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Rankable Distributions Do Not Provide Harder Instances Than
Uniform Distributions
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Abstract. We show that polynomially rankable
distributions do not provide harder instances
than uniform distributions for NP problems. In
particular, we show that if Levin’s randomized
tiling problem is solvable in polynomial time on
average, then every NP problem under any p-
rankable distribution is solvable in average poly-
nomial time with respect to rankability. We then
present a reasonably tight hierarchy result for
average-case complexity classes under uniform
distributions.

1 Introduction

When finding a solution to an NP-complete
problem one would be satisfied if one could
find an algorithm to solve the problem in ex-
pected polynomial time with respect to the un-
derlying distribution on instances. Instance
distributions are an important factor affecting
average-case behaviors of computational prob-
lems. There is strong evidence to believe, as
hypothesized by Levin (see [Joh84]), that any
natural probability distribution used in practice
either has a polynomial-time computable distri-
bution function or else is dominated by a prob-
ability distribution that does. ! Such distribu-
tions are referred to as p-time computable dis-
tributions. Several NP-complete problems have
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been proved to be solvable in average polyno-
mial time with respect to their underlying nat-
ural distributions [Joh84, Wil84, GS87]. On the
other hand, there are NP-complete problems un-
der p-time computable distributions which can-
not have polynomial time on average algorithms
unless every NP-complete problem under any p-
time computable distribution has one [Lev86,
Gur91, VL88, BG94, VR92, WB, Wan95]. The
theory of average-case completeness, initiated by
Levin [Lev86], studies how likely hard instances
may be in a problem.

Polynomial-time computable distributions are
simple and natural. But they may seem some-
what restrictive or not precise enough in some
situations as noted in [BCGL92, RS93]. Other
types of instance distributions have thus been
proposed recently in the theory of average-case
completeness from different aspects. Among
them are polynomial-time samplable distribu-
tions [BCGLY2] and polynomially-rankable dis-
tributions [RS93]. Polynomial-time samplable
distributions are a natural generalization of p-
time computable distributions. A distribution
u(z) is p-samplable if there is a polynomial-
time bounded probabilistic Turing machine that
starts with no input and outputs z with proba-
bility u(x). All p-computable distributions are
p-samplable. But the inverse is not true if there
exists a p-time computable function which is
hard to invert on most instances [BCGL92]. P-
samplable distributions define a new type of
average-case NP-complete problems. But these



problems are no harder than average-case NP-
complete problems with p-time computable dis-
tributions. In particular, Impagliazzo and Levin
[IL90] proved that every NP search problem
complete for p-time computable distributions is
also complete for all p-samplable distributions.
So p-samplable distributions do not generate
harder instances than p-time computable distri-
butions. Similar investigation for randomized
NP decision problems is currently undertaken
by Blass and Gurevich [BG].

We investigate rankable distributions in this
paper. Rankable distributions were introduced
in [RS93] due to the consideration that all dis-
tributions with the same rankability should be
treated in the same way. In other words, only
the ranking of the inputs by decreasing weights
matters. Two distributions y and v are said to
have the same rank if for all z and y, pu(z) < p(y)
iff v(z) < v(y). The notion of average poly-
nomial time is now with respect to all distri-
butions with the same ranking. In so doing, a
new type of average-case complexity class is de-
fined and a tight hierarchy result is obtained for
these classes. A new type of average-case NP-
complete problems with respect to polynomial-
time rankable (p-rankable, in short) distribu-
tion is also constructed. A distribution y is p-
rankable if its ranking function Az.|{y : u(y) >
p(x)}| is one-to-one, and polynomial-time com-
putable.

There are two major concerns regarding its
“naturalness” for any new type of distributions.
First, one would like to know whether there are
NP-complete problems that can be solved in av-
erage polynomial time under distributions in the
new type which occur naturally. Second, one
would like to know whether the new type of dis-
tributions can provide harder instances of a com-
putationally difficult problem than p-time com-
putable distributions on the average case.

P-rankable distributions are not directly com-
parable to p-time computable distributions or
p-samplable distributions. Regarding the first
concern, it is not known whether there are nat-
ural NP-complete problems which are solvable
in average polynomial time with respect to the

rank of a practical distribution.

The second concern regarding rankable dis-
tributions is whether rankable distributions can
provide harder instances than p-time com-
putable distributions. If this were true, then
rankable distributions would be useful in study-
ing the average-case hardness of computational
problems. However, we show that it is not the
case. In particular, we show that if Levin’s ran-
domized tiling problem is solvable in polynomial
time on average, then every NP problem under
any p-rankable distribution is solvable in aver-
age polynomial time with respect to rankability.
This result holds for both decision and search
problems in NP. So p-rankable distributions do
not provide harder instances than p-time com-
putable distributions. Randomizing reductions
are employed to prove these results.

Finally, we present a reasonably tight hi-
erarchy result for standard average-case com-
plexity classes under p-time computable dis-
tributions. In particular, we show that
if ¢, and t, are time-constructible and
ti(nlog®n)logti(nlogn) = o(ty(n)) for some
€ > 0, then AvDTime(t,;(n), P-comp) is properly
included in AvDTime(¢,(n),P-comp), where
AvDTime(t(n), P-comp) is the class of random-
ized decision problems decidable in time ¢ on
average with respect to p-time computable dis-
tributions.

So the notion of p-time computable distribu-
tions is robust in that it provides the hardest
instances of computationally difficult problems
on the average case compared to p-samplable
and p-rankable distributions, and it provides
reasonably tight hierarchy results for average-
case complexity classes. Moreover, the notion of
p-time computable distributions is simple and
all the commonly used distributions are p-time
computable.

This paper is organized as follows. Some basic
definitions and results are reviewed in Section 2.
Randomizing reductions with respect to ranka-
bility are defined in Section 3. The main theo-
rems are proved in Section 4. Search problems
are discussed in Section 5, and the hierarchy re-
sults are shown in Section 6. Finally, some open



questions are listed in Section 7.

2 Rankable Distributions

We use ¥ = {0,1} as the alphabet for languages
and use |z| to denote the length of z. Let A
be a set and p4 be a probability distribution
on random instances. An instance x can be
positive, meaning z € A, or negative, mean-
ing z ¢ A. A randomized (or distributional)
decision problem is a pair (A,u4). If A € NP,
then (A, ) is called a randomized NP decision
problem. In the average-case complexity, one
may allow an algorithm to run longer time on
less frequent inputs with respect to a given dis-
tribution p. So |z|r(z) rather than |z| is used
as the size of instance z, where r(z) is a mea-
sure of rareness satisfying a randomness test,
i.e., its expectation ), r(z)u(z) = O(1). A run-
ning time (function) f(z) is polynomial on av-
erage with respect to p (in short, polynomial on
p-average) if f(z) = (|z|r(z))* for some fixed
k>0,ie, >, wu(w) = O(1). A function f

|z]

is T-average on p if

T
where T~ (n) = min{m : T(m) > n}. This defi-
nition is due to Levin [Lev86], which overcomes
inappropriate consequences of other more obvi-
ous definitions of the concept of polynomial time
on average (see [Gur91] for more details).
Probability distributions on instances are
important toward learning about average-case
completeness. Let p be a probability distri-
bution (distribution, in short). The (cumula-
tive) distribution function of y is defined by
p*(z) = ¥, <, n(y), where < is the standard
lexicographical order on ¥*. p* is p-time com-
putable if there exists a deterministic algorithm
A such that for every string z and every pos-
itive integer k, A outputs a finite binary frac-
tion y with |u*(z) — y| < 27*, and the running
time of A is polynomially bounded on |z| and
k. A distribution y is dominated by a distribu-
tion v if u(z) < f(z)v(z) and f(z) < p(|z|) for

some fixed polynomial p. A more liberal no-
tion of domination is for f to be polynomial
on p-average. Denote by P-comp the class of
all probability distributions which have p-time
computable distribution function or else is dom-
inated by a probability distribution that does.
These probability distributions are called p-time
computable distributions for simplicity. Most
of the average-case complexity papers are built
on p-time computable distributions. Denote by
DNP the class of all randomized decision prob-
lems (A, p4), where A € NP and p4 € P-comp.
A DNP problem is average-case NP-complete if
any other DNP problem is reducible to it. So
if an average-case NP-complete problem is solv-
able in average polynomial time, then so is every
NP problem under any p-time computable dis-
tributions.

In their effort in studying hierarchies of
average-case complexity classes, Reischuk and
Schindelhauer [RS93] introduced a new type of
distributions that provides precise measurement
for average-case complexity classes in the sense
that all distributions with the same rankability
are treated in the same way. In other words,
they believed that only the ranking of the in-
puts by decreasing weights matters. Recall that
two distributions p and v are said to have the
same rankability if for all z and y, p(z) < u(y)
iff v(z) <v(y).

Define rank,(z) to be [{z € ¥* : u(z) >
pu(z)}. A function f is T-average with respect
to ranking function rank, if for all real-valued
monotone function m with >, m(u(z)) <1,

T

This condition depends only on rank, and not
on y itself. That is, it depends on all probability
distributions that have the same ranking func-
tion as u. f is polynomial on p-average with
respect to rankability if there is a polynomial p
such that f is p-average with respect to rank,.
A randomized NP problem (A, pu4) is solvable in
average polynomial time with respect to ranka-
bility if there exists a deterministic Turing ma-
chine that computes A in time polynomial on



ua-average with respect to rankability.

Polynomially rankable distributions are used
to define average-case NP-completeness with re-
spect to rankability [RS93]. Let p-rankable de-
note the set of all probability distributions pu
such that rank, is one-to-one, and p-time com-
putable. The injectivity of ranking functions
provides a unique rank for distributions. By a
slight perturbation of the probability distribu-
tions, this can always be achieved.

Studying average polynomial time with re-
spect to rankability directly from definition is
difficult due to the fact that arbitrary real-
valued function m is involved. This obstacle is
overcome by the following lemma due to [RS93].

Lemma 1 ([RS93]) A function f is T-average
with respect to ranking function rank, if and
only if

(@) _,

Vi : Z 2] <l.

rank, (z)<t

3 Randomizing Reductions

Let p be a p-rankable distribution. Let r(z) =
Hy : p(y) < p(z)}|- Then r transforms the
distribution of inputs into a monotone distri-
bution on the outputs. Under monotone dis-
tributions no sets have probability greater (by
a super-polynomial factor) than under uniform
distribution. However, while r may be p-time
computable, r may not transform an NP prob-
lem into an NP problem if r is not p-honest.
Also, while any fixed monotone distribution is
bounded by the uniform distribution with a
super-polynomial factor, the same factor may
not work with every monotone distribution, and
we have to take care of all of them at the same
time.

To prove that p-rankable distributions do not
provide harder instances than uniform distribu-
tions, we need to construct a hardest problem
in (NP, p-rankable) with respect to rankabil-
ity such that its ranking function is p-honest.

2 Here (NP, p-rankable) is the class of all ran-
domized NP decision problems with p-rankable
distributions. A function f is p-honest if there is
a polynomial p such that for all z, p(| f(z)|) > |z|
when f(z) is defined. The idea is to associate
coin flips into deterministic reductions.

Deterministic reductions are defined in [RS93]
for randomized decision problems with respect
to rankable distributions with a restriction that
the reductions are required to be injective. It
does not pose a real restriction for natural NP-
complete problems as they are all complete un-
der injective reductions, so we will follow this
restriction in defining reductions with respect to
rankability. Notice that a ranking function has
small values for likely instances and have large
values for rare instances. This is used in defining
the notion of domination with respect to rank-
ability. The following definition of reduction is
due to [RS93], which is transitive.

(A, 1) is p-time reducible to (B, uy) with re-
spect to rankability if A <P B via a one-to-one
reduction f and satisfies the domination prop-
erty: m2(f(z)) < p(|z|)ri(x) for some fixed poly-
nomial p, where r;(z) = rank,, (z) for i = 1,2.

A randomized NP decision problem is rank-
ably complete if its distribution is p-rankable
and any other randomized NP decision problem
with p-rankable distribution is p-time reducible
to it. Rankably complete randomized NP de-
cision problems were constructed in [RS93]. It
is easy to see that if a rankably complete ran-
domized NP decision problem is solvable in aver-
age polynomial time with respect to rankability,
then so is every NP decision problem under any
p-rankable distribution.

Notice that in the average case measure with
respect to rankability, (X, 4) and (X, rank,) de-
note the same randomized problems, where X
is either a language or a binary predicate (for
search problems discussed in Section 5).

Randomizing reductions for randomized NP
problems with p-time computable distributions
were first defined in [VL88] and were further
studied in [BG93, BG94], which have been ap-

*Note that the ranking functions of the rankably com-
plete problems constructed in [RS93] are not p-honest.



plied successfully to obtain a number of average-
case NP complete problems under flat distribu-
tions. * We will follow the same idea to define
randomizing reductions for problems in (NP, p-
rankable) with respect to rankability by allowing
coin flips in algorithms, called randomizing al-
gorithms.

We assume that a randomizing algorithm does
not flip a coin unless the computation requires
another random bit. For simplicity, coins are
assumed to be unbiased. So a randomizing al-
gorithm on A with probability distribution w4
can be viewed as a deterministic algorithm on
inputs z and a sequence of coin flips s, which
form a dilation A with probability distribution
ua such that the following conditions are satis-
fied [Gur91].

1. A is a subset of £* x ¥* with the follow-
ing property. For every = with pa(z) # 0:
A(z) # 0, and no string in A(z) is a
prefix of a different string in A(z), where

A(z) ={s: (z,s) € A}

2. For all (z,s) € A, the length of (z,s) is
defined as the length of z.

3. For all z and s, pa(z,s) is defined as
pa(z)2-5lra(z) if s € A(z) and 0 other-
wise, where ra (2) = 1/Sica(x)27 " is called
the rarity function of A.

Yet for rankability an extra condition is re-
quired to make sure that the ranking of a di-
lation will solely depend on the ranking of the
distribution. Otherwise, different distributions
with the same rank may result in dilations with
different ranks. This condition is formulated as
below. This condition is not needed if one can
live with dilations with different ranks generated
by different distributions with the same rank.

4. Let 14 = ranky. If r4(z') < ry(z) and
(z,s),(z',s') € A, then |s'| < |s].

3A distribution p is flat if there exists an € > 0 such
that for all 2, u(z) < 27/*I°. Randomized NP prob-
lems with flat distributions cannot be complete under de-
terministic many-one reductions unless nondeterministic
exponential time collapses to deterministic exponential
time. See [Gur91] for more details.

(A, ua) is called a dilation of (A, us). We
will only need the simplest randomizing algo-
rithms and dilations in this paper, namely, the
rarity function of the underlying dilation is al-
ways equal to 1. Such a dilation is called an
“almost total” dilation.

A randomized decision problem (A,pu,4) is
considered solvable efficiently with respect to
rankability if there is a randomizing algorithm
that decides A in average polynomial time with
respect to ranking function rank,,, .

Definition 1 A randomized decision problem
(A, pa) is solvable in average polynomial time
with respect to rankability if there is an almost
total dilation (A, ua) of (A4, p4) and a determin-
istic Turing machine on A which decides A in
average polynomial time with respect to rank-
ing function rank,, , .

Notice that a deterministic algorithm can be
thought of as a special case of randomizing al-
gorithm with the dilation containing only the
empty string as a coin toss for any input z. A
similar notion can be defined for solvability in
T-time on average with respect to rankability.
More liberal notions of solvability on average
with respect to rankability (namely, the rarity
function may not always equal to 1) can be sim-
ilarly defined following [BG93, BG94] and all our
results presented in this section are still true.

Definition 2 (A, yi4) is p-time randomizing re-
ducible to (B,up) with respect to rankability
if there is an almost total dilation (A, pa) of
(A,u4) and a p-time computable, one-to-one
function f such that

1. For each (z,s) € A: z € Aiff f(z,s) € B.

2. rank,, (f(z,s)) < p(ja]) - rank,, (z,s) for
some fixed polynomial p.

It can be shown that if (A4, p4) is p-time ran-
domizing reducible to (B,up) and (B,ug) is
solvable in average polynomial time with respect
to rankability, then so is (A4, p4). We can sim-
ilarly define a completeness notion for random-
ized NP decision problems under randomizing
reductions with respect to rankability.



We consider a bounded version of a random-
ized halting problem with respect to p-rankable
distribution, where the ranking function is p-
honest.

Let N = {0,1,2,...} be the set of all natu-
ral numbers. Let (-,-) be a standard pairing
function from ¥* x ¥* to ¥* in lexicographi-
cal order which is both p-time computable and
invertible. We can recursively define (-,-,-).
Let f be a function and we write f(-,-) for
f((-,)). Let B be a standard function that
maps all binary strings to all binary num-
bers in N in lexicographical order, and S is
both linear-time computable and invertible. Let
My, My, M, ... be a fixed enumeration of all (de-
terministic/nondeterministic) Turing machines.

When a ranking function r is defined for a
particular problem, we assume that r(z) = oo
for £ not being an instance of the problem. Let

K = {(i,z,1") : M, accepts z within n steps},

p(z7 x’ ]'n) = Ig(z7$7n)'
Let

K' = {(i,z,w) : M; accepts x within |w| steps},

pl(i7$’w) = 13(17 x’ w)'

It is easy to see that K’ is NP-complete and
p' is p-time computable, p-honest, and p-time
invertible. It was shown in [RS93] that (K, p) is
rankably complete for (NP, p-rankable). But p is
not p-honest. We will show that (K, p) is p-time
randomizing reducible to (K', p') with respect to
rankability. *

Theorem 2 (K',p') is rankably complete for
(NP, p-rankable) under p-time randomizing re-
ductions.

Proof. Let y be a p-rankable distribution with
ranking function p such that p(y) = 0 if y is
not in the form (i,z,1"), and u(i',z',1") >

Tt can also be shown that (K’,px:) is average-
case NP-complete in Levin’s sense under randomizing

reductions, where px(i,z,w) is flat, and is defined as

p=(liltle+iw)) o .
- =—————=— for an appropriate constant c.
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u(i,z,1m) if ¢/ < 4, ' < z, and n' < n while
maintaining injectivity.

Clearly, K is nondeterministic linear time
computable. Let M be a nondeterministic Tur-
ing machine that accepts K in linear time. Let
M' be a nondeterministic Turing machine such
that M' accepts input z iff there is an y =
(1,z,1™) such that p(y) = [(z) and M accepts y.
It is easy to see that there is a linear polynomial
p such that M’ accepts z iff there is a compu-
tation of M’ that accepts z in p(|y|) steps. So
y € K iff M' accepts 87'(r(y)) in time p(|y|).
Let j be an index such that M; = M'.

Define a dilation (T', ur) of (K, u) by

I'={(y,s) : u(y) > 0 and |s| = p(|y|)}-

Clearly, T' is polynomial-time computable and
Yierp 27t = 1 for all y with u(y) # 0. In
particular, condition 4 is satisfied by noticing
that p(y') < p(y) iff y' <y, and y' < y implies
that [y'| < |y|, and so p(|y'[) < p([yl).-

Define a reduction f : T' — K' as follows. For
all y and s with p(y) > 0:

fly,s) = (5,87 (p(y), ).

It is easy to see that f is one-to-one and
polynomial-time computable since both 8~! and
p are one-to-one and polynomial-time com-
putable. Clearly, for all (y,s) € I': y € K iff
fly,s) € K'.

Now we check the domination property. Let
rr denote the ranking function of up, where
pr(y,s) = p(y)2~l for (y,s) € T, and 0 other-
wise. For (y,s) € ', write y = (i, z,1"). Notice
that p is a linear polynomial, we have

’l"r(y, 3)
= {'s) €T : p(y)27 > u(y)2~"1}|

> H(y',s') i = li] — 1,|z'| = |fE\ -1,
n' =n, and |s'| = p(|(7', 2', 1™ )|)}|
(where ' = (i, z',1""))

> Qi+l

> O(B(i, z,n)2" /|(i, z,1™)|)

= O(p(y)2"/y)).



We know that p'(f(y,s)) = B(f(y,s))- By
construction, B(f(y,s)) = B, 8 *(p(y)),s)
= 0B (p)2")) = O(py?2") <

O(ly|rr(y,s)). This completes the proof. il

4 Rankable Instances Are Not
Harder

We prove in this section that rankable distribu-

tions do not provide harder instances than uni-

form distributions for NP decision problems.
The standard uniform probability distribu-

tion u is given by u(z) = |m|2(|_z||11) or pu(z) =

_6 _9o—|z]

||

, although this is often replaced by
ulz) = ﬁZ"“ for some k > 1 and appropri-

ate ¢, or even u(x) = 2-12l for some

e > 0, where log®n denotes (logn)e.
tional convenience, we simply use ﬁ;—‘lzl as the de-
fault uniform probability distribution of binary
strings.

We first show that there is p-rankable distri-
bution g and an NP-complete set S such that
(S, i) is average-case NP-complete with respect
to rankability, where the ranking function r of y
satisfies |r(z)|® < |z| and r is p-honest.

For nota-

Lemma 3 There is an NP-complete set S and
a p-rankable distribution p such that (K',p') is
p-time reducible to (S, p) with respect to ranka-
bility, where the ranking function r of u satisfies
Ir(z)]® < |z|, and r is p-honest. Moreover, r is
one-to-one.

Proof. We use an easy fact that K' and SAT
are p-isomorphic [BH77], meaning that there is
a p-time computable and invertible bijection f
such that K' is reducible to SAT via f. Pad
the boolean formula generated by f (i, z, w) such
that the length of it is greater than the cubic
root of the length of p' (i, z, w). Let g denote this
new reduction, which is one-to-one, p-time com-
putable, and p-time invertible. Let S = g(K')
and define r as follows: For all instances F' of
S (positive or negative), let r(F) = p'(i,z,w),
where g '(F) = (i,z,w). This completes the
proof. B

Lemma 4 Let (S,u) and r be from Lemma 3.
Let L = r(S) and v(y) be the uniform distribu-
tion 2-19'/|y|%. If (L,v) can be solved in T time
on v-average, then (S, ) from Lemma 3 can be
solved in average O(T + p) time with respect to
rankability for some polynomial p.

Proof. Assume that (L, ) can be solved in time
T on v-average. This means that L can be solved
by a deterministic algorithm with running time
t and the following is satisfied:

Let

So S can be solved by a deterministic al-
gorithm with running time (¢ o 7) + p, where
p is a polynomial time bound for computing
r. We will show that ¢ o r is T-average with
respect to r. For any natural number /, let
R, ={y :y = r(xr) </} We know that
2r@l < p(z) < 2- 2" We get

(1) "(tw)

M > ) m v(y)
- (@O)7)
- y§£ 2lvl|y|3
_ (1)~ (t(r(2)))
= 2 ORGP
(1) (tor())
= L ]
(1) (tor(2))
S

So tor is M - T-average with respect to r from
Lemma 1. This completes the proof. il

As a corollary, we get

Corollary 5 If an average-case NP-complete
decision problem can be solved in T time on av-
erage, then (S, 1) from Lemma 8 can be solved in
average O(T o q) time with respect to rankability
for some polynomial q.



Proof. Let r be from Lemma 3 and (L,v) be
from Lemma 4. Since r is p-time computable
and p-honest, L € NP. So (L,v) € DNP. If a
DNP-complete problem (in Levin’s sense), say
the tiling problem [Lev86], is solvable in aver-
age T-time, then (L,v) is solvable in O(T o q)
time on v-average for some polynomial q. We
can also assume that ¢ bounds the running time
for computing r. This completes the proof by
Lemma 4. |

We therefore obtain the following theorem.

Theorem 6 If the randomized Tiling problem
can be solved in average polynomial time, then
any NP decision problem under any p-rankable
distribution is solvable in average polynomial
time with respect to rankability.

5 Search Problems

We can similarly define randomized NP search
problems with respect to rankability. An NP
search problem is specified by a p-time com-
putable binary predicate R. For a given input z,
the search problem is to find w (a witness) such
that |w| is polynomially bounded and R(z,w)
is satisfied. A randomized NP search problem
is a pair (R, u) of a p-time computable binary
predicate and a probability distribution. A ran-
domized NP search problem (R, u) is solvable in
average polynomial time with respect to ranka-
bility if there is a deterministic Turing machine
that solves the search problem in time 7" that is
p-average with respect to rank, for some poly-
nomial p.

We define a reduction for randomized search
problems with respect to rankability following
the one for randomized decision problems.

Definition 3 (R, ;) is p-time reducible to
(Ry, p2) with respect to rankability if there is
a pair of p-time computable functions f and g
with the following conditions. Let D; = {z :
pi(z) >0}, Y; = {z: z € D; and Fw:R;(z,w)},
ri(z) = rank,,(z), ¢ = 1,2. Function f is one-
to-one and maps D; to D,.

1. (The solvability) For any z € D;: =z € Y; iff
f(z) e,

2. (The witnesses) For any z € D; and any w:
if Ry(f(z),w), then Ry (z, g(w)).

3. (The domination) For any z € D;:
ro(f(x)) < p(|z|)ri(z) for some fixed poly-
nomial p.

A randomized NP search problem is rank-
ably complete if its probability distribution is
p-rankable and any other NP search problem
under any p-rankable distribution is p-time re-
ducible to it with rankability. Clearly, if a rank-
ably complete NP search problem is solvable in
average polynomial time with rankability, then
so is every NP search problem under any p-
rankable distribution.

We can similarly define the search version
of the randomizing reductions with respect to
rankability following Definitions 3 and 2.

Let Rx+ be a binary predicate for K':
Ry ((i,z,w), z) is true iff (i,z,w) € K' and z is
a computation path witnessing that M; accepts
z in |w| steps.

Theorem 7 (Rg,p') is complete for random-
ized NP search problems with p-rankable dis-
tributions under p-time randomizing reductions
with respect to rankability.

Theorem 6 is also true for randomized NP
search problems. We leave the proof to the
reader.

Theorem 8 If an average-case NP-complete
search problem can be solved in average poly-
nomial time with respect to p-time distribu-
tions, then any NP search problem under any p-
rankable distribution is solvable in average poly-
nomial time with respect to rankability.

6 Average-case Hierarchies

The study of hierarchies among complexity
classes is a fruitful area in complexity theory,



yet surprisingly little has been done to inves-
tigate hierarchies among average-case complex-
ity classes. Studying natural distributions that
can provide hard instances of problems and find-
ing suitable reductions to identify more natu-
rally occurred NP problems to be average-case
complete have been the major concerns in the
theory of average-case complexity. Nevertheless,
there is an interest to investigate hierarchy re-
sults among interesting average-case complexity
classes.

Let ¢ be a time-constructible function. We as-
sume in this section that a Turing machine will
read all of its input before accepting or rejecting.
So, if ¢ is a time bound for a Turing machine,
it must be the case that ¢(n) > n + 1 for all n.
We will then follow Hopcroft and Ullman [HU79]
and assume that a time-complexity function ¢ is
implicitly replaced by max{n + 1,¢(n)}. Denote
by AvDTime(t(n)) the class of randomized deci-
sion problems which can be decided by a Turing
machine whose running time is ¢ on average (in
Levin’s sense).

It can be seen that a problem which re-
quires n? time to solve on inputs of length
n will be, with the uniform distribution, in
AvDTime(n'*¢) for every € > 0. This may seem
not precise enough and to prevent this from hap-
pening, Reischuk and Schindelhauer [RS93] pro-
posed the notions of rankable distributions and
average time with respect to rankability as de-
fined in Section 2. Although they were able to
establish a rather tight hierarchy for their av-
erage time complexity classes with respect to
rankability, there is a doubt that the definition
of average time with respect to rankability is a
natural one as shown in previous sections. Thus,
it would be much more desirable to have hierar-
chy results using the standard notions.

It is known that under the universal distribu-
tion, the average-case complexity of a problem is
the same as the worst-case complexity [LV92],°
and so if no restrictions are put on the distribu-
tions, any hierarchy results for DTime(¢(n)) ap-

5Actually, this is shown for a different notion of av-
erage time, but it will imply it for our notion of average
time for a large class of time-complexity functions.

ply to AvDTime(¢(n)). Ben-David, Chor, Gol-
dreich and Luby [BCGL92] have a similar result,
using a non-standard definition of worst-case
complexity. However, the distributions used in
these results require super-polynomial time to
compute, and we would like to restrict ourselves
to distributions which can be computed in poly-
nomial time. With this restriction, we obtain
the following hierarchy result.

Theorem 9 Let t and T be time-constructible
functions such that

t(nlog® n)logt(nlog® n)

T(n)

for some € > 0. Then there is a randomized
decision problem (L,pu) € AvDTime(T(n)) —
AvDTime(t(n)), where p is a uniform distribu-
tion.

Proof. Let ¢t and 7T be as above. We
immediately have AvDTime(¢(n)) is included
in AvDTime(T'(n)). Define U by U(n) =
t(nlogn), so

lim

n—oo

=0

U(n)logU(n)

T(n)
It was shown by Goldmann, Grape and Hastad
[GGHY4] that there exists a language L in
DTIME(T (n)) such that if Ty, is the running
time of a Turing machine M which decides
L, then for sufficiently large n, say n > N,
Tyu(z) > U(lz|) = t(|z|log® |z|) for a constant
fraction ¢y, of instances z of length n. For these
z, we have t '(Ty(z)) > |z|log®|z|. Letting
pu(z) = m2*‘z‘ for the appropriate ¢, we
get

lim =0.
n—0o0

) = (T (2))

2] p(z)

T

Bl 1) N

—|x|

. |z |z|log'** |2
> ¥ t 1 (Tu () Cl+ —|e|
|| >N |z |z| log ™ |z
. cu2'nlogtn c 3
> 2-"
- E\, n nlog't“n
|~ ey
N nlogn’

n=N



which diverges.

So, (L,p) cannot be in AvDTime(t(n)).
Since L is in DTIME(T(n)), (L,u) will be
in AvDTime(T'(n)), and so AvDTime(t(n)) is
properly included in AvDTime(7'(n)). B

It is often useful to restrict our attention to a
smaller class of distributions in order to obtain
completeness results (e.g., see [WB93]). Let ¢
be a time-constructible function and F a class
of distributions. Then AvDTime(t(n),F) is the
class of languages which can be solved in average
t time with respect to a distribution in F.

Similar to the proof of Theorem 9, we can
show the following hierarchy result.

Theorem 10 Let F be a class of distributions
containing p(zr) = ﬁZ"‘”' for some k and suit-
able ¢, and let t and T be time-constructible
functions such that

t(n*) log t(n*)

wy

lim
n—oo

Then AvDTime(t(n),F) is properly included in
AvDTime(T(n),F).

There is a weaker result shown in [SY92]. Un-
der the same assumption of ¢ and F as in The-
orem 10, Schuler and Yamakami [SY92] were
able to show that if T'(n) = w(t(den*+') + n),
then AvDTime(¢(n),F) is properly included in
AvDTime(T'(n)logT(n), F).

Our result presented here is tighter.
corollary, we get

As a

Corollary 11 Lett and T be time-constructible
functions such that, for some € > 0,

t(nlog® n) logt(nlog® n)
T(n)

lim

n—oo

=0.

Then AvDTime(t(n), P-comp) is properly inc-
luded in AvDTime(T(n), P-comp).
7 Open Questions

We list some open questions here for future
study.

1. Does there exist a natural NP-complete
problem D (or a natural problem not in P)
and a practical distribution g on D such
that (D, pu) is solvable in average polyno-
mial time with respect to rankability?

There are many questions regarding average-
case hierarchies which remain unanswered. We
list some of them below.

2. Is it possible to get hierarchy results for
AvDTime(t(n)) that are as good or bet-
ter than the known results for DTIME(¢(n))
under p-time computable distributions?

3. What is the best possible hierarchy for
AvDTime(t(n), P-comp)?

We can similarly define average-case complex-
ity classes for non-deterministic time as well as
space.

4. What hierarchy results are possible for
these classes?
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