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Abstract. We show that, for fixed dimension n, the approximation of inner and outer j-radii
of polytopes in

� n, endowed with the Euclidean norm, is in � .

1. Introduction

In this note we assume that n is fixed and consider the complexity of computing inner and
outer j-radii of polytopes in Rn, endowed with the usual Euclidean norm. We show, in Section
2, that these problems amount to the determination of the minimum or maximum of a univariate
linear objective function, with as side condition the solvability of a certain system of multivariate
polynomial (in)equalities. Then, in Section 3, we use a known result [1] that —in fixed dimension—
the solvability of such a system can be decided in NC. This enables us to show that for polytopes
the computation of outer and inner j-radii is in P. These results answer an open problem posed
by Gritzmann and Klee in [4], who also considered the complexity of computing j-radii in more
general spaces (cf. [3]).

We do not intend to provide algorithms that are of practical interest. Streng and Wetterling [7]
show that the width of a polytope given by its vertices can be computed by Lipschitz optimization
techniques. The computation of outer j-radii has been considered from the viewpoint of nonlinear
optimization theory by Streng [6] and by Jonker, Streng and Twilt [5], who also considered stability
aspects.

2. Formulation of the problem

Throughout this note the space Rn will be endowed with the usual Euclidean norm. First we
define the inner and outer j-radii of a polytope. For that purpose we need some preliminaries.
The phrase ”j-dimensional affine subspace” will be abbreviated by the term j-flat. The unit ball
in Rn is denoted by S. A j-ball of radius r in Rn is a set of the form

(q + rS) ∩ Fj = {x ∈ Fj | ‖x− q‖ ≤ r},

for some j-flat Fj ⊂ Rn and some point q ∈ Fj .
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Definition 2.1. Let P ⊂ Rn be a polytope.

(1) The outer j-radius Rj(P ) is the minimum of all positive numbers r such that there is an
(n− j)-flat Fn−j with P ⊂ Fn−j + rS.

(2) The inner j-radius rj(P ) (1 ≤ j ≤ n) is the maximum radius of the j-balls contained in
P .

The existence of these radii as minima or maxima is guaranteed by a standard compactness
argument. For convenience we will distinguish between polytopes given by their vertices and those
given as intersection of finitely many closed halfspaces.

Definition 2.2. Let P ⊂ Rn be a polytope.

(1) A V-presentation of P consists of integers m,n (m > n ≥ 1) and an m-tuple of points
{y1, . . . , ym} with rational coordinates in Rn such that P is the convex hull of these points.

(2) An H-presentation of P consists of integers m,n (m > n ≥ 1), m rational column vectors
ck ∈ Rn, (k = 1, . . . ,m), and m rational numbers γk, (k = 1, . . . ,m) such that P = {x ∈
Rn | cTk x ≤ γk, k = 1, . . . ,m}.

Note that for fixed dimension, these two presentations are polynomially equivalent. Hence
we may choose whichever presentation seems more adequate. We first formulate the problem of
computing the outer j-radius of a V-presented polytope. An elementary observation is that this
radius is the minimal number r such that there is a j-flat Fj such that

d2(yk, Fj)− r2 ≤ 0, k = 1, . . . ,m,

where d2(yk, Fj) denotes the squared Euclidean distance between yk and Fj .
We will represent a j-flat Fj by a pair (a,B), with a ∈ Rn and B an n× j matrix. Then

Fj = {x ∈ Rn | x = a+Bs, s ∈ Rj}.
Without loss of generality we may assume BTB = Ij and BT a = 0, where Ij denotes the j × j
unit matrix. Then

d2(yk, Fj) = min
s∈Rj
‖yk − a−Bs‖2.

It is easily seen that this minimum is attained at s = sk := BT yk, which leads to

d2(yk, Fj) = (yk − a)T (I −BBT )(yk − a),

and we obtain

Lemma 2.1. Let P be a V-presented polytope with vertices {y1, . . . , ym}. The outer j-radius is
the least number r such that

∃a,B : (y1 − a)T (I −BBT )(y1 − a)− r2 ≤ 0 ∧ . . .
. . . ∧ (ym − a)T (I −BBT )(ym − a)− r2 ≤ 0 ∧BTB = Ij ∧BT a = 0.

Next we turn to the inner j-radius for H-presented polytopes. A j-ball Sj can be represented
by a tuple (r, a, B), where r is the radius of Sj , and a ∈ Rn is its center, which, together with the
n × j matrix B can represent the j-flat Fj containing Sj . We will again assume BTB = Ij , but
because now a denotes the center of Sj , we cannot take BT a = 0, as we did in the case of outer
j-radii.

The condition that an arbitrary point x ∈ Rn lies in Fj can now be translated into (x − a) =
BBT (x− a), so our j-ball Sj is in fact the set

Sj = {x ∈ Rn | (x − a)T (x− a) ≤ r2 ∧ (x − a) = BBT (x− a)}.
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This j-ball is contained in P if every point x on Sj satisfies cTk x ≤ γk for k = 1, . . . ,m. Therefore
we have

Lemma 2.2. Let P be an H-presented polytope given by

P = {x ∈ Rn | cTk x ≤ γk, k = 1, . . . ,m}.
The inner j-radius is the maximal number r such that

∃a,B¬∃x : (x− a)T (x− a) ≤ r2 ∧ (x− a) = BBT (x− a) ∧ (cT1 x > γ1 ∨ . . . ∨ cTmx > γm).

In Section 3 we shall see that, using a complexity theoretic result from Ben-Or et al. [1], the
decision problems formulated in lemmas 2.1 and 2.2 are in NC, hence can be solved in polynomial
time.

3. Complexity

In [1] it is shown that the theory of real closed fields in fixed dimension can be decided in NC.
This strengthens a previous result by Collins [2] on polynomial decidability. More precisely, the
following holds.

Theorem 3.1. (Ben-Or et al., [1], Section 4)
For fixed k, the following decision problem is in NC (hence can be solved in polynomial time):

Given polynomials p1(x1, . . . , xk), . . . , ps(x1, . . . , xk), a boolean formula φ(x1, . . . , xk) which is a
boolean combination of polynomial equations and inequalities, i.e. pi(x1, . . . , xk) = 0 or
pi(x1, . . . , xk) < 0, and quantifiers Q1, . . . , Qk, decide the truth of the statement

Q1(x1 ∈ R) . . . Qk(xk ∈ R)φ(x1, . . . , xk).

The term ”polynomial time” in Theorem 3.1 refers to the size of the boolean formula φ, which
equals k+ s+ number of boolean operations (i.e. ∧,∨,¬) occurring in φ + number of bits needed
to represent the polynomials p1, . . . , ps. (We assume that all these polynomials have rational
coefficients whose denominators and enumerators are encoded in binary.)

From Theorem 3.1 it is immediate that the decision problems of Lemmas 2.1 and 2.2 are in NC,
hence polynomially time solvable w.r.t. the size of the input given by y1, . . . , ym, provided the
squared radius r2 has polynomial size. From this fact we may further conclude that straightforward
binary search yields a polynomial time approximation algorithm for (approximately) solving the
problems mentioned in Section 2. More precisely, we get

Proposition 3.1. For fixed dimension n, there exist fully polynomial approximation schemes for
solving the outer- and inner j-radius problem, i.e., given ε > 0, one can compute an approxi-
mate solution â, B̂ such that the corresponding outer (inner) j-radius r̂ differs at most ε from the
optimum r, and the computation is polynomially bounded in the input size and log( 1

ε ).

Proof. Consider, for example, the problem of computing the outer j-radius for a V-presented
polytope P given by y1, . . . , ym ∈ Rn. Given r, we will denote the decision problem occurring in
Lemma 2.1 by E(r). Let ε > 0 be given. We first compute r̂ ∈ R such that |r̂− r| < ε

2 , where r is
the outer j-radius of P . This can be achieved by straightforward binary search starting with the
interval [r0, r1], where r0 = 0, r1 = maxi ||yi||.

Thus we end up with some r̂ such that E(r̂) is true and E(r̂− ε
2 ) is false. Next we perform binary

search on the components of a and B to determine these within an error of δ > 0 (to be specified
below). Note that ‖B‖∞ ≤ 1 and that we may restrict ourselves to ‖a‖∞ ≤ a+ := maxi ‖yi‖∞.
Now we first perform binary search on [−a+, a+] until we have found an â1 ∈ R such that

E(r̂) ∧ (â1 − δ ≤ a1 ≤ â1 + δ)
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is true. We then perform again binary search to compute â2 ∈ R such that

E(r̂) ∧ (â1 − δ ≤ a1 ≤ â1 + δ) ∧ (â2 − δ ≤ a2 ≤ â2 + δ)

is true, and so on. The computation is polynomially bounded in the input size and log( 1
δ ). the

approximate solution â, B̂ is such that ‖(â, B̂)− (a,B)‖∞ ≤ δ for some (not necessarily optimal)
solution (a,B) of E(r̂). Note that, of course, the computed â and B̂ in general will not satisfy
B̂T B̂ = Ij or B̂T â = 0. Yet they define a j-flat F̂ which is a good approximation to a solution
of the outer j-radius problem. More precisely, let F be the j-flat defined by a and B, and let
r be the corresponding radius, i.e. r = maxk d(yk, F ). For k = 1, . . . ,m let sk ∈ Rj such that
d(yk, F ) = ‖yk − a−Bsk‖. Then we get

d(yk, F̂ ) = min
s∈Rj
‖yk − â− B̂s‖

≤ ‖yk − â− B̂sk‖
≤ ‖yk − a−Bsk‖+ ‖a− â‖+ ‖B − B̂‖ ‖sk‖
≤ d(yk, F ) + nδ + njδ2‖yk‖
≤ r̂ + n2δ(1 + ‖yk‖).

Thus by choosing

δ ≤ ε/2
n2(1 + maxk ‖yk‖)

,

we get
d(yk, F̂ ) ≤ d(yk, F ) +

ε

2
≤ r̂ +

ε

2
≤ r + ε.

The proof for the inner j-radius problem is similar.
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