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1 Abstract

The graph homomorphism problem is a canonical N P-complete problem. It generalizes various other
well-studied problems such as graph coloring and finding cliques. To get a better insight into a combina-
torial problem, one often studies relaxations of the problem. We define fractional homomorphisms and
pseudo-homomorphisms as natural relaxations of graph homomorphisms. In their paper [3], Feige and
Lovasz defined a semidefinite relaxation of the homomorphism problem, which allowed them to obtain
polynomial time algorithms for certain special cases of the problem. Their relaxation is defined in terms
of the solution to a semidefinite program. Hence a characterization of their relaxation in terms of known
combinatorial notions is desirable. We show that our pseudo-homomorphism is equivalent to the relax-
ation defined by Feige and Lovasz [3]. Our definition of pseudo-homomorphism involves the classical
number first defined by Lovédsz [13]. Although general graph homomorphism does not admit a simple
forbidden subgraph characterization, surprisingly we can show that there is a simple forbidden subgraph
characterization (the forbidden subgraph is a clique in this case) of the fractional homomorphism. As
a byproduct, we obtain a simpler proof of the NP hardness of the fractional chromatic number, first
proved by Grotschel, Lovasz and Schrijver using the ellipsoid method [5] Finally, we briefly discuss how
to apply these techniques to general N P problems and describe a unified setting in which a wide variety
of seemingly disparate polynomial time problems can be decided.

2 Introduction

A homomorphism between two graphs G and H is a function from the vertex set of G to the vertex
set, of H, which maps adjacent vertices to adjacent vertices. We say that G is homomorphic to H if
such a homomorphism exists, and in this case we will write G — H. Determining whether G — H for
input graphs G and H is known to be N P-complete (cf. [9]). This problem is a generalization of a large
number of well-studied problems. For example, determining if a graph G is k-colorable is equivalent to
setting H to be a complete graph on k vertices and determining if G — H. Determining if a graph H
has a k-clique is equivalent to setting G to a complete graph on k vertices and determining if G — H.
Therefore it is desirable to identify families of instances for which a polynomial algorithm exists. Recent
research in semidefinite optimization shows that it is a powerful tool towards obtaining approximation
algorithms for NP hard problems (see [4, 11]). We use semidefinite programming to study problems
in NP such as the graph homomorphism problem. We define the notions pseudo-homomorphism and
fractional homomorphism which are, respectively, semidefinite and linear relaxations of a certain integer
program corresponding to the graph homomorphism problem. In fact, the pseudo-homomorphism is



defined in terms of the classical ¥ number of [13]. As semidefinite programs can be solved in polynomial
time, pseudo-homomorphism is a polynomial time notion. It turns out, as we will show in a later section,
that our notion of pseudo-homomorphism coincides with another semidefinite relaxation defined by Feige
and Lovész in [3]. Feige and Lovdsz used this relaxation to show polynomial time solvability of various
special cases of graph homomorphism.

Although the general graph homomorphism does not admit of a simple forbidden subgraph character-
ization, we show a surprisingly simple such characterization for the fractional homomorphism which also
yields several other interesting consequences. First, we obtain a much simpler proof of the N P-hardness
of fractional clique number, a result which was first proven by [5] using the ellipsoid algorithm. A
longstanding conjecture in graph theory is the graph product conjecture [6]. Using our characterization
of the fractional homomorphism, we show that the above conjecture is true if we replace homomorphism
by fractional homomorphism.

The notions of pseudo-homomorphism and fractional homomorphism can be generalized to all sets
in NP. Observing that the natural generalization of pseudo-homomorphism to other NP sets can be
computed in polynomial time, we obtain polynomial time algorithms for certain N P problems when the
instances are drawn from certain families.

2.1 Definitions

Let G be a finite undirected graph without loops. The set of the vertices, and edges of the graph
G is denoted by V(G), and E(G), respectively. For (u,v) € E(G), we also use u ~ v and say that
they are adjacent. We say that two vertices of G are incident if they are either adjacent or are equal.
The complementary graph G of the graph G be the graph with V(G) = V(G) and (u,v) € E(G) iff
(u,v) € E(G). All vectors will be row vectors.

Definition 1 Let G and H be two graphs. The hom-product GoH is defined as the graph with V(GoH) =
V(G) x V(H), in which ((s,u), (t,w)) € E(Go H) iff (s #t) and ((s,t) € E(G) implies (u,w) € E(H)).

We first formulate the clique number, w(G), and the chromatic number, x(G), of a graph G, as integer
linear programs. In these formulations we take v to range over the vertex set of G and 7 to range over
all maximal independent sets in G.

w(G) =max)_ x, X(G) =min)"; yr
Y ver v < 1Lfor each T > 73, ¥z > 1 for each v
z, € {0,1} yr € {0, 1}

If we replace the integrality conditions z, € {0,1}, yz € {0,1} by z, > 0, yz > 0 respectively, we
obtain linear programs with optima w¢(G), the fractional clique number of GG, and x;(G), the fractional
chromatic number of G. Note that these linear programs are dual of each other and hence w;(G) = x¢(G)
by the duality theorem of linear programming (see [1]). Therefore we have the inequalities:

w(G) L wi(G) = x4(G) < x(G).

To compute any of these numbers is N P hard. The N P hardness of the fractional chromatic number was
proved by Grotschel, Lovdsz and Schrijver in [5]. They also proved that one can compute in polynomial
time a real number ¥ (see also [12]) which satisfies

w(G) <9 <wi(G).

One possible definition for ¥ is as follows [15]:

Let S be the set of all |[V(G) x V(G)]| positive semidefinite matrices, let T denote the unit matrix and
J denote the matrix of all 1’s. The * product of two matrices A = (a;;) and B = (b;;) is the number
AxB= Zi,j aijbij. Then



Y=max{Bx*J|BeS;BxI=1,¥(s,t) & E(G) : bsy = 0}.

Another semidefinite programming upper bound for w is the real number 41,5 of Schrijver [14], which
can be expressed as:

Vi =max{B*J|Be€ S Bx1=1,Y(s,1) ¢ E(G) : byt = 0;Vs,t € V(G) : by > 0}.

We need a notation that explicitely expresses the dependence of 4,91, on the graph G. For historical

reasons [15, 13, 12]we write ¥ = 9(G) and 01,2 = 91/2(G).

3 Overview

In section 4, we define the notions of fractional homomorphism and pseudo-homomorphism, and establish
certain relationships between them. In section 5 we give a forbidden subgraph characterization of the
fractional homomorphism. This characterization yields a much simpler proof of the N P-hardness of frac-
tional clique number, which was first proved using the ellipsoid method [5]. Using this characterization,
we also show a fractional version of the well known graph product conjecture [6]. In section 6 we show
that the notion of pseudo-homomorphism is equivalent to the notion of hoax as defined in [3] and give
a necessary condition for existence of a pseudo-homomorphism. In section 7, we discuss the applications
of this theory to other problems in N P.

4 Relaxations of Homomorphisms

Theorem 2 For any graphs G, H, the following inequalities hold:

w(GoH)<1ys(GoH)<HGoH)<wi(GoH)=x;(GoH)<x(GoH) <|V(G)],
and w(G o H) = |V(G)| iff there is a homomorphism from G to H.

Proof: The first and the second inequality follows from [15]. The third inequality follows from Lovasz’s
Theorem 10 in [13]. From definition of a fractional clique and from the duality of linear programming,
it follows that w; = x; < x. The last inequality follows from the fact that we can color the vertices of
G o H by the vertices of the graph G, by assigning to a vertex (s,u) € V(G o H) the color s € V(G).
From the definition of the hom-product it follows that no two adjacent vertices obtain the same color.
It remains to prove that G — H iff w(G o H) = |V(G)|. Let us assume that f is a homomorphism from
G to H. One can easily observe that vertices (s, f(s)),s € V(G) form a clique in G o H of size |V(G)].
On the other hand if we have a clique C' in G o H of size |V(G)|, then the first coordinates have to span
all the vertices of G because (s,u) # (s,w), and hence C can be regarded as a function V(G) — V(H).
We define a homomorphism f from G to H as follows: f(s) = u iff (s,u) € C. To prove that f is a
homomorphism, let s, ¢t be vertices in G. Then (s, f(s)) and (¢, f(¢)) are from the clique C' and hence
they are adjacent. From the definition of the hom-product, it follows that s ~ ¢ implies f(s) ~ f(t). We
conclude that f is a homomorphism.

The previous theorem suggests the following relaxations of homomorphisms:
Let G, H be two graphs.

Definition 3 We say that G is fractionally homomorphic to H (denote by G —; H) ifws(Go H) =

V(G-



Definition 4 We say that G is pseudo-homomorphic to H (denote by G —, H) if9(Go H) = |V(G)|.

Definition 5 We say that G is pseudoy/3-homomorphic to H (denote by G —p/o H) if 915(G o H) =

V(G)I.
Corollary 6 (G — H) = (G —,/2 H) = (G —, H) = (G —; H).

Later we will show that we cannot reverse the first and the last implications in general. This is not
surprising because G —, H, and G —,,2 H are polynomial while both ¢ — H and ¢ —; H are NP
hard. However for certain families of graphs we can prove the reverse implications, and so obtain a
polynomial algorithm for these families.

5 Fractional Homomorphisms

In this section we will give a forbidden subgraph characterization of fractional homomorphism, which will
enable us to prove a fractional version of the graph product conjecture [6]. This also gives an alternative
proof of the N P hardness of computing the fractional clique number of a graph.

Theorem 7 G —; H iff w(G) < ws(H).

Proof: Assume first that there is a clique C' with |w(H)+1] vertices in G. We will show that w;(GoH) <
|V(G)| by constructing a dual fractional coloring smaller than |V(G)|. Let w be a minimum fractional
coloring of H. Tts valueis x(H) = ws(H). All independent sets in Go H are of the form I = Ule si X A;
where s1,...,s; form a clique in G and for i # j,Va; € A;j,a; € A;j : a; % a;. This is so, because
two vertices (s,u),(,w) from G o H are not connected by an edge whenever (s = t) A (u # w), or
(s ~t) A (u % w).

Now we construct a fractional coloring w* of Go H as follows: w§ ., p = wr for any maximal independent
set T from H | “’:xV(H) = 1for u & C, and wj = 0 otherwise. One can observe that this is a feasible
fractional coloring and its objective value is at most w¢(H) + (|[V(G)| — |wp(H) + 1]) < |V(G)].

On the other hand if we assume that w(G) < wy(H), we will show that w;(G o H) = [V(G)|. Let =z
be a maximum fractional clique in H, and w a maximum fractional coloring of H dual to z. From
complementary slackness [1] it follows that

Ty = Ty E wy,

Jov

where J runs through the maximal independent sets in H. We construct a fractional clique z* in Go H
as follows: Let xz‘s7u) = %, where s € V(G),u € V(H). Let us denote x5 = ) g ;s for any subset S
of vertices from V(G) and similarly 2% = Z(s W)eT ;L‘Z‘s w) for any subset T of vertices from V(G o H). To

prove that z* is a fractional clique, we have to show that for every independent set 7 C Go H, 7 < 1.

For an independent set I = Ule s; X A;, let us write B = Ui;éj A; N Ay, where 4,5 = 1,...,k and let

B; = A; — B. Then T C Ule s; x (B; U B), and therefore

k k
1 k
* * *
Ty S xsi B; +z 81,...,8 = TB; + TB-
; 8 Lo on X B () ; wy(H)

By our assumption k < w¢(H), therefore the following inequality holds:




where J runs through the maximal independent sets of H. One can observe that the set BUUle(Jﬂ By)
is an independent set in H and therefore Zle zjnp; + B < 1. Hence

1
e wy = 1.
wy(H) Z
Tt remains to show that the size of this fractional clique is |V(G)].

Y aw= Y oEE=IVE) Y S =IVE)

(s,u)eEV(GoH) (s, u)eV(G)xV(H) ueV(H)

o

IN

O

This theorem shows that although the graph homomorphism problem is N P-complete, for any fixed
non-bipartite graph H [9], the fractional graph homomorphism problem is polynomial, for every fixed
graph H. The theorem also shows that if H is part of the input, then fractional homomorphism is
co-N P-complete. Another interesting consequence of this theorem is that for a given k£ and a graph G,
it is N P-hard to determine if G has fractional chromatic number at least k (or equal to k). This result
was originally proved in [5] by the ellipsoid method.

Corollary 8 The following problem 1s NP hard:
Instance:A graph G and a number n
Question:Is wy(G) at least (equal to) n?

Proof: We give a reduction from the clique problem, i.e., given a graph G and an integer n, it is known
to be NP complete to decide whether w(G) > n. But n = w;(K,) and therefore by our theorem this is
equivalent to the question whether G /4 K, which is equivalent to w;(G o K,,) < |V(G)|.

O

A longstanding conjecture in graph theory states that whenever G 4 K, and H /4 K,, then also
G x H 4 K,, where G x H is the categorical product of G and H, defined by V(G x H) = V(G) x V(H)
and ((s,u),(t,w)) € E(G x H) iff (s,t) € E(G) A (v,w) € E(H) c.f. [6].

Corollary 9 G /A W and H /¢ W imply G x H /3 W

Proof: By our theorem G /4 W and H /¢ W imply w(G) > w¢(W) and w(H) > w¢(W). One can
easily observe that w(G x H) = min{w(G),w(H)} and therefore also w(G x H) > w; (W) which means
GxH 7L>f w.

O

The fractional version of the product conjecture follows by taking W = K.



6 Pseudo-homomorphisms

In this section we will relate pseudo-homomorphism to the concept of a hoax introduced by Feige and
Lovész [3].First we describe the notion of a hoax, as defined by Feige and Lovasz. Tt is based on the
following two-prover interactive proof system:

A verifier is trying to determine if a graph G is homomorphic to a graph H. The verifier chooses
randomly and independently vertices s and ¢ from G and sends them, respectively to the provers P; and
P5. Pj replies with a vertex u from H as the claimed image of s, and Py with a vertex w from H as the
claimed image of ¢. The verifier accepts just in the following situations:

1) If s =t then u = w

2) If s is adjacent to ¢ in G, then u is adjacent to w in H.

For each input (G, H), consider the 0-1 matrix V' (with rows and columns labeled by su where the s’s
run through the vertices of G and the u’s runs through the vertices of H) where Vy, 4, = 1 iff the verifier
accepts the answer v and w to the requests s and ¢ respectively. Note that V is the incidence matrix of
GoH.

Let pgy be the probability that P; or Py (we can assume that P; and P» use the same strategies as
the game is symmetric) answers u on s. The provers P; and Py want to maximize the probability that
the verifier accepts. This probability is given by |V(G)|~2 Zsu’tw Vsu,twPsuPrw subject to the condition
that for all s : >, psu = 1, and for all s, u: p,, > 0. The optimum of this quadratic program is 1 iff G is
homomorphic to H because only in this case is the probability equal to 1. By rewriting Qsu 1w = PsulPtuw,
and C' = |V(G)|~2V, we can convert this quadratic program to the following form:

maximize Zs,u,t,w Csu,tw@su,tw
s.t.

@ is a rank 1 matrix

@ is symmetric

VS,t : Zu,w quﬂw =1

Vs, t,u, w: Qgurw > 0.

To make the above program convex, Feige and Lovasz replace the rank 1 constraint with the condition
‘@ is positive semidefinite’. Let us denote this modified program by (*)g ;. The ellipsoid algorithm can
be used to solve the new program c.f. [3].

The optimal solution of the modified program with objective value 1 is called a hoaz (c.f. [3]). If
we replace both the rank 1 constraint and the nonnegativity constraint with the condition ‘@ is positive
semidefinite’, we obtain a modified program (**)g gr; any optimum solution with objective value 1 of
this modified program is called a semi-hoaz. Feige and Lovasz [3] proved the following necessary and
sufficient conditions for a given instance to admit a hoax.

Lemma 10 [3] The system (), g has a hoax iff there exists a system of vectors vy, s € V(G),u € V(H)
satisfying the following conditions:
7= v (1)
u

1s independent of s,

"7UsTu = [vgul’ (2)
5] =1 (3)
Vs, u,t,w: vguvy, >0 (4)
and
vsuuﬁ) = 0 whenever Viy 4 = 0. (5)



One can similarly prove the following necessary and sufficient conditions for a semi-hoax.

Lemma 11 The system (s*)q i has a semi-hoaz iff there exists a system of vectors vey,s € V(G),u €
V(H) satisfying the conditions (1),(2),(3), and (5).

We now prove that our notions of pseudo;;s-homomorphism and pseudo-homomorphism coincide
with the notions of hoax and semi-hoax respectively.

Theorem 12 The system (x)g,u has a hoaz iff G —,/2 H

Proof: Let @ be a hoax of the system (*)e m. By Lemma 10 there exists a system of vectors v, satisfying
(1)-(5). One can observe that Quu tw = vsuvi, = 0 whenever (s, u) is adjacent to (¢, w) in Go H. Also

Z Qsusu = va = Zvv = U(ZZUW = Zf))T = |V(G)].

seV(G)ueV(H) s

> Quuw = 3 Vautiy, = 00" = [V(G)[”.

s teEV(G)u,weV(H) s, tu,w $,t

Moreover

Taking B = mQ, we have proved that 9,/5(G o H) > |V(G)|, and from Theorem 2 it follows that

G—H
Let ¥1/2(G o H) = [V(G)|. Let B = AAT be the matrix for which

DG ) = [V(G) = 3 asal

S

We notice that By, s = 0 for u # w and therefore the ag,,’s (the rows of matrix A) are orthogonal when
s is fixed. If we denote a; = ", @su, then from the condition B I = 1 we have

1= )L Buw=) awaly =) lanl =3 13 el =) P,
s,U s u s

seV(G),ueV(H) $,u

and therefore from B x .J =4y 5(G o H), it follows that

ia(GoH) = > Buwpw= Y. tuahy, =Y aa] < |asllac] =
LN LN

s, teV(G)u,weV(H) s,tu,w

= Z|as Zl|as| <212Z|as|2 V(G)|.

The last two inferences are a consequence of Cauchy’s inequality. Because 91/5(G o H) = |V(G)], it
follows that both inequalities have to be equalities. That is,

(X tlab? = 217 ol

and this happens iff all a,’s have the same lengths. From B % I = 1 it follows that for all s € V(G)

las| = [V(G)[72

Z agai < Z |as||atl
s, s,

Also the inequality



must be an equality, i.e., the angle between a, and a; must be zero for each s,¢# € V(G). Therefore all
as’s are equal. Taking @ = |V(G)|B, we proved the conditions (1) and (3). The conditions (4) and (5)
follow from the definition of B. From the orthogonality of the as,’s for a fixed s, we have

T _ 2 : T _ T _ 2
Asgy = Aswlgy = Asuly,y = |aSU| )
w

implying (2). Therefore we can deduce from Lemma 10 that ) is a hoax of the system (%)g 5.

We can similarly prove the following.
Theorem 13 The system (x*)g g has a semi-hoaz iff G —, H.

Although we do not have a complete characterization of pseudo-homomorphisms, we can prove a
necessary condition for existence of a pseudo-homomorphism which will be enough for our applications.
First let us recall some definitions and results from [13].

If G and H are two graphs, then their strong product G - H is defined as the graph with V(G - H) =
V(G) x V(H), in which (s,u) is incident with (¢, w) iff s is incident to ¢ in G and u is incident to w in H.

The tensor product of two vectors u = (uq,...,u,) and w = (wq,...,wy) is the vector u ® w =
(U1 w1, ..., UL Wiy, YW1, . . ., UnWy,) Of length nm. One can easily verify that
(s@t)(u® w)T = (suT)(th). (6)

Let G be a graph with V(G) = {1,...,n}. An orthonormal representation of G is a system {vq,...,v,}
of unit vectors in a vector space R” such that if (i # j) A (¢4,7) ¢ E(G) then viva = 0. Every graph has
an orthonormal representation, for instance an orthonormal basis of R”.

Lemma 14 [13] Let {u1,...,u,} and {vi,...,vm} be orthonormal representations of G and H respec-
tively. Then the vectors u; ® v; form an orthonormal representation of G - H.

Lemma 15 Let {uq,...,u,} and {v1,...,v,,} be orthonormal representations of G and H respectively.
Then the vectors u; ® v; form an orthonormal representation of Go H.

Proof: The proof follows from the previous Lemma 14 and the fact that G- H C G o H.

O
Theorem 16 [13] Let (u1,...,uy,) range over all orthonormal representations of G and ¢ over all unit
vectors. Then . |
J(G) = min lrgiasxn ()
Theorem 17
I(G o H) < 9(G)I(H).
Proof: Let (u1,...,u,) be an orthonormal representation of G, (v1, ..., vm) be an orthonormal represen-

tation of H and ¢, d be unit vectors such that ¥(G) = maxi<i<n ﬁ and ¥(H) = maxi<;j<m W.

Then ¢ ® d is a unit vector by (6), and u; ® v; is an orthonormal representation of G o H by Lemma 15.
Therefore by Theorem 16
1 1 1

NG o H) < M e @ o)™~ "o (e 2 (@oTyz ~ (CVH).




Corollary 18 If G —, H then 9(G)I(H) > |V(G)|.

In the last part of this section we prove that in general we cannot reverse implications in the Corollary
6. We need the following results (see [13, 12]):
for odd n (/)
ncos(w/n
ICp) = —————
(Cn) 1+ cos(m/n)’
I(Co) = 14 cos(m/n) ,
cos(w/n)
and for every n

I(Ky,) =1,
ﬁ(m) =n.

Theorem 19 For odd n,m such that 3 < n <m, Cy, /5, Ko and Cp, 4p Cp.

Proof: The proof follows from the fact that ¥(C,,) is increasing function of n > 3 while ¥(C),) is decreasing
and their product is n. Also we have 9(Cs) = \/5_.Therefore ﬁ(C'L)ﬂ(m) < 9(Cp)I(Cp) = n and also
I(Crn)I(K2) = 20(Crm) < VBI(Crm) = 9(C5)I(C) < 9(Cin)I(Crr) = m. From Corollary 18 we can

conclude the assertion of our theorem.

O

As C5 —; K5, and the above theorem shows that C5 /, K3, pseudo-homomorphsim is strictly stronger
than fractional homomorphism.
The next Theorem shows that homomorphism is strictly stronger than pseudo;/5-homomorphism.
Let G be the graph on 11 vertices with the following adjacency matrix:

061001010010
10100101000
061010010100
0 01 01 001010
1 00101001 O00
01001 0O0O0O0O0T1
1 01000O0O0O0O0T1
0101 000O0O0O0T1
0 0101 00O0O0O0T1
1 00 10O0O0O0O0O0T1
00000111110

and H = Kas.
Theorem 20 G /A H but G —p/5 H.

Proof: The first assertion of the theorem follows from the fact that G is not three colorable. The odd
cycle 1,2,3,4,5 requires at least three colors and the vertices 6,7,8,9,10 are forced to use all three
colours. Hence the vertex 11 needs a fourth colour. The second assertion follows from the fact that the
following matrix @ is the hoax. We will write its st blocks:

/3 0 0
Q.= 0 1/3 0 |,
0 0 1/3



0 1/6 1/6
Qui={1/6 0 16,
1/6 1/6 0
for s ~ ¢, and
1/6  1/12 1/12
Qse= | 1/12 1/6 1/12 |,
/12 1/12 1/6
for s o 1.
One can check that all conditions for @ to be a hoax hold.

7 Discussion

As alluded to earlier, the theory presented here applies to any N P problem, although in this paper we
have concentrated on graph homomorphism. We now briefly describe how the theory applies to other
problems. The hoaz set is a set of instances for which there is a hoax according to [3].

7.1 Graph Homomorphism

To prove that graph homomorphism is polynomial for some classes of graphs, we will need a slight
strengthening of the Theorem 8.1 in [3].

Theorem 21 Let C be a family of graphs such that C 4/, H, i.e. YG € C : G 4, H. Then the class
(—pH)={G|G —, H} isin P, and separates (C—) ={H|3G €C:G —, H} and (—H) = {G|G — H}.
Proof: Obviously, (—H) C (—,H). Assume, there is a graph G € (C—)N(—,H). Then there is a graph
G’ € C such that G’ — G, and hence also G’ —, G. We have also G —, H and from the transitivity of
— (see [3]), G’ —, H and hence C —, G which is a contradiction.

O
The class of all odd cycles will be denoted by Cy4q.
Theorem 22 For H bipartite, G — H iff G —, H.

Proof: The graph H is bipartite iff it does not contain any odd cycle and it is iff H is 2-colorable.
Therefore we have (Coqa/>) = (—K3). By the Theorem 19 C,q4 /+p K2 and hence from the Theorem
21 it follows that the class (—, K3) is in P, and separates (— K3) (all bipartite graphs) from (Coq4—)
(graphs which contain an odd cycle, i.e. nonbipartite graphs). Therefore (—,K3) = (—K3). But for
bipartite graph H, one can easily observe that G — H iff G — K2 and hence the theorem follows.

O

Note that this also confirm the well known results that 2-colorability is polynomial and also it follows
from Theorem 19 that finding the odd girth of a graph (size of the smallest odd cycle) is polynomial.

7.2 Digraph Homomorphism

A directed graph G is said to be homomorphic to a directed graph H, if there exists a function f :
V(G) — H called a homomorphism, such that whenever (s,%) is an edge in G, (f(s), f(¢)) is an edge
in H. We can now similarly define the hom-product of two directed graphs G, H as the undirected
graph G o H with V(G o H) = V(G) x V(H) and (s,u) ~ (t,w) iff (s Zt) A((s,t) € E(G) = (u,w) €
EH)AN((t,s) € E(G) = (w,u) € E(H)).

10



Hell, Negetfil, and Zhu found polynomial algorithms for classes of graphs which have a property referred
to as tree-duality in [T, 10, 8]. They showed that the following labeling algorithm works for H-coloring
(the problem whether G — H for a fixed graph H) for H with tree-duality. We will later refer to this
algorithm as the 1-consistency test (cf. [7]).

Instance: A digraph G

Question: Is G — H?

Define labels Lg : V(G) — 2V(7) k > 0 by induction as follows:

Lo(s) = V(H) for all s € V(G)

Tapi(5) = ('€ Li(s) | V1 € V(G) Fw € L4(1) : (5.1) € B(G) = (u, w) € F(H))A
A((t,s) € E(G) = (w,u) € F(H))}

For any vertex s, the set Lyy1(s) C Li(s), k > 0, and Lo(s) = V(H). Therefore there is some 7 such
that L;(s) = Li+1(s).
Output: G is H-colorable if for all s € V(G): Li(s) # 0.

We now prove that the class of graphs with tree duality also admits a polynomial time solution by the
theory described in this paper.

Theorem 23 For any H-coloring problem which can be solved by the 1-consistency test we have G —

Hiff G—; H.
Proof: We will show that if there is an s € V(G) : Li(s) = 0, then also G 4} H.

Let us assume that G —; H, and a fractional clique z satisfies

wi(GoH)= Z (s = |V(G)]. (7)

(s,u)EV(GoH)

First we will show by induction on k > 1 that if u € Li(s), then the corresponding weight z(, ) = 0.

Ifk=1,and u & Li(s), then there exists ¢ € V(G) such that for all w € Lo(t) = V(H) : (s ~ t)A(u
w). Therefore for all w € V(H) : (s,u) % (t,w). Hence (s,u) together with vertices (¢, w), w € V(H),
form an independent set, and therefore

Tomt D, Taw S 1
weV (H)

The equality (7) implies that ZwEV(H) Z(¢w) = 1 and hence z(, ) = 0.

Assume that u € Li(s) implies Z(su) = 0. For u & Li41(s) we have ¢ such that for all w € Ly(¢) :
(s ~ t) A (u o w), which means also that vertices (s,u), and (¢t,w),w € Ly(¢) form an independent
set. For w ¢ Ly(t) we can use our induction hypothesis that z(; ,,j) = 0, and therefore we can apply the
equations from the basic case.

If Li(s) = 0, then for all u € V(H) : 2, 4) = 0, which contradicts (7).
O

According to the latest results of Hell, Zhu, and Negetfil [7] , and independently of Feder and Vardi
[2], the case of digraphs H with tree duality is extended to digraphs H with bounded tree width duality,
where 1-consistency check is replaced by a more general k-consistency check. We can also modify our
game so that the verifier gives each prover k vertices. It then shows out that as in Theorem 21, any
H-coloring problem which can be solved by a k-consistency test has G — H iff w;(G oy H) = |V(G)|
where G oy, H is the graph whose incidence matrix equals to the verifier’s matrix. This provides another
proof of the polynomiality of these problems.
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7.3 SAT

For the satisfiability problem, the two-prover game is as follows. The two provers claim a formula in the
conjunctive normal form is satisfiable. The verifier randomly picks two clauses and gives one to prover
P, and the other to P;. The provers are supposed to give truth assignments to the variables occurring in
their respective clauses. The verifier accepts iff the corresponding truth assignments make the respective
clauses true, the two truth assignments are compatible and whenever the verifier gives the same clause to
both the provers, the provers return the same truth assignment. We can then show that if all clauses are
of size at most 2, then the hoax set contains exactly the satisfiable clauses, and hence we have polynomial
time algorithm for 2-SAT. We can also characterize certain families of instances (for 3-SAT) for which
the hoax set is the same as the set of satisfiable clauses thus providing polynomial algorithms for these
families.
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