Multiple Product modulo arbitrary numbers

Claudia Bertram and Thomas Hofmeister
Lehrstuhl Informatik 11
Universitat Dortmund

D-44221 Dortmund, Germany

Ermail: bertram

Malk hofmeist
Abstract

Let n binary numbers z,,...,z, of lengthn

be given. The Boolean function ”Maultiple
Product” M P,, asks for (some binary repres-
entation of) the value of their product.

It has been shown in [SR],[SBKH] that this
function can be computed in polynomial-size
threshold circuits of depth 4. For a lot of
other arithmetic functions, circuits of depth
3 are known. They are mostly based on the
fact that the value of the considered function
modulo some prime numbers p can be com-
puted easily in threshold circuits.

In this paper, we show that the difficulty in
constructing smaller depth circuits for M P,
stems from the fact that for all numbers m
which are divisible by a prime larger than 3,
computing M P,, modulo m already cannot
be computed in depth 2 and polynomial size.
This result still holds if we allow m to grow
exponentially in n (m < 2°™, for some con-
stant ¢). This improves upon recent results in
[K1].

We also investigate moduli which are of the
form 237 . Especially, we show that there are
polynomial-size threshold circuits for com-
puting M P, modulo 2,4, and 8, but that
there are no such circuits for computing mod-
ulo m if m is divisible by 16. We also sketch
that moduli which are divisible by 9 lead to
exponential size.

1 Introduction

In the last few years, threshold circuits of
constant depth have been intensively stud-

} @]s2.informatik.uni-dortmund.de

ied. Although a threshold gate is a rather
simple device which can only decide whether
the number of 1s in its input is above some
threshold, it turned out that it seems rather
difficult to prove any non-polynomial lower
bound even for circuits with depth bounded
by 3. The first exponential lower bound for
circuits of depth 2 is by [HMPST]. The res-
ult proved in that paper is the now well-
known fact that the "Inner Product modulo
2", defined by IP, : {0,1}*" — {0,1},

IPn(mlvylv"awnayn) = 21Y1 D D TaYn

needs exponentially many gates in threshold
circuits of depth 2. Different techniques for
depth 2 were developed, but could not be
extended to depth 3. The lack of negative
results was then complemented by a series
of results which proved threshold circuits to
be surprisingly powerful. If we abbreviate
by TC}Q all Boolean functions which can be
computed in threshold circuits of polynomial
size and depth k, then the following complex
Boolean functions are now known to be con-
tained in TCj: Sorting of n binary numbers
which have length n each; multiplication of
two binary numbers of length n; computing
the n—th power of an input number; comput-
ing an approximation of the division of two
binary numbers of length n. If we want to
add n numbers of length =, we even get away
with TCJ ([GK, GHR]). For a survey or for
lower bounds, see e.g. [H, R, W].

One of the few exceptions of arithmetic func-
tions where we know of a small-depth (actu-
ally, depth 4, see [SR]) threshold circuit, but
of no T'CY circuit is the "multiple product”.

The technique which was used when realiz-
ing complex functions like division consisted
of computing the result modulo small prime
numbers and then reconstructing the result
via Chinese Remaindering.

A notion which also turned out to be rather
useful is that of 1-approximability. We will
not give a formal definition of this since we
make no essential use of it. Informally, a
1-approximable function can be computed in
T CY-circuits which have some special prop-
erty. Namely, on any input, the number of
ones which are fed into the output gate is
restricted to some small range. This means
that the output gate has a weak task and can
be omitted if there are other gates under-
neath. The set of 1-approximable functions
is a proper subclass of TCJ.

Though it may seem a random decision to con-
sider "multiple product”, it should be seen
that this function is close to the boundary of
what we know. It seems natural to invest-
igate why the decomposition via Chinese Re-
maindering fails when applied to the multiple
product.

First results obtained in this direction were
given in Krause [K1] who has shown that
for all O(log n)-bit numbers m which have
a prime factor larger than 3, the problem
of computing the multiple product modulo
m is not 1-approximable. The proof of this
was based on communication complexity ar-
guments. This indicates already why Chinese
Remaindering cannot be successful.

In this paper (section 3), we improve upon this
result in two respects. First, we show that the
above negative statement can be strengthen-
ed to TC) instead of 1-approximability.
Secondly, we are able to extend the state-
ment to numbers m which consist of ¢ - n bits
(for some constant c¢). The proof that we give
is also rather simple.

We then extend our investigations to num-
bers which have not been tackled in [K1]. In
particular, we are able to classify exactly for
which numbers of the form m := 2¢ the mul-
tiple product modulo m can be computed in
TC).

It should be noted that considering prime

powers of 2 is perhaps the most natural case
since it corresponds to computing the actual
bits in the output of the multiple product.
In this respect, we are able to design TCJ-
circuits which compute the 3 least significant
bits of the multiple product. The way the cir-
cuits are designed also reveals that those 3
bits are actually 1-approximable. We are then
able to show that higher order bits are not
computable in TCY.

We finally extend the negative results to all
moduli m which are divisible by 16 or 9.

2 Definitions and basic properties

Let us recall some basic number theoretic no-
tions. For a number m, let Z,,, be the residue
class modulo m, and Z7, denote the multi-
plicative group modulo m. Forana € Z} ,
we denote — slightly abusing notation — by %
the multiplicative inverse of a. The modulus
will be clear from the context.

Let ord,,(a) denote the order of a, i.e. the
smallest 2 > 1 such that @’ = 1 mod m. An
element a € Z7, is called a "primitive root”
modulo m if ord,,(a) = |Z%,|.

Throughout this paper, we will assume that
Z1, ..., 2, are binary input numbers of length
n each. If the number of factors is not equal
to their length, then we implicitly pad with
dummy inputs.

We identify the z; with the natural num-
bers that they represent and denote by
MP{™(z1,...,2,) the binary representa-
tion of the value z; -+ - z,, mod m.

A projection reduction from a function

f(z1,...,25,) to a function g(yy1,...,y¢) is a
mapping
p:{l,...,t} = {0, 1, z1,..., 20, F1,..., %0}
such that f(z1,...,zn) = g(p(1),...,p(t)).

This means that we can set variables of g to
constants or identify them with variables of f
in such a way that we obtain the function f.
A projection reduction is called polynomial if
t is bounded by a polynomial in n.

We will visualize projection reductions to
"Multiple Product” as is sketched in figure

1. Input numbers are regarded as rows.

’ Ziz| Z42 | 41 | 4o ’ 0 | y | 0 | 1 ‘
—

’ L3 | L2 | L1 | %0 ‘ ’ X | 0 | X | 1 ‘
—

’ Z3,3| 235 | Z31 | Z30 ‘ ’ y | y | X | 1 ‘
Figure 1

If we manage to show that there is a polyno-
mial projection reduction from 7P, to some
function f, this has the consequence that f
also needs exponential size when computed in
threshold circuits of depth 2.

It is easy to see that for the multiple product,
projection reductions can be described as the
product of some linear terms. This motiv-
ates the following definition where we con-
sider linear terms which contain at most two
variables.

Definition 2.1 Let m > 2 be an integer. Call
a polynomial of the form ax + by + ¢, where
a,b,c € Z,,, a "linear combination”. A poly-
nomial f(x,y) which is the product of linear
combinations is called a PLC.

In the sequel, we will construct PLCs which
have certain properties. We want to use them
to construct projection reductions, so we have
to transform them into rows. Unfortunately,
for even moduli m, this is not always possible.
For example, the PLC 2z + 2y + 1 cannot be
turned into a row modulo 16, since the values
of all bit positions larger than 3 are equivalent
to 0 modulo 16, so we have the bit with value
2 only once at our disposal. Nevertheless, we
need it twice to represent 2z and 2y. (Using
negations of variables also won’t help.)

This motivates the following definition:

Definition 2.2 A linear combination axz -+
by + ¢ can be ’“represented modulo m”
if a,b, and c possess binary representations
modulom

N . N . N .
a = EaiZZ, b= EbiZ’, c= ZciZ'
=1 =1 =1

such that for all = the bits a;,b;,c; “do not
collide”, i.e., for all 1, at most one of the bits
a;,b;,c; is 1. The number of bits used in the

representation is N. A PLC "can be represen-
ted modulom” if all of its linear combinations
can be represented.

If the bits do not collide, then we can trans-
form a PLC az + by + c into a row by putting
an z into all positions where a; = 1, y into all
positions where b; = 1 etc.

The only moduli causing trouble are even, as
the following lemma shows. It also reveals
small representations of the linear combina-
tions.

Lemma 2.3 If m is odd, then any linear com-
bination can be represented modulo m, using
O(log m) bits.

Proof: Let axz + by + ¢ be the linear com-
bination we are considering. We only need
to show that a,b,c can be represented in
such a way that their bits "do not collide”.
Choose 7 := [logm]| + 1. Since m is odd,
the inverses of powers of 2 exist. We binary
encode the numbers a, b/(2%), and ¢/(2%)
with 7 bits each. We then plug the encod-
ing of these numbers into the bit positions
0,....,5—1, 7,...,27 —1, 25,...,35 — 1,
respectively. This yields a representation of
the claimed size. o

We now show how we can deal with the cases
where the modulus m is even, assuming that
we can handle the powers of 2:

Lemma 2.4 If the linear combination ax +
by + ¢ can be represented modulo 27, then
it can be represented modulo m := 27 - r for
all odd r with O(log m) bits.

Proof(Sketch:) Split a into @ = a’ + a' such
that @/ = a mod 27. We split b and ¢ sim-
ilarly. Using the method from lemma 2.3,
we represent a',b”,c” modulo r in such a
way that we can plug them into hit positions
which are larger than 7. We get a representa-
tion of a’, b, ¢’ modulo m, since we haven't
changed their value modulo 2. Then, we
plug a’,b’, and ¢’ into the first 7 bit posi-
tions which can be done since we assumed
that az + by + ¢ could be represented modulo
27. The number of bits used in the represent-
ationis 7 + O(log r) = O(log m). e

We want to use the PLCs to simulate the be-
haviour of the inner product function. If we
feed the variable pairs one by one into the
inner product function, then it changes its
output each time a pair has the value (1,1).
We want to achieve a similar behaviour with
PLCs, hence the following definition is motiv-
ated:

Definition 2.5 We call a PLC f a ”2-PLC mod-
ulo m” if it has the following property:

f(0,0) = f(0,1) = f(1,0) = 1 mod m,

and ord,,(f(1,1)) = 2

Analogously, a PLC f is called a "3-PLC” if
f(1,1) has order 3 instead of 2. (Note that
3-PLCs will be useful when dealing with the
Inner Product modulo 3 instead of the Inner
Product modulo 2.)

For example, f(z,y) := (83z + 3y + 1)? is a
2-PLC modulo 5 since f(0,0) =1, f(0,1) =
f(1,0) = 16 are equivalent to 1 modulo 5
and f(1,1) = 49 is equivalent to —1 modulo
5 which is an element of order 2.

We have reduced the problem of finding a pro-
jection reduction to the problem of finding 2-
PLCs modulo m which are representable. The
reason is the following: For every pair of vari-
ables (z;,y;), we take a 2-PLC f(z;,y;) mod-
ulo m and consider the linear terms as rows of
the multiple product. This can be done since
they were assumed to be representable.

The rows which correspond to a variable pair
(ziy,y;) 7 (1,1) only contribute a factor of 1
modulo m. Let t be the number of variable
pairs (z;,y;) = (1,1). The order of f(1,1) is
2, hence the output of M P(™) is:

(m) _ t _ f(1,1), iftisodd
MP™ = f(1,1)" = { 1, if ¢ is even

As a consequence, there is one bit in the out-
put of M P(™ which is 1 iff ¢ is odd. Hence,
this bit is identical to IP(z1,Y1,+++,Tn,Yn)-
We will construct the PLCs for every vari-
able pair (z,y) and every modulus m such
that they consist of 3 linear combinations
and such that they are representable with at

most ¢’ log m bits. This has the following con-
sequence: Given m rows consisting of n bhits
each, we can store the PLCs of n/3 variables
in those rows if ¢’ logm < m, hence for all
m < 2 the PLCs can be used to give a
polynomial projection reduction from IP, 4
to MPT(Lm). This then yields that MPT(lm)
needs exponential size in threshold circuits of
depth 2.

We can now concentrate our attention on find-
ing appropriate 2-PLCs.

3 Numbers containing a prime
factor larger than 3

In this section, we give 2-PLCs for every num-
ber m which contains a prime larger than 3 in
its prime factorization.

Lemma 3.1 Forevery numberm > 5 which is
neither divisible by 2 nor 3, the following PLC
f is a 2-PLC modulo m:

(—2:13—|—1—%)-(—2:13—|—3y—|—1)-(1—gy)

Proof: Since m is not divisible by 2 or 3, the
existence of 1 and 1 is guaranteed. We have
f(z,0) = (—2z +1)2 =1forz € {0,1}.
Furthermore, f(0,1) = (1 — 1) -4 -(3)
1 mod m, and f(1,1) = (-1 —1)-2-(2)
—1 mod m.

Since ord,,(—1) = 2, we have shown that f
is a 2-PLC modulo m. e

Lemma 3.1 leaves open the question what we
can show for numbers which are divisible by
2 or 3. The next lemma provides us with
a method to obhtain 2-PLCs for numbers m
which contain at least one other prime except
2 and 3 in their factorization.

Lemma 3.2 Let m;, ms > 2 be two numbers
which are relatively prime. Assume that f is
a2-PLC modulomy. Let f = fy--- fr be the
factorization of f into its linear combinations.
There are two numbers ry and ro which only
depend on m; and m- such that the following
PLC f' is a 2-PLC modulo mq - m..

fle=1f1fr, where fi:=(ri-fi+r2)

Proof: By the Chinese Remainder Theorem,
we can choose two numbers r; and r, such
that ry = 1 mod my, 7y = 0 mod m, and
ry = 0mod my;, 72 = 1 modmy. This
yields that fi(z,y) is equivalent to fi(z,y)
modulo m; and equivalent to 1 modulo m,.
Consequently,

) —) f(z,y) modm

A simple number-theoretic property states
that

0rd ,, .m, (@) = lem(ord,,, (a), ord,,,(a))

We apply this to @ := f'(z,y) to find that
since ord,,,(a) = 1, f'(z,y) has the same
order modulo m;ms as f(z,y) has modulo
my. Hence, f' is a 2-PLC modulo mym,. e

It should be noted that we do not need
to know a 2-PLC modulo ms in the above
lemma, hence it can also be applied if e.g.
mo = 3.

Note further that the lemma can also be ap-
plied if we are searching for 3-PLCs instead of
2-PLCs.

We are allowed to apply lemma 3.2 to con-
struct 2-PLCs in the case when one of mq, m»
is even. But, in order to get a projection re-
duction from these 2-PLCs, we also have to
ensure that the PLCs can be represented. We
now show that 2-PLCs constructed according
to lemma 3.2 have this property if we apply it
carefully.

Assume therefore that we apply lemma 3.2
with m; = 2% and a PLC f modulo m which
isrepresentable modulo m;. Alinear combin-
ation ax + by + ¢ within this PLC is turned by
the technique of lemma 3.2 into a linear com-
bination which is equivalent to az + by + ¢
modulo m;. Lemma 2.4 shows that all linear
combinations in the PLC f’ can be represen-
ted modulo mim,.

The other case is when we apply lemma 3.2
with m, = 2%. In that case, every linear com-
bination within f’ is equivalent to 1 modulo
mo Which is surely representable modulo m..
Applying lemma 2.4 again yields that f’ is rep-
resentable modulo mim,.

Altogether, we have proved the following the-
orem:

Theorem 3.3 For every m > 5 which con-
tains a prime factor larger than 3, one can con-
struct a 2-PLC modulo m which is also repres-
entable modulo m with only O(log m) many
bits.

As a consequence, there is a constant ¢ such
that if m < 2°™ has a prime factor larger than
3, then M P{™) needs exponential size when
computed in threshold circuits of depth 2.

Proof: We apply lemma 3.1 to the largest
number which divides m and which is not di-
visible by 2 or 3, and then use lemma 3.2 in
case m is divisible by 2 or 3.

The fact that the second statement in the the-
orem is a consequence of the first was already
discussed in section 2. e

The only moduli m which remain to be invest-
igated are of the form 2*37. The next two sec-
tions are devoted to numbers of this form.

Let us finish this section with an example:

Example 3.4 Assume that we are looking for
a 2-PLC modulo 300 = 22 .3 .5%. We apply
lemma 3.1 with m = 5% where we have that
1/3 = 17, 1/8 = 22. This yields a 2-PLC
modulo 25:

(—224+1—17y) (-2 + 3y + 1) (1 — 10y)
We then apply lemma 3.2 to m; = 25 and

my = 3. We choose ry = 51, ry = 25 and
get a 2-PLC modulo 75:

(48x — 42y + 1)(48z + 3y + 1)(15y + 1)

Applying lemma 3.2 again to m; = 75, ms =
4, (withry = 76, ro = 225) we get the PLC

(48z + 108y + 1)(48z + 228y + 1)(240y + 1)

which is the desired 2-PLC modulo 300. This
PLC is representable modulo 22 since it is
equivalent to 1 - 1 - 1 modulo 2%. Hence, it
is representable modulo 300.

4 Powers of 2

Computing M P{2") corresponds to splitting
off the bits 0,...,2 — 1 of M P,,. This means
that M P2*"") contains M P{2") as a subprob-
lem. Thus, from a statement like "M P(*)
cannot be computed in TCY", it would follow
immediately that MP") cannot be com-
puted in TCJ. Nevertheless, this would not
tell us anything about whether we could com-
pute bit z in TCY or not.

Hence, to make our statements as strong as
possible, we consider in this section the func-
tions k{2") which are 1 iff bit number ¢ — 1 in
MP, is 1. .

We start by showing that for ¢ > 4, k() can-
not be computed in TCJ by giving appropriate
2-PLCs. We then show that for i < 4, h(")
can in fact be computed in TC3.

Lemma 4.1 Let: > 4 and a := 2~2. Then
the following PLC f is a 2-PLC modulo 2°
which is also representable modulo 2*.

(ay+1)-(Bay+(a—2)x+1)-((3a—2)x+1)

f also has the property that
Ff(1,1) = (2°7* +1) mod 2°.

Proof: For ¢ > 4, it holds that a? = 2%—% =
0 mod 2¢. We conclude f(0,y) = (ay + 1) -
(3ay+1) = 3a%y®>+4ay+1 =1 mod 2% and
f(1,0)=(a—1)-(3a—1) = 3a%—4a+1=
1 mod 2¢. And, f(1,1) =(a+1):(4a — 1) -
(3a —1) = —(8a?2 4+ 2a—1) =1 — 2a =
20 +1—2"1 =21 11 =2a+1mod 2%
Since (2a +1)?2 = 4a®> 4+ 4a + 1 = 1 mod 2,
we have that f(1,1) is an element of order 2.
Hence, f is a 2-PLC modulo 2°.

Every linear combination within f is repres-
entable modulo 2¢: For the first and third
linear combination, this is obvious since
a and 3a — 2 are even numbers, for the
second linear combination it suffices to see
that 3¢ = 2a + a = 2! 4+ 2¢=2 and
a—2=2"34...421 o

Figure 1 in section 2 shows the projection re-
duction which corresponds to the 2-PLC mod-
ulo 16 constructed according to lemma 4.1.
Looking at the way we construct projection

reductions from PLCs, we find that because of
f(1,1) = (27! 4+ 1) mod 2¢, it is bit num-
ber « — 1 which in the projection reduction
is identical to the Inner Product modulo 2.
Hence, h(?") cannot be computed in T'CY for
1> 4.

The size of the representation of the PLC from
lemma 4.1 is « — 1, hence if 2 is allowed to
grow with n, we this time get: As long as
4 < ¢ < n, there is a projection reduction
from I P,/ to h{Z") which proves that all bits
up to position n — 1 are not computable in
TCJ. The following should be noted: There
is a reduction in [HMPST] which shows that
the multiplication of two numbers cannot be
computed in 7CJ. That reduction can be used
to show stronger results if z is growing in some
way with n. The strength of our reduction is
that it already works for very small z.

For 2 < 3, the situation is different. We are
able to show that for those , h{?>") can be com-
puted in TCY.

We first prove that h(», r{*) and h(® can
be computed in circuits of the following form
with polynomially many gates:

Figure 2

In words: On the output level is an OR-gate
which gets some AND-gates as inputs. The
AND-gates either only get literals as inputs or
literals plus exactly one parity-gate which also
only gets literals as inputs. (A literal is a vari-
able or the negation of a variable.)

The following proposition will be quite useful:

Proposition 4.2 If the number z is even, then
z mod 2% = 2(2 mod 2*71).

The proposition leads to the following nice
property: Assume that we want to compute
R (z1,...,2z,). If one of the input num-
bers, say z;, is even, then the value of R(2")

on this input is identical to the value of (2*™")
oninput z1,...,2i—1,2i/2,Zif1s:++52n

To realize our idea, we define the follow-
ing test functions #;,...,%,4+1 wWhich check
whether some input numbers z; are even.

b z10 N AN zic10 ANZig if 2 < m,
L 21,0/\'°°/\Zn’0 lfzzn—}—l

Especially, (for1 < < m), t; =1 & z;is
the first even number. ¢,4; is 1 if all z; are
odd. It should be noted that by definition,
exactly one function ¢t; computes the value 1,
the others compute the value 0.

R(? is 1 iff all input numbers are odd, hence it
is identical to t,4+; and can be computed in a
circuit of the above form (using some dummy
gates).

We now try to compute h(*) using h(?). Since
h® only depends on the 2 least significant
bits of the z;, we can assume that all input
numbers are smaller than 4.

Define the following functions for 1 < < n:

— 2 . r .
G; := h!)(zl,...,z,_l,zi,zH_l,...,zn)

where z; is obtained from z; by shifting the
bits one position to the right and ignoring the
least significant bit.

If z; is even, then by the above remarks, G; is
identical to A*¥(z1,...,25).

Suppose that every z; is odd. Consequently,
all input numbers are either 1 or 3. The
product of these numbers is either 1 or 3 mod-
ulo 4. Since 32 = 1 mod 4, we find that A%
is 1 if there is an odd number of 3's in the
input. This can easily be tested by G, 41 :=
211D - B zn,1.

Putting things together, we get the following
formula:

R = (83 AG)V(t2AG)V. . V(tnt1AGry1)

For each G; (1 <1 < n), we have already de-
signed circuits of the form described in figure
2. The expression (¢; A G;) can be realized by
putting the literals which occur in ¢; into the
AND-gates of the circuit for G;. The OR-gate
can he melted together with the OR-gate of
the G;’s. Gpy1 A tpy1 contributes the AND-
gate which gets the parity as input.

We proceed in a similar fashion with A(®.
Again, we can assume that the input numbers
are all smaller than 8. We will use the fol-
lowing lemma in which a; := #{j|z; = <}
counts how many inputs have the value 2.

Lemma 4.3 If 2y -+-2, mod 8 € {1,3,5,7},
then z; -+ - 2z, mod 8 is in {5, 7} if and only if
as + a7 is odd.

The proof is immediate from the graphical
representation of the multiplication table
modulo 8 in figure 3.

Figure 3
To construct a circuit for h(®), we proceed as
follows.
If one of the input numbers is divisible by 2,
we can compute, as we did for h(® | the func-
tion t; A G, where G, is obtained from G; by
replacing h(? by A%,

We now have to consider the case where all in-
put numbers are odd. This is the case if all in-
put numbers are from {1,3,5,7}. Lemma 4.3
tells us that we only have to count how many
input numbers are 5 or 7. As all numbers are
odd, we can identify the 5’s and 7’s by bit
number 2, namely: z; € {5,7} & z;2 = 1.
Consequently, as + a7 is odd if and only if

Gpny1:=212D D zn2 = 1.

We get a term £,41 A Gp4+1. Analogously to
h(® we can now compute h(®) in a circuit of
the form described in figure 2.

We now sketch how this circuit can be trans-
formed into a T'CY -circuit. Consider an AND-
gate which has a parity function and literals
as input. Using a known trick called "wire-
encoding”, it can be computed by a "symmet-
ric” gate. Let us sketch this shortly: Let the
literals entering the parity gate be vy,...,v;
and the other literals be wy,...,wr. Then
the output of the AND-gate only depends on
the value of (T + 1)vy + -+ + (T + 1)vy +
wy + +++ + wr. Such "symmetric” functions

are easy to realize in depth-2 threshold cir-
cuits; furthermore, they are 1-approximable.
This means that the output OR-gate can be
seen as a gate which gets 1-approximable
functions as input and hence the whole circuit
can be computed in polynomial-size, depth-2
threshold circuits.

(As a remark, it should be noted that due to
the choice of our test functions, the above cir-
cuit also shows that A(?), R4 and A(® are
1-approximahle. Namely, at most one input
of the OR-gate is 1. Therefore, the output
can be regarded as exactly representable by
1-approximable functions. It can he shown
(see e.g. [H]) that as a consequence, the
function computed by the whole circuit is also
1-approximable.)

5 Powers of 3

We start by showing that the situation for
computing the multiple product modulo 3 is
different. Namely, we show that there is no
projection reduction from the Inner Product
modulo 2 to M P{3). More precisely, we will
show that there is no n such that there is a
projection reduction from IPs to MP{®. In
other words: The reduction technique which
is behind theorem 3.3 has to fail when applied
to MP®).

Theorem 5.1 For all n, there is no projection
reduction from I Ps to MPT(L3).

Proof: In order to get a contradiction, let us
assume that we can find a projection reduc-
tion. Again, we visualize the factors as rows
where in the bit positions we have variables or
constants. (Negations of variables can easily
be simulated since —1 = 2 mod 3.)

Let V := {x1,y1,...,25,y5} be the set of
binary variables. We recall that a row corres-
ponds to an expression of the form

aixy + biyi + -+ aszs + bsys + ¢,

where all a;,b; and c are taken from the set
{0,1,2}.

We consider first in which situations we can
force the value of a row to 0 (modulo 3) by

some variable assignment. Let the row be
given hy the above expression. If ¢ = 0, we
can set all variables to 0 and force the value
of the row to 0. If ¢ = 1, and there is one
variable v where the coefficient of » is 2, then
we set » := 1, and all other variables to 0. If
¢ = 1, and there are at least two variables v,
and v, which have the coefficient 1, then we
set v; := vy := 1, and all other variables to
0. The case ¢ = 2 can be treated analogously.
We obtain that the only rows which cannot be
forced to 0 are of the form 1,2,(v + 1), or
2(v + 1) for some variable ».

We now return to the projection reduction.
Assume that no row in this projection re-
duction can he forced to 0 by some variable
assignment. By the above arguments, we
know that the projection reduction then cor-
responds to a PLC f in which every linear
combination is of the form 1,2,(v + 1) or
2(v + 1) for some variable ».

f has to depend essentially on all variables
since I Ps depends essentially on all variables.
Hence, for every v, there has to be a term
(v+1)or2(vw+1)in f.

Since z? = 1 mod 3 for all z, we know that
=2z + (w1 + 1)+ (zn + (yn +
1) for some z € {0,1}. Then we have
f(0,0,0,...,0) = f(1,1,0,...,0) mod 3,
but the Inner Product modulo 2 yields 0 on
the first, and 1 on the second input. Thus, f
cannot correspond to a projection reduction
which yields a contradiction. This contradic-
tion was caused by the assumption that there
is no row in the projection reduction which
can he forced to 0.

We now investigate a row which can be forced
to 0 and the corresponding variable assign-
ment more closely. Let the value of IP5 on
this assignment be s. The value of the mul-
tiple product modulo 3 on this assignment is
of course 0.

For every pair (z;, y;) it holds that changing it
either to (0, 0) orto (1, 1) will change the out-
put of I P5. Hence, the value of the row under
consideration also needs to change since oth-
erwise the multiple product would remain 0.

For all pairs (z;, y;) we mark by which amount
the value of the row will change. Let us call

this value d;. We have just seen that d; €
{1,2}.

We have 5 variable pairs, hence, by the pi-
geonhole principle, there are at least three d;
which are equal, let us assume w.l.o.g. that
dl = dz = d3.

By changing the assignments of these pairs,
the output of I P5 will change 3 times, hence
it is then equal to s @ 1. On the other hand,
the value of the row will be changed by an
amount of 3d; = 0 mod 3, hence the mul-
tiple product is still zero. This is a contradic-
tion. e

We remark that by a finer analysis, one could
improve upon the constant 5 in theorem 5.1.
Three things should be noted: First, the proof
of Theorem 5.1 shows more than that there
are no 2-PLCs modulo 3 since in general there
might be projection reductions which work in
a different manner. This is why we have to
deal with zero rows in the above proof.

Second, it can easily be seen that the decision
whether the multiple product is divisible by 3
can be computed in T7CY. Nevertheless, this
does not tell us anything about how the bits
in the representation can be computed.
Third, it is easy to see that 2-PLCs modulo
3% are also 2-PLCs modulo 3, hence there are
none. This indicates that we have to treat
powers of 3 differently.

One way out is to consider the "inner product
modulo 3", IP*, defined by IP* = =z,y; +
<o+ x,y, mod 3.

In order to turn I P* into a Boolean function
FUIP3) we have to find some appropriate en-
coding. We choose fUUP3) =1 & [P* = 0.
It has been shown in [KW] that if we have
a threshold circuit of depth 2 which gets bin-
ary coded values from {0,1,2} as input and
which has to compute some binary encoding
of the inner product modulo 3 (over Z3), then
this circuit needs exponential size. This result
can be used to show that the Boolean function
FUIP3) cannot be computed in TCY ([K2]).
This suggests that one should try to find 3-
PLCs modulo 3*. We omit the details why
the existence of a 3-PLC modulo 3* guaran-
tees that there is a projection reduction from

FUIP3) to MPG3Y) and report instead the 3-
PLCs that we have found.

We need the following number theoretic
lemma, (see e.g. [S], p.61)

Proposition 5.2 If p is an odd prime, then the
set of primitive roots modulo p* (fori > 2)
consists of all elements * which are primit-
ive roots modulo p and which fulfill zP~! #
1 mod p?.

One easy to check consequence of this propos-
ition is that 2 is a primitive root modulo 3* for
allz > 2.

Lemma 5.3 Let: > 2 and define parameters
a,b,w by
w+1 2

w=22'3i_2, b= -1, a = -1
2 w+1

Then the following PLC f is a 3-PLC modulo
3¢

f=(—2z4+1)(—2z+ay+1)(by+1)

Proof: We first have to ensure that the in-
verses modulo 3* used in the definition of the
parameters do exist. For 1/2, this is clear. w
is a power of 4, hence w = 1 mod 3, and
w4+ 1 = 2mod3 has an inverse. Now
we evaluate f: f(z,0) = (—2z + 1)? =
1, £(0,1) =(a+1)(b+1) =1 mod 3¢ and
f(1,1) = (1 —a)(b+ 1) = w mod 3*. The
order of f(1,1) is 3, by the following argu-
ment: 2 is a primitive root modulo 3%, hence
it has order 2 - 3i—1. Thus, w has order 3. o

Example 5.4 Applyinglemma5.3to: = 2, we
getw = 4,b = 6,a = 3 to find that

(—2z + 1)(—2z + 3y + 1)(6y + 1)
is a 3-PLC modulo 9.

This shows that there is some bit in the binary
representation of M P(3%), 4 > 2 fixed, which
cannot be computed in T'CY.

We have noted earlier that the technique from
lemma 3.2 can also be used to obtain 3-PLCs
for numbers m which are of the form 3.7, ¢ >
2.

This yields that the only moduli that we were
not able to classify are of the form 3 - 2¢, with
© < 3 since to all other numbers of the form
237 one of the PLC construction methods can
be applied.

6 Final remarks

We were able to classify for all fixed numbers
m & {3,6,12,24}, whether computing the
multiple product modulo m can be computed
in polynomial-size threshold circuits of depth
2.

For m = 24, we have the strange situation
that we are able to provide 2-PLCs modulo
24, nevertheless, we have not found a 2-PLC
which is also representable. One example of
such a PLCis (—2z + 12y + 1)(—2z + 18y +
1)(6y + 1).

7 Acknowledgments

Our thanks go to Petr Savicky for suggesting to
us an improvement in theorem 5.1, to Hanno
Lefmann for pointing us to Proposition 5.2,
and to Matthias Krause for stimulating dis-
cussions, in particular for suggesting the in-
vestigation of 3-PLCs instead of 2-PLCs for
computing modulo 9.

References

[HMPST] A. Hajnal, W. Maass, P. Pudlak,
M. Szegedy, G. Turan, Threshold
circuits of bounded depth, Pro-
ceedings of 28th FOCS, 1987, 99-
110.

[GHR] M. Goldmann, J. Hastad, A.
Razborov, Majority gates vs. gen-
eral weighted threshold gates,
Proceedings of 7th Annual Struc-
ture in Complexity Theory Confer-

ence (1992), pp. 2-13.

[GK] M. Goldmann, M. Karpinski, Sim-
ulating threshold circuits by ma-
jority circuits, Proc. 25th STOC,

1993, p. 551-560.

10

[H]

[K1]

[K2]
[KW]

[R]

[S]

[SBKH]

[SR]

(W]

T. Hofmeister, Depth-efficient
threshold circuits for arithmetic
functions, Chapter 2 in: The-
oretical Advances in Neural
Computation and Learning, V.
Roychowdhury, K-Y. Siu, and A.
Orlitsky (eds.), Kluwer Academic
Publishers, ISBN 0-7923-9478-X

M. Krause, On realizing iter-
ated multiplication by small depth
threshold circuits, to appear in:
Proceedings of 12th STACS (1995).

M. Krause, pers. comm.

M. Krause, S. Waack, Variation
ranks of communication matrices
and lower bounds for depth two
circuits having symmetric gates
with unbounded fan-in, Proc. of
32nd FOCS, 1991, 777-782.

A. Razborov, On small depth
threshold circuits, In Proc. 3rd
Scandinavian Workshop on Al-
gorithm Theory, 42-52, LNCS 621,
1992.

A. Scholz,B. Schoeneberg, Einfiih-
rung in die Zahlentheorie,
Sammlung Goschen, Band 5131,
Walter de Gruyter, 1973

K.-Y. Siu, J. Bruck, T. Kailath,
T. Hofmeister, Depth efficient
neural networks for division and
related problems, 1EEE Transac-
tions on Information Theory, May
1993, p. 946-956.

K.-Y. Siu, V. Roychowdhury, On
optimal depth threshold circuits
for multiplication and related
problems, SIAM Journal on Dis-
crete Mathematics 7 (1994), p.
285-292.

I. Wegener, Optimal lower bounds
on the depth of polynomial-size
threshold circuits for some arith-
metic functions, Information Pro-
cessing Letters 46 (1993), p. 85-87.

