translated into the geometric language, so that it can be generalized into
a higher dimension. In our construction, the arithmetic progression of three
points is replaced by our two points and their geometric center. In particu-
lar our protocol gives a construction of large r-hypergraphs without certain
prohibited patterns which generalizes the well-known case of 3-hypergraphs
with no 3 distinct edges whose union has at most 6 vertices.



5 Connection to time-space tradeoffs

This communication game was proposed by J. Edmonds and R. Impagli-
azzo [2] as a tool for proving lower bounds in complexity of boolean functions.
We shall briefly describe the kind of results that one could possibly obtain
without going into details in order to motivate our combinatorial result, for
more information about this connection see [3].

A branching program is an oriented acyclic graph with one source, two
sinks and each vertex, which is not a sink, having outdegree 2; the edges are
labelled by variables and negated variables so that for each vertex we have a
variable and its negation at the two outgoing edges; the sinks are labelled by
accept and reject. An input vector determines a unique path from the source
to a sink, the label at the sink determines, if the vector is accepted or not. The
reason for introducing this special kind of a circuit is that the logarithm of the
minimal number of vertices of a branching program is a natural measure of
space (also called capacity) needed for computing a boolean function. This is
because we can think of a vertex in the branching program as a configuration
of the memory of a computational device. Similarly, the maximal length of a
path from the source to a sink corresponds to time, however this measure of
complexity is interesting only if combined with some restriction on the size
of the branching program.

Since proving nontrivial lower bounds to a single measure, such as space,
which we have described above, seems to be a very hard task, it is natural
to try to prove lower bounds for combined measures. The branching pro-
gram model of computation is an ideal combinatorial setting for proving a
lower bound for the combined measure timex space. Nevertheless, so far we
have only the trivial lower bound nlogn (for an explicitly defined n-variable
boolean function).

As Edmonds and Impagliazzo showed [3, 4] that if we could prove a
lower bound f(k) on the total number of bits of memory plus the total

number of flips, we could prove a lower bound of ny/f(n)/logn for time-
space product for oblivious branching programs for the function of element
distinctness [2, 3].

However, the following simple protocol discovered by Russell Impagliazzo
and the authors shows that it is possible to test the equality using only
O(log k) probes and communicating O(log k) bits about each probe. This



protocol can be converted into a protocol of the form used in Sections 2
and 3 that uses O((log k)?) bits of memory.

We think of u and v as 0-1 vectors in real vector space R*. We com-
pute the Euclidean distance of u and v and check if it is 0. To compute
the distance, v - u 4+ v - v — 2(u - v), we compute v - v and v - v each using
one probe and log k bits of communication. Then we compute the product
(kL w) (2K, vy) using the same probes and additional 2log k bits of com-
munication. To compute the desired inner product u - v we need to subtract
the sum of terms w;v; for ¢ # j. This is easily done using 2log k probes—
choose them so that each of the crossterms can be computed by one of them,
and for each probe sum all of these terms assigned to it.

This protocol shows that a lower bound for element distinctness cannot
be proved using this communication game. A more general game for which
the above protocol cannot be used and thus seems as a feasible approach to
time-space lower bounds was proposed by Edmonds and Impagliazzo in [4].
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