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Abstract:

We consider the problem of fair cost allocation for Travelling Salesman games for which the
triangle inequality holds. We give examples showing that the core of such games may be empty,
even for the case of Euclidean distances. On the positive, we develop an LP-based allocation rule
guaranteeing that no coalition pays more than o times its own cost, where « is the ratio between
the optimal TSP-tour and the optimal value of its Held-Karp relaxation, which is also known as
the solution over the “subtour polytope”. A well known conjecture states that o < %. We also

exhibit examples showing that this ratio cannot be improved below %.
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1 Introduction

Travelling Salesman games are well-studied examples of so-called “cooperative games”. Formally,
such games are defined as follows:

Definition 1.1 Let N be a finite set, the set of players. A cooperative game is then defined by

a function
c: 2N R,

i.e. a function that associates a cost ¢(S) to every coalition S C N. The coalition N is also called
the grand coalition.

Several interesting games arise from combinatorial optimization problems.

Example 1.2 Let N = {1,...,n}, Ng := NU{0} and consider the complete undirected graph
with vertex set Ny and edges weighted with real numbers d;;, i,j € No. For every S C N, let

¢(S) = minimum cost of a tree spanning all vertices in S'U{0}.
This game is known as the Minimum Spanning Tree game, see [9].
Example 1.3 Same as in Fxample 1.2, except for
c(S) = minimum length of a travelling salesman tour visiting all vertices in S U {0}.
This game is known as the Travelling Salesman game, see [20].

Example 1.2 can be interpreted as follows: Consider vertex 0 as a supply node, e.g. an
electricity supply. The cost ¢ = ¢(N) of the grand coalition is the total cost of supplying electricity
to all vertices or “players”. The problem is to find a fair way to allocate this amount to all the
players. More precisely, let z; denote the amount of money player i is asked to pay, thus ).y z; =
c. A coalition S C N which is asked to pay more than its own cost, i.e. D ey z; > ¢(S), will
refuse to pay and prefer to split off the grand coalition by connecting to the supply on its own.
Thus a fair allocation is one for which }~;cg2; < ¢(S) holds for every coalition S C N.

Example 1.3 can be interpreted in a similar way. Consider vertex 0 as the home city of a
speaker who has to give talks at the universities located in vertices 1,...,n. The total travel cost
equals ¢ = ¢(N). Again the problem is to find a fair cost allocation, such that no coalition S will
split off and invite the speaker to visit only the universities 2 € 5.

Definition 1.4 Consider a cooperative game defined by c : 2NV —IR. An allocation is a vector
x € RN such that ;e xi = ¢(N). The core of the game is defined as the set of all allocation
vectors © € R" satisfying

in < ¢(S) for all S C N.

€S

Any vector x in the core is called a core allocation vector, or simply a fair allocation.

In Example 1.2 above, it is straightforward to verify that a fair allocation can be obtained as
follows: Construct a minimum cost spanning tree T in Ky, and direct the edges of T' such that
node 0 becomes the root. Then for each i € N, let z; be the length of the (unique) edge of T
entering node 1.
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As for the case of the Travelling Salesman games, it has been observed that the core of such
games may be empty, see Tamir [24]. (Note that in that paper, a slightly more general setting
is used, allowing non-hamiltonian graphs.) In the present paper, we will consider TSP games
for Euclidean distances, which are among the most natural classes of TSP games, but have not
received any special attention so far.

The rest of this paper is organized as follows: Section 2 presents a minimal example of a
Euclidean TSP game with empty core. This motivates the search for “reasonably fair” allocations.
One possible definition was given in [5], where the notion of “c-approximately fair allocations” is
introduced.

Definition 1.5 Consider a game defined by ¢ : 2V —R. An e-approximately fair allocation is
an allocation vector x € RYN, such that

¢(N) > ¢(N)and z(S) < (1 +¢)c(S) for all S C N.

The idea is that for small € > 0, an e-approximately fair allocation may still be acceptable,
since the additional overhead costs for a coalition S after splitting off the grand coalition is
likely to exceed a fraction of € of its cost. Conversely, a limited deficit for the supplier may be
acceptable.

Other ways of defining e-approximate core allocations have been proposed in the literature,
see [5] for more references.

In Section 3 we prove that TSP games with triangle inequality always have e-approximately
fair allocations for e = % If a well-known conjecture concerning the Held-Karp relaxation of
the Euclidean TSP is true, our allocation rule presented in Section 3 would even achieve ¢ = %
Moreover, these allocations can be computed in polynomial time, even if the optimal tour is not
known. In Section 4 we show that no allocation rule can guarantee £ < % We end with some

open problems and concluding remarks in Section 5.

2 A minimal example with empty core

Kuipers [14] showed that under quite general assumption (including the Euclidean case), every
TSP-game with up to 5 players has a nonempty core. The following example shows that for
n = 6 players, there exist Euclidean instances with empty core.

Example 2.1

See Figure 1. Consider an isosceles triangle of side length [ = /3, centered at 0. Label the
vertices by 1, 2, 3. Place three more nodes 4, 5, 6 at equal distance d from the center, such that
node ¢ lies on the line segment 0,¢ — 3.

The distance d will be chosen appropriately. Let f denote the distance dsg = dig = das;
clearly, f = /3d. Let h denote the distance dy5 = dig = dog = dyg = d3q = ds5. Applying
Pythagoras’ Theorem to the triangle A(5P3), we get

2 2
1-4d
2 2 2
we conclude that h = 1+ d+ d?. Finally, let g := d3g = das = dyy4, ie. g =1—d. Asa

consequence, the two obvious candidates for an optimal TSP tour of length L have the following
lengths Ly and Ly (see Figure 2):
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1 2

Figure 1: A minimum Euclidean example with empty core

1 2 1

Figure 2: The two candidates for optimal TSP tours
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Li=1+43g+2d+h=3—-d+V3+V1+d+ &,

Ly=214+2g+2d+ f =2+2V3+V3d.

Now suppose z € R® were a core allocation. In particular, we must have
1. Z?zl x; = L,

2.2+ 21+ Tip3+ Tiga <2d+ 2941 fori=1,2
and a3+ a1+ a6+ x4 < 2d+ 29+ 1.

Adding up the three inequalities, we get

6
L= Z z; <
=1
If the optimal tour has length Ly, we get

3
L1:3—d+\/§+\/1+d+d2§3+5\/§,

N o

3
(2d+2g+l):3+§\/§.

which is equivalent to
1
d> —F——>

T 4(v3-1)

If the optimal tour has length Lo, we get

1
3

3
L2:2+2\/§+\/§d§3+§\/§,

which is equivalent to

i<l 1
V3 2 10

We conclude that there is no fair cost allocation if neither of these two conditions is satisfied,

e.g. ford = %. D

3 Approximately fair allocations for Euclidean instances

We have seen in the previous section that not all TSP instances allow a fair cost allocation.
This makes it desirable to examine approzimately fair cost allocations, where the customers can
be overcharged by a certain percentage, or the supplier is allowed to run a certain deficit. (See
Definition 1.5.)

Interesting allocation rules (different from core allocations) have been studied in the context
of TSP games, see [20]. In this section, we will approach the question from a geometric point of
view and make use of linear programming duality.

There is another good reason for considering approximately fair cost allocations: Since com-
puting the length L of an optimal TSP tour is NP-hard, we cannot expect to find an efficient way
of computing cost allocations, whether they are fair or not. These computational difficulties make
it desirable to consider performance bounds on cost allocations which can be computed in polyno-
mial time. In section 3.2 below, we will introduce a modified game with cost function ¢z ) < ¢,
for which we can efficiently compute core allocation vectors z. It is known that ¢y > %cc;w,
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Figure 3: The fare zones of Hamburg, reproduced with kind permission by Hamburger

Verkehrsverbund HVV

where ccp, denotes the cost function corresponding to the well-known Christofides heuristic.

Hence, by scaling the vector z by a factor @ = % < %, we get an e-approximately fair

allocation for the original TSP game with £ < % — see below for details. In case an optimal global
tour of length L is known, we may of course scale the vector z by a factor of @ = CHILW <ato

obtain an £ < ¢ < %

3.1 Geometric cost allocation

We encounter methods of allocating the cost of transportation in many instances in everyday life.
Two of the easiest allocation rules are also the most common ones: A taxi charges by the distance
that is traveled by an individual customer. On the other hand, public mass transportation
typically charges a flat fee for anyone who uses it, regardless of the distance. The practicality
of these two allocation rules relies on the fact that the number of players in a game is either
extremely small, i.e. 1, or arbitrarily large. (Insufficiencies of the latter assumption are reflected
by the deficits of most public transportation.)

In many cities, there are attempts to refine the fares by using a “zone structure”: The region
is subdivided into traffic zones, and a customer is charged a certain amount for crossing from one
zone into the other. (See Figure 3 for a practical example.)

For our purposes, a subdivision of the plane into fixed zones (e.g., concentric circles around
the depot) is much too crude. Instead, we have to take into account the relative position of the

customers. In the following, we will describe a geometric cost allocation method that follows this
idea.
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Definition 3.1 For a given set of vertices in the plane, a moat is a simply closed strip of constant
width that separates lwo nonemply complementary subsets of the vertices. The inside of the moal
s the region containing the depot, the other region we call the outside. A moat packing is a
collection of moats with pairwise disjoint interior. The cost of a moal packing is twice the sum
over all widths.

Note that any tour has to cross every moat twice, hence the cost of a TSP tour is greater
than or equal to the cost of a moat packing. Figure 4 shows a moat packing for an instance of

cities in the American midwest, distances are taken from Nemhauser and Wolsey, [15], p. 530.

\
\
\
\

St. Louis

Figure 4: A moat packing for an instance of 10 cities in the midwestern United States

3.2 Moats and the subtour polytope

The cost of any moat packing can be allocated as follows: Distribute twice the width of any
moat among the vertices on the outside (in an arbitrary way). It is intuitively clear that if the
total cost of the moat packing is distributed this way, the resulting distribution is such that no
coalition pays more than its TSP cost. (We will prove that formally later on.) Note, however
that by distributing the cost of a moat packing we will in general not get an allocation vector
of the TSP game, since the cost of a moat packing is in general strictly less than the cost of an
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optimal TSP tour. The situation where the two costs (maximum moat packing and minimum
TSP tour) coincide occurs precisely if there is a moat packing and a tour such that:

1. no part of the given tour is left uncovered, and
2. each moat is crossed by the tour exactly twice.

In the general situation, i.e. when the maximum moat packing has a cost strictly less than the
optimum TSP tour, we can still get an allocation by simply scaling the cost distribution above
appropriately. This yields an approximately fair allocation for the TSP game, which will be
discussed in detail below.

The allocated cost for any moat packing is twice the sum of the moat widths. Moat widths
are required to be nonnegative and the sum of the widths of moats separating two vertices must
not exceed their distance. This motivates the following linear program:

max (2 Z w{Sg})

S,SeM
(ﬂf ) subject to the constraints

Wigs 0 forall {$,S} e M,
Z wisg < d(i,j) for all i, €V.
(4,5)€8(S)

Here M denotes the set of all nontrivial partitions (S,5) of V (assuming that the depot is
contained in S) and §(S) is the set of all edges that join a vertex from S to a vertex from S.
Note that there are exponentially many variables. Furthermore, there may be solutions to the
linear program which do not correspond to a moat packing, since there may be positive w (5.5}
Wes, 5 with S1 NSy # 0 and S; € Sy and Sy € Sy, in which case the two corresponding moats
are forced to intersect. However, for any instance of (M), there is an optimal solution for which
the sets with Wigsy > 0 have the special structure of a nested family:

Definition 3.2 A family of partitions (S1,S1),-..,(Sk, Sg) is called nested, if for any two par-
titions (S, S;) and (S;,5;), we have S;NS; =0 or S; C S; or S; C S;.

For details on nested families, see Pulleyblank [21]; a proof for the above claim can be found
in Cornuéjols, Fonlupt and Naddef [3].

It is not hard to see that a solution with the structure of a nested family allows a moat
packing. The details of using a moat packing for allocating the optimal value of (M) will be
discussed in the following section. We will assume that triangle inequality and (for the sake
of simplicity) symmetry hold for the distance function. We assume the distance function to be

defined for all (7, 7)1, € V.

How can we solve (M) in polynomial time? Consider its dual, i.e. the following linear problem:
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min Z d(i,j)wi;

(’i,j)EVQ
(D) subject to the constraints
z;; > 0 forall 1,7,
Z z;; > 2 forall S, €M,

(1,4)€5(S)

Consider an optimal solution to (D) and suppose there was a vertex ¢ with 37, @;; > 2. If
there was only one vertex k # ¢ with zx; > 0, we would have z;; > 2 and we could lower z;;
and stay feasible. Since d(7, k) > 0, this would not increase the objective value. So assume there
are two vertices k1 and kg with x;z, > 0 and @, > 0. In that case we can lower both z;,
and z;;, and raise z,, by the same value and maintain feasibility. Since by triangle inequality
d(ky,1) +d(i,k2) > d(kq, k2), this does not increase the objective value. So we may assume that
for any vertex i, we have ) ,; z;; = 2. Furthermore, there can be no edge (k1,k2) with zg, 5, > 1,
since otherwise we would get the violated constraint

Z Ty = Z ik, =+ Z Tiky — kalk2 =4 — 2xk1k2 < 2.
(7,5)€8({k1,k2}) 1%k 1%k

This means we may consider the following linear program (H K) instead of (D):

min Z d(i,j)x;

(5,7)€V?
(H [&/’) subject to the constraints
xz;; > 0 forall 17,
z;; < 1 forall 1,7,
Z z;; > 2 forall S,S€ M,

(4,7)€58(S)
z;; = 2 forall 1 € V.

i#i

The feasible region for this second linear program is known as the subtour polytope S™, the
program itself as Held-Karp relazation: Any of the constraints corresponding to a moat variable
is a so-called subtour elimination constraint.

These subtour elimination constraints were first introduced by Dantzig, Fulkerson and John-
son [4]. Grotschel and Padberg showed that they are facet-inducing for n > 4.

Grotschel, Lovasz and Schrijver [10], and Karp and Papadimitriou [13], showed that a poly-
nomial method for solving the separation problem for a polytope yields a polynomial method for
optimization by means of the ellipsoid method. Padberg and Hong [17] (see also Padberg and
Wolsey [19], and Padberg and Rao [18]) demonstrated how to solve separation for the subtour
polytope in polynomial time by using the method of Gomory and Hu [9] for finding the minimum
cost cut in a graph. Thus we know that optimization over the subtour polytope is possible in
polynomial time by means of the ellipsoid algorithm.

For a comprehensive study of optimizing over the subtour polytope, see Boyd [1] and also

Boyd and Pulleyblank [2].

Summarizing, we state:
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Theorem 3.3 We can determine an optimal moat packing in polynomial time.

Since the feasible region Q" of the Travelling Salesman Polytope is contained in 57, any
optimal solution to minimizing over S™ is a lower bound for the optimal value of TSP. It was
proved by Wolsey [26] and by Shmoys and Williamson [22] that for any distance function d
satisfying the triangle inequality, this bound can be at worst 2/3 of the optimum:

Theorem 3.4 ([26],[22]) If the distances satisfy the triangle inequality then the optimum value
of (HK) is at least % of the length of a shortest tour. U

It is a well-known open conjecture that the factor of 2/3 can be replaced by 3/4.
It should be noted that Shmoys and Williamson have shown an even stronger version of
Theorem 3.4:

Theorem 3.5 ( [22]) If the distances satisfy the triangle inequality then the optimum value of
(HK) is at least % of the length of a tour oblained by the method of Christofides. [

This means we can guarantee allocation of 2/3 of the cost of an approzimate tour where both
the allocation and the tour have been computed in polynomial time.

3.3 Tours and Moats

We now proceed to describe how to obtain allocation vectors from moat packings. The idea is to
distribute twice the width of every moat in an arbitrary way (e.g. uniformly) among the vertices
on its outside. Let w* be an optimal solution of the linear program (M) and define

SS
=2- E .
€S |S|

0es

By linear programming duality this vector is in the core of the game associated with the linear
program (HK) in a natural way:
Define the cost of a coalition S C N by

ck)(S) = min Z d(i,7)zi;

i,J
subject to the constraints
zi; > 0 forall i 7,
E(i,j)E(SS(T) Z’ij Z 2 fOI' aﬂ O € T C S U {0}

(Here 65(T) denotes the set of edges joining T' to (S'U {0} \ 7.)) The general idea to apply
linear programming duality to combinatorial games goes back to [16].

The vector 2 € RY is easily seen to be a core vector of the game defined by the cost function
c(rx): Indeed, by linear programming duality we have

le_Q ZE |S| =2 Z Z Z wgS:C(HK)(N)-

iEN iEN i€g {5,5}eM ZES {SE}GM

[,)*
U)\

To see that this is in fact a fair allocation vector, recall that for a coalition S C N, its cost
c(HK)(S) is defined as the optimum of an LP. Its dual is given by
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cury(S) =max 2+ > wr(sufop)\T
0gTCS

subject to the constraints

Yo wrsuenr < dugy Vi
0gTCS
§5(T)3(4,5)

wr (su{oypr = 0
Now an optimum solution w* of (M) induces a feasible solution of the LP above by wr :=

Z wy;. Hence we get
SNnU=T

cury(S) = 2+ > dr
0¢TCS
1
= 2. —wT
% 1]
ieTCs

Figure 5: A moat packing

Note that we can choose any distribution of the cost of a moat among the outside vertices,
i.e. instead of taking
Ws,3
T =2 —=
¢ E: |S|’

€S
0es
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we could choose any

;= 2. Z Asiwg g

ies
0es

with }7;egAsi = 1,0 < Ag; < 1. without changing the validity of any of the above statements.

If the optimal tour is not an optimal solution of (HK) then for any moat packing either at
least one moat is traversed more than two times (see Figure 5) or the optimal tour runs through
territory which is not covered by any moat (see Figure 6 below).

Proposition 3.6 We would like to note that even if ¢(N) > C(HK)(N), the core may be
nonempty. The easiest example for this situation arises from Frample 2.1, see Figures 1 and 5: It
can be shown that an optimal moat packing has cost 3(%—}—9—{—%) +2(d—%) =(3-d)+ (3+d)§ =:
Ls. Now consider the case where d satisfies one of the bounds given in Example 2.1 with equality;
in that case, we have a tour of length L = 3 + 3@ > Ls, meaning thalt we cannot distribute
the cost of the tour by the Held-Karp allocation rule. However, il is easy lo see that allocating

% =14+ @ to each of the players on the outside vertices is a fair allocation.

3.4 Approximately fair allocations

Summarizing the results of the previous two sections, we state:

Theorem 3.7 For TSP games with triangle inequalily, there is a vector x € RN, which can be
computed in polynomial time and satisfies the following conditions:

. . . . . _ 1
(i) x is an e-approzimative core allocation for e = 5.

(ii) If the “%-conjecture ” on the Held-Karp bound is true, x is an e-approzimative core allocation

fore = %

(iii) @ e-approzimately allocates the cost of an approxzimative TSP tour obtained by the
Christofides heuristic for e = %
Proof. Let z as above denote the fair allocation of the associated LP-game. Let CE‘HK) =
¢rk)(N) denote the optimum value of (HK) and let L be the length of a shortest tour. Obvi-
ously,

is a vector in RY satisfying

1. #(N) =1L and

We will see in the following Section 4 that it is impossible to achieve a better general bound
than ¢ = %, even in the case of Euclidean distances.

Remark 3.8 Potter, Curiel and Tijs [20] have shown thal in the case of a distance function
induced by the Fuclidean metric for a planar arrangement of poinls, any convex arrangement of
players guarantees a fair cost allocation. As it was shown by Fekete and Pulleyblank [6], any such
arrangement has a moat packing with cost equal to the length of the optimal tour, implying that
this special case is covered by our above approach.
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Figure 6: A generic example with empty core

L
S(HEK)

far from the average case ratio. It can be shown (cf. [23],[8])) that if p1,...,Pn,... are indepen-
dently uniformly distributed in the unit square, and L(py,...,py) denotes the length of a shortest

Remark 3.9 We would like to point out that the above worst case estimale for the ratio 18

tour through p1,...,pn and CTHK) (p1,...,pn) denotes the optimum value of the Held-Karp relaa-
ation, then there exisl constants Brsp and By, such that

L =
(pla\/ﬁ 7pn) n—0o ﬁTSP a.s.

HK P1y---3Pn n—00
and (HB)( ! ) — Bk a.s.

\/ﬁ

Numerical experiments are reported [8] saying that Srsp ~ 0.709 and Byx) ~ 0.7. This
means that in the average one can expect e-approximately fair allocations for £ = 0.013.

4 More examples with empty core and a lower bound on ¢

In this section we present an infinite family of examples with empty core. We also show that the
bound e < % which arises from the conjecture on the Held-Karp bound is tight by displaying a
geometric instance where this bound is asymptotically met.

First, consider again an isoceles triangle with center 0. On each “spoke”, we place a large
number of points at small distance, see Figure 6.

Suppose that the length of a spoke equals 1, i.e. the triangle has side length /3. Then the
length of an optimum tour comes arbitrarily close to L = 4 + /3. On the other hand, a simple
argument, similar to that of Section 2, yields that every potential core vector z € R™ must satisfy
z(N) < 2(2++/3). This shows that such instances of TSP-games cannot have s-approximate

core allocations for ¢ < ;{% —1=10.0239...
This observation can be generalized to wheels with an arbitrary odd number 2k + 1 of spokes
of length 1, see Figure 7 for the case k = 3.

If s is the shortest distance between the endpoints of two adjacent spokes, the shortest tour
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Figure 7: Odd stars have an empty core

has length close to L = ks + 2k + 2, while any potential core vector must satisfy

M:ks+2k+l+§_

N) <

Since 3 < 1, the core must be empty. Furthermore, there are no e-approximately fair allocations

for
ks + 2k + 2 1-3

< — = .
S hst2kt1l+: ks + 2k + 1+ 2

A natural question arising in this context is to determine the worst case bound for e. We
have seen in the previous section that (subject to the conjecture on the Held-Karp bound) there
is a way to guarantee ¢ < % In the following, we present an example with ¢ arbitrarily close to
this bound of %

Theorem 4.1 The bound ¢ < % resulting from the conjecture on the Held-Karp bound is best
possible.

Proof. Consider a set of n points, equally distributed on 3 columns, as shown in Figure 8.

Let h denote the height of the columns. Since the distance d between two columns can
be made arbitrarily small (provided we place a sufficient number of points on each column), a
shortest tour has length approximately equal to 4h. On the other hand, any coalition consisting
of two of the three columns is willing to pay at most 2h + 4d. Hence any potential core vector

must satisfy 2(N) < 2(2h + 4d) = 3h + 6d. This shows that there are no e-approximately fair
4h

allocations for e < yin 1. If we let d tend to 0, we get the desired result. [

Combined with our results in Section 3, this bound implies a previous result due to Goe-
mans [8], stating that there are TSP instances for which the ratio between the length of a
shortest tour and the optimal value of the Held-Karp relaxation is arbitrarily close to %.
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-

1

Figure 8: An example with e—3

5 Concluding remarks

A proof of the “%—conjecture” on the Held-Karp relaxation would completely settle the question
about the worst case analysis of the e-approximability problem. On the other hand, it may be
possible to find completely different methods of constructing approximately fair allocations with
guaranteed worst case approximation error € = % For example, Faigle and Kern [5] propose some
allocation rules based on the minimum spanning tree allocation and the distance from the supply
node. An empirical study of randomly generated small instances (n < 10) seems to indicate
that the Held-Karp allocation rule is by far preferable to other heuristic rules based on minimum
spanning trees and relative distance functions, cf. Hunting [11].

Another interesting question concerns the average case behavior. We conjecture that if the
points are independently and uniformly generated, say, in the unit square, then the probability
of the core being empty tends to zero as n——oc0, where n is the number of players. One way
of approaching this problem may be using the so-called zero-or-one law from probability theory,
see Feller [7], Theorem 3, Chapter IV.7, volume II. This is easily seen to imply the following:
Let Xg, X1, X3,... be independent random variables that are uniformly distributed in the unit
square. Let A C ([0,1]%)* be defined as

A :={(ag,a1,az,...) | the TSP game has nonempty core for almost all begin sequences} .

Then either P(A) =0 or P(A) =1, where P is the infinite product measure on ([0, 1]%).

Acknowledgements: The second author would like to thank Bill Pulleyblank for many
helpful discussions about moat packings. We appreciate the friendly permission by the Hamburger
Verkehrsverbund HVV to use Figure 3 and the technical assistance by KarMa Hochstattler in its
digital reproduction.
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