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Abstract

The parallel repetition conjecture (PRC) of Feige and Lovasz says
that the error probability of a two prover one round interactive proto-
col repeated n times in parallel is exponentially small in n. We show
that the PRC is true in the case when the bipartite graph of depen-
dence between queries to provers is a tree. Previously this was known
only in the case of complete bipartite graphs (i.e. when the queries
to provers are independent). We suggest also the combinatorial char-
acterization of method that was used to obtain most results towards
the PRC and discuss some related combinatorial problems.

1 Introduction

A two prover one round interactive proof system is a both probabilistic and
nondeterministic computational model for recognizing a language L. In this
model, the polynomial time verifier separately sends messages to two com-
putationally unlimited provers. After receiving provers’ replies, the verifier

must determine with low error probability whether or not an input w belongs
to L.

*Supported in part by grant No. MGT 000 from the International Science Foundation
and by an AMS-FSU grant.



On a fixed input w, a two prover one round interactive protocol is well
described by a two person game (G of the following type. Let X, Y, S, T be
finite sets. Let ¢ be a predicate on X x Y x S x T. A pair (x,y) is chosen
randomly and uniformly from a set () C X x Y. The element x is revealed
to Player 1, the element y is revealed to Player 2. Players I and 2 reply with
f(z) € S and h(y) € T in accordance with their strategies f : X — S and
h:Y — T. If ¢(z,y, f(z),h(y)) = 1, then both players win; otherwise they
lose. The objective of Players 1 and 2 is to maximize collectively the winning
probability (taken over the uniform distribution of (z,y) on )). The winning
probability for the optimal players’ strategies is denoted by w((). So,

w(G) = maxP [6(z,y, /(2), hiy)) = 1.

We call the game G nontrivial it w(G) # 1.

We define an n-product game G* with winning probability w(G™) as the
execution of n independent copies of (& in parallel. More formally, a collection
((x1,91)s- -y (Tn,yn)) is chosen at random from Q™. Players I and 2 each
are supplied with n-vectors & = (z1,...,2,) and § = (y1,...,yn), and reply
with n-vectors F(z) = (f1(Z),..., fa(Z)) and H(y) = (h1(7),..., ha(7)),
respectively. Now the players win in the case A%, ¢(x;, ys, fi(Z), hi(7)) = 1.

The only presently known relations between w(() and w(G™) are

(wW(@)" S w(G") < w(G).

The value w((G) corresponds to the error probability of an interactive
proof system. Fortnow, Rompel and Sipser [8] suggested to decrease the
error probability by running the interactive protocol independently n times
in parallel. To substantiate this approach we need a good upper bound on
w(G™). The conjecture w(G™) = (w(G))" was disproved by Fortnow [7] who
presented the game G for which w(G?) > (w(G))?. Feige [5] improved this
by giving an example of the nontrivial game 7 with w(G?) = w(G).

Denote &(G) = sup, (w(G))"/™. The following conjecture by Feige and
Lovasz seems more realistic.

The Parallel Repetition Conjecture (further on PRC). If G is non-
trivial then w(G) < 1.

It will be sometimes convenient to consider the subset () C X x Y as a
bipartite graph with vertex classes X and Y. The PRC for the case () =



X x Y, e if () is a complete bipartite graph, was established by Cai,
Condon and Lipton [2]. Their estimate on w(G™) was improved by Lapidot
and Shamir [11] and Peleg [12] in the case |X| = |Y| = 2 and by Feige [5]
and Alon [1] in the general case.

Some examples of nonfree games with exponentially decreasing w(G™)
were used in [3]. Feige and Lovész [6] obtained the exponentially small up-
per bounds on w(G") for the class of (nonfree) games with the uniqueness
property defined in [2].

In this paper we examine one more case, namely, if a bipartite graph )
is a tree. We show that in this case the PRC also is correct, that is,

for any nontrivial game G = (Q,S,T, ), where Q) is a tree, it holds

w(G) < 1.
The only fact known in the general case is the estimate w(G") < ri(n),
k = |Q|, where ri(n) is the extremal density in Hales-Jewett theorem from

Ramsey theory [14] (for more details see Section 2).

As the simple analysis shows, the methods of [2, 11, 5, 1, 14] as well as the
method used here for trees start from one and the same basic idea that can
be formalized as follows. Let us consider ()" as a bipartite graph with vertex
classes X™ and Y by identifying every element ((z1,41),...,(2n,¥n)) € Q"
with an edge ((21,...,2,), (y1,...,Yn)). Let k = |Q|. A graph {é1,...,é} C
Q" is called a full ()-graph it it is isomorphic to graph () and for some [ < n,
[-th components of n-vectors éy,..., €, are pairwise distinct, that is, they
make up the whole set ). Let W C Q" be the largest graph which contains
no full Q-subgraph. By Fg(n) we denote its density |W|/k".

The common starting-point in [2, 11, 5, 1, 14] and in our proof of Theorem
3.1 is the bound w(G™) < Eg(n) for any nontrivial G. So, one can try to
establish the PRC by using this inequality and further estimating Fg(n). We
call this approach the extremal graph method. The extremal graph method
yields upper bounds on w(G") that do not depend on the size of reply sets S
and 7. Moreover, the method applies for a game G = (Q), S, T, ¢) where the
sets S and T are allowed to be infinite. We will call such games unbounded.
The PRC can be generalized to unbounded games. In Section 4 it is shown
that if we consider the generalized PRC then the extremal graph method
cannot be improved. More precisely, in addition to the estimate w(G™) <
Eg(n), we have the following assertion.

For any connected graph () there is an unbounded game G = (Q,S,T, ¢)
with countable S and T such that w(G"™) = Eg(n).
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Note that it suffices to prove or disprove the PRC for the case of con-
nected ().

Thus, the extremal graph method is optimal among the methods for prov-
ing the PRC that disregard the size of S and T'. All the methods mentioned
above fall in this class.

Remark. Simultaneously and independently of this work, there appeared
the paper of Ran Raz [13] where the parallel repetition conjecture was proved
in the general case. The method of [13] essentially uses the finiteness of S
and T'. So, there remains open a very natural combinatorial problem whether
the generalized PRC is true (see discussions in Section 5).

2 Formal framework

We say that G = (Q C X x Y, S, T,¢) is an (unbounded) game if X, Y, S
and T are sets, X and Y are finite, and

p: X xY xS xT—1{0,1}

is a predicate. We regard arbitrary functions f: X — Sand h: Y — T
as strategies (of Players 1 and 2). We define a value of the game G by

w(G) = maxP [¢(z,y, f(z), hy)) = 1],

where the probability is taken over all randomly and uniformly chosen pairs
(z,y) € Q. G is nontrivial if w(G) # 1.

Given (G, we define the product game G™ to be the game (Q", S™,T", ¢™)
where

¢)n('f7ga§a{) = /\ ¢(rzayzaszatz)
=1

Here o is an n-vector (vy,...,v,). More accurately, the Cartesian power Q"
is thought of as a subset of X™ x Y™ by identifying a collection (z1,y1), ...,
(Tn,yn) with a pair (z1,...,2,), (y1,...,yn). For players’ strategies F :
X" — S"and H : Y" — T" we designate F(z) = (f1(z),..., f.(Z)) and
H(5) = (@) b)),

We sometimes will consider the set )™, n > 1, as a bipartite graph with
vertex classes X" and Y”. For the edge € € (", we denote its vertex in X"



by x(€) and another vertex by y(€). Given n-vector ¥, we denote its i-th
component by v|;.

Let k& = |Q]. A graph {éy,...,er} C Q" is called a full Q-graph if it is
isomorphic to graph @ and for some [ < n, we have {é{];,...,¢ex;} = Q. Let
W C Q" be the largest graph that contains no full Q-subgraph. By Eg(n)
we denote its density |W|/k".

The following proposition was first used in [2] in the case of complete Q).

Theorem 2.1 For any nontrivial unbounded game G = {(Q,S, T, ¢)
w(G™) < Eg(n).

Proof: Fix the strategies F' and H optimal in G™. Define W C Q" to be
the set of successes of F' and H in G", that is,

W = {(z1,...,2,) €EQ":

n

[\ ¢($(22)7y(22)7fz(77(21>7 . "x(zn)>7hi(y(zl)’ X 7y(2n))) =1}

So, w(G™) = |W|/k".

It suffices to show that W does not contain any full ()-subgraph. Suppose,
to the contrary, that there is a full Q-graph U = {€y,...,é} C W with [-
projection full (i.e. {€i|;,..., €|} = Q). Our goal is to prove that in this
case (¢ should be trivial.

Let a map [ take the vertices (edges) of () to the vertices (edges) of /. We
suppose that I is an isomorphism between the graphs () and U. Moreover,
we can suppose that for any e € @ it holds I(e)|; = e and I(X) C X"
Define the strategies f and h in the game G by f(x) = fi(I(z)) for z € X
and h(y) = hi(I(y)) for y € Y. The strategies f and h win always. Indeed,
consider an arbitrary pair e = (z,y) € Q). Let I(e) = é. Then

¢ (x,y, f(z), h(y)) = & (z(elr), y(eh), filz(€)), hu(y(€))) = 1
because e € W and F,H win, in particular, in [-th game. "

The only upper bound on Fg(n) known in the general case was pointed
out in [14].



Let A = {aq,...,ax} be a finite set and z be a variable that can be
replaced with any element of A. Let u(z) be an n-vector from (A U {z})"
with at least one component z. Then the set

L ={u(ay),...,u(ar)}

is called a combinatorial line in A™. Denote by ri(n) the maximal possible
density |[W|/k™ of a set W C A" without combinatorial lines.

Theorem 2.2 For any bipartite graph Q C X x Y, |Q| = k, we have

Eg(n) < ri(n).

Proof: As easily seen, any combinatorial line in )", () C X x Y, is a full
()-graph. "
Given a function p(n), its amortized value is defined by
p = limsup (p(n))/".

The bound given by Theorem 2.2 is nonconstructive; for any k, ri(n) =
o(1) is all what is known [9]. This fact does not allow one to prove the PRC
since 7, = 1.

The effective bound on Eg(n) was known only in the case if () is a com-
plete graph.

Theorem 2.3 ([2, 1, 5]) IfQ is a complete bipartite graph with vertex clas-
ses X and Y, i.e. ) = X x Y, then

_ 1
< — .
Fo = exp ( X V2 +1n|X|>)

3 Proof of the PRC for trees

Theorem 2.3 establishes the PRC for the class of games with ) being com-
plete bipartite graph. In this section we prove the PRC for the case when ()
is a tree.



Theorem 3.1 If Q, |Q| =k, is a tree then

Eg < exp (—Q (%)) . (1)

Before the proof we state two useful propositions.

Proposition 3.1 (Chernoff’s bound [4]) Let X, X,,..., X, be indepen-
dent random variables taking the values in {0,1}, and let P [X; = 1] = p for
all i. Then for any € € (0,p(1 — p)] we have

I & c?
Pll—>) X,—»p < 2exp (—*Tb)
Hng 2p(1 —p)

The next proposition is a quite rough but sufficient for our purposes
statement of the Katona theorem.

> €

Proposition 3.2 (Katona’s theorem [10]) Let F be a family of subsets
of an N-element set. Suppose that any two members of F intersect in at
least T' elements. Then

AN (v )

Proof of Theorem 3.1:

First we give our proof in outline, but before we need some preliminaries.
Arrange the edges aq,...,ar of the graph () so that for any 7 < k there is
m(j) < j such that a; and a,,(;) are adjacent. We fix a function m(y) with
this property. So, the graph @); = {a1,...,a;} is connected. Notice that
Qr = Q.

Given € > 0, define a subset A, , of Q" by

Ape={a e Q" :for any S C @, the number of occurrences
of the elements from S in @ lies between (|S|/k — €)n and

(1S1/k + e)n}.

We now give a high level overview of our proof. We have to show that ev-
ery subgraph W of the graph )™ which does not contain any full ()-subgraph
has exponentially small number of edges compared to k™. By the Chernoff
bound, the density of @™ — A, . in Q" is exponentially small (see Lemma
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3.2). Therefore, it suffices to estimate the density of W C A, . without full
()-subgraphs.

Consider two arbitrary adjacent edges a and b in ) which have a common
vertex in Z € {X,Y}. Call a pair edges a,b € A, . good if they have a
common vertex in Z" and, moreover, the set of a-positions in the vector a
and the set of b-positions in the vector b essentially overlap. More exactly,
the number of points where @ has a component a and b has a component b is
at least ak/n where a will be specified later. Suppose V is a subset of A,
without a good pair of edges. Given «, suppose € is sufficiently small. Then
V' is of exponentially small size. After routine calculation this follows from
the Katona theorem (see Lemma 3.3).

Now we can use the finite induction on j from 1 to & to show that any
W C A, . without full @);-subgraphs is of exponentially small size. In every
induction step, we have a full );_;-subgraph {ay,...,a;1} C W provided W
is not exponentially small. We apply the previous consideration for a = a,,;
and b = a; in order to find b = a; in W which together with a = a,,(;) makes
up a good pair. After attaching a; to the full );_1-subgraph we obtain
a subgraph of W isomorphic to ;. This ();-subgraph is full due to the
overlapping condition in the definition of a good pair of edges (see Lemma
3.1), completing the proof.

We now turn to a detailed proof.

Further on z will denote either element of the set {z,y}. Let « = 1—1/k.
Define a relation R;, 1 < j <k, on A,.. Given @,b€ A, ., we set aR;b iff

2(a;) = 2(am() = 2(a) = 2(b) (2)
and
I C{l,....n}: || > an/k & Vi € I (al; = anm), bl; = a;). (3)

The condition (2) will be called the adjacency condition, (3) will be referred
to as the overlapping condition.

Given a subset A C Q", we denote its density |A|/k™ by u(A). Suppose
V C A, . and there are no d,?) € V such that C_LR]‘?). Denote the maximal
possible density p(V) by 74;.(n). Let 7.(n) = max; v, (n).

Extending the definition of a full Q-graph, we will call a graph {ay,...,a;}
C Q™ a full (;-graph if it is 1somorphic to graph ); and for some | < n it is
true {a|;,...,a;i} = Q.



Lemma 3.1 Suppose ¢ < k™*. For any j < k and W C A, ., if (W) >
(j — )k*y.(n) then W contains a full Q;-subgraph.

Proof: It suffices to show that W contains a sequence ay,...,a; such that
for any s < j it is true

U (s) Rs s (4)
Assume this is done. The adjacency condition (2) implies that ¢); and
{@1,...,a;} are isomorphic. (It is essentially that @) is a tree.) Obviously,
the one-edge graph ()1 has at least (1/k — ¢)n “full” projections {a;}. Due
to the overlapping condition (3), attaching the second edge ay reduces the
amount of “full” projections {a1, as} in at most (1/k+¢)n—an/k. The same
is true when attaching every subsequent edge a5 (a “full” projection becomes
{ai,...,as}). Since

(k—1)((1/k + e)n —an/k) < (1/k — €)n,

we have that {a,...,a;} is a full Q;-subgraph.

To prove that there is {ay,...,a;} € W with (4) for any s < j, we
proceed by induction on j. The case j = 1 is trivial. Let 7 > 1. Define a
subset U of W by

U={aeW: |[{beW:aR;b}| < k}.

We have u(U) < k*y.(n) because we can arrange arbitrarily U and look over
all the elements of U deleting every element that is in relation R; with any
previous one. After performing this procedure twice, in the direct and reverse
order, we obtain the set U’ of density u(U’) > p(U)/k*, without any a and
b in relation R;.

Therefore, u(W — U) > (j — 2)k*v.(rn). By the induction hypothesis,
W — U contains a sequence @y, ...,a;—1 with (4) for all s < j — 1. Since
m(jy & U, we have @, ;) R;a; for some a; € W—{ay,...,a;_1}. The sequence
ay,...,a;—1,a; is contained in W and meets the required condition (4) for
all s <. "

Denote 6.(n) = p(Q" — A,e). A direct corollary of Lemma 3.1 is the
estimate

Eq(n) < 6e(n) + kve(n).

For the amortized values this gives

EQ < maX{ge, Ve }- (5)



Lemma 3.2 §, < exp(—2¢2).

Lemma 3.3 Suppose € < 1k™*. Then

zon(-a(L) !

Set € = k™*. The estimate (5) and Lemmas 3.2, 3.3 imply (1), complet-
ing the proof of the theorem. It remains to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2: Obviously, Q" — A, . = Ug.scq As where

Ags = {a € Q" : the frequency of occurring elements from S

in a is outside the limits [(|S]/k — €)n, (|S|/k + €)n] }.
We now use the Chernoff bound. Clearly,

Yo ——p

=1 n

#(As)zP[ > e

where p = |S|/k and P[X; =1] = p. It follows u(As) < 2exp(—2€’n).
Summing over all S C @, we have u(Q" — A,.) < O (exp(—2¢’n)). This
implies the desired bound &, < exp(—2¢?). n

Proof of Lemma 3.3: We will estimate v;.(n), 1 <j < k.

Suppose a; and a,,(j) have a common vertex in Z € {X,Y}. Recall that
we can consider any subset of ()" as a bipartite graph with vertex classes X"
and Y". We define B to be the number of vertices of A, in Z". We also
define C' to be the maximum possible cardinality of V' C A, . such that all
the edges of V' are incident to one and the same vertex z € Z”, and no two
edges from V have the overlapping property (3).

It is easy to see that

Yie(n) - k" < B-C.
Define D to be the minimum degree of a vertex from Z” in the graph A, ..
Clearly, B < |A,.|/D and

C
Yieln) < 5 (7)
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We will estimate C' from above and D from below. Introduce the following
notation. Let Z = {z1,..., 2.} where r = |Z]|. For v < k, denote @), = {a; €
Q: z(as) = z,} and k, = |Q,|. It is clear that {Q),},<, is a partition of @,
and k =3,, k,. For a,b € Q", we have

z(@)=2(b) & Vi<nIv<r:albl; €Q,.

Let z(a;) = Z(am(j)) = z,.
(' is the number of vectors € that can be placed into the extremal set V'
(see the definition of C' above). We can estimate

C S Cl . QETZCQ . nC3 . C4 (8)

as follows. The factor
¢ =11 f, (Eem
vt
majorizes the number of choices of a component from (J,, @, in a vector e.
The other factors dominate the number of choices of a component from ;.
We put

ke 1 if k>4ork =2
Cy = <(2k +6)n), where 7, =< 1/2 if k=4
(3 +em)n 1 i k=3

The factor 2enCy bounds from above the number of allocations of the com-
ponents aj, apn ;) in €. When it is fixed, there are at most nCs assignments
of components a; and a,,(;) to allotted places where

o= (G2, )

2k

To show this, we interpret a; as 1, an(;) as 0, and an assignment of a;
and a,,(;) as a set of size N < (% + ¢)n. In this interpretation, the prohibition
of pairs of vectors with overlapping components a; and a,,;) longer than
ak/n insures that the corresponding sets have an intersection larger than

11—«

(7% — ¢)n; and the Katona theorem applies.

Finally, there are at most

kp—2

I U7 N i L S )
(L_{ 1 it k=2
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ways to locate the remaining components from Q — {a,(;), a;}.
In the similar way we bound D from below. We have

D >Dy-Ds-Ds-Dy. (10)
The factors are as follows.

D1 == H ky(%’—e)n7

v#£t
_ (%—e)n _ 1 if k>3ork =2
De = ((% — €oy)n where 0, = -1 if k=3 ’
Dy = 2=, (11)
and L
Dy =4 (=)0 it k> 2
1 it k=2

Simple calculations give

0104 2 2¢k 02 2
< k" <e=e" and — <k*".
DDy — 1S1:[Sk D,

This along with (7), (8), (10), (9) and (11) implies

2
’}/j,c(n) < 6ekn2(—%+e)n ((ij'aé)n) .

2%

Substituting o = 1 — 1/k and e = ck™* and assuming ¢ € (0, 1/4), we obtain

the desired bound |
<o (-n(5)

for arbitrary j. Thus, (6) follows.
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4 The extremal density
and unbounded games

Theorem 2.1 shows that Eg(n) is an upper bound on w(G") for any nontrivial
unbounded game (G. In fact, this bound cannot be improved. The following
theorem shows that the generalized PRC for unbounded games is equivalent
to the question whether or not Eg(n) < 1 for any Q.

Theorem 4.1 For any connected bipartite graph () C X XY there is a game
G=(Q,S,T,¢) with S and T countable such that

w(G™) = Eg(n).
Proof: Given a connected bipartite graph () C X x Y, we have to construct
o C X xY xS xT. What are the sets S and T will be clear from our

construction. Let W,, C Q)™ be the largest graph without full )-subgraphs.
We set
¢ ={(zli,yli, (4,2),(2,9)) : Fi,n,est. 1 <n,e € Wy, z(e) = z,y(€) =y},

thereby defining an unbounded game G'.

Consider the strategies F' and H in G" defined by f;(z) = (¢,2) and
hi(y) = (¢,y). Obviously, F' and H win on W,,, therefore, Eg(n) < w(G™).

To prove w(G™) < Eg(n), by Theorem 2.1 it suffices to prove that G is
nontrivial. Suppose, to the contrary, that some strategies f : X — S and h :
Y — T always win, that is, for any (z,y) € @) we have (z,y, f(z), h(y)) € ¢.
From the connectivity of () it follows that there are n and [ < n such that
for any x € X it holds f(z) = ([,%) for some & € X" with Z|; = 2z and,
similarly, for any y € Y it holds h(y) = ({,y) for some § € Y™ with g|; = y.
Moreover, there are €y, ..., €, in W, such that (z,y) € @ implies & = z(€;)
and § = y(€;) for some 7 < k. It is clear that the graph {éq,...,€x} is
isomorphic to the graph () and its [-th projection gives the whole ). Thus,
{é1,..., €} is a full Q-subgraph of W,, yielding the contradiction. .

5 Open problems

1. Prove the generalized PRC for cycles (of even length). After Theorems
2.3 and 3.1, the first unexplored case is when |X| = |Y| =3 and @ = Cs is
a cycle of length six.
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2. Let Dg(n) denote the maximal possible density of W C Q™ without
subgraphs isomorphic to Q. Obviously, Dg(n) < Eg(n). Prove, at least,
Dg < 1for any Q. This natural problem seems to be of independent interest.
If Q is a complete graph, the inequality Do < 1 is true by the Zarankievicz
theorem. If () is a tree, this follows from the well-known fact that every
graph on v vertices with at least tv edges contains as a subgraph any tree of
size t. The only what I know in the general case is Dg(n) = o(1).
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