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Abstract

We extend Levin’s theory of average polynomial time to arbitrary time
bounds and prove that average time complexity classes form as fine a hierarchy
as do deterministic time complexity classes.
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1 Introduction

One of the central issues in complexity theory for any complexity-theoretic measure
is the question of fine hierarchies. Here we consider this issue for average case com-
plexity. The average complexity of a problem is, in many cases, a more significant
measure than its worst case complexity. This has motivated a rich area in algorithms
research, but Levin [Lev86] was the first to advocate the general study of average case
complexity. An average case complexity class consists of pairs, called distributional
problems. Each pair consists of a decision problem and a probability distribution on
problem instances. Most papers to date have focused their attention on polynomial
time and on the concept of average polynomial time. The primary motivation has
concerned the question of whether DistNP C Average-P, where DistNP and Average-
P are the distributional analogues of NP and P, respectively. Many beautiful results
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have been obtained. Levin, for example, has proved the existence of complete prob-
lems in DistNP.

Ben-David et al. [BDCGLY92] were the first to suggest a general formulation of av-
erage case complexity for time-bounds other than polynomials. We will demonstrate
that this formulation is inadequate—there fails to be a fine hierarchy. However, their
formulation 1s satisfactory for time-bounds that are bounded above by some polyno-
mial. We will demonstrate this point by using their definition to prove a fine hierarchy
theorem within polynomial time-bounds. Our proof uses properties of a class of func-
tions defined by Hardy called the logarithmico-exponential functions. We present this
result in Section 2.

Then, we will propose a new formulation of average case complexity. A complexity
class AVTIME(T(n)) is to consist of all distributional problems (L, y) such that L
is solvable in “time T'(n) on the p-average.”
precise. We would like our definition to essentially agree with Levin’s notion when

This is the notion that we must make

we apply it to polynomial time-bounds. In addition we approach our formulation
with the following intuitions in mind. If a language L belongs to DTIME(T'(n)), for
some time-bound 7'(n), then the distributional problem (L, zz) should belong to the
class AVTIME(T (n)). Furthermore, if L does not belong to DTIME(T(n)) almost
everywhere (i.e., every Turing machine that accepts L requires more than T'(|z]) steps
for all but a finite number of input words z), then it should follow that (L, y) should
not belong to AVTIME(T(n)). (The definition of Ben-David et al. does not satisfy
this condition.)

Our definition will satisfy these conditions and will essentially agree with the def-
inition of Levin [Lev86] and Ben-David et al. [BDCGL92] when we apply polynomial
time-bounds. Readers who are familiar with Levin’s theory of average polynomial
time will recall that a naive, intuitive formulation suffers from serious problems. This
issue is discussed in detail by previous authors including, notably, Gurevich [Gur91]
and Ben-David et al. [BDCGL92]. Similarly, the path to a correct formulation of
average case complexity for arbitrary time-bounds is intricate. In Section 3, we will
provide as strong a justification for our new definition for arbitrary time-bounds as
Levin [Lev86] and Gurevich [Gur91] provided for polynomial time-bounds.

We will present a hierarchy theorem for average-case complexity, for arbitrary
time-bounds, that is as tight as the well-known Hartmanis-Stearns [HS65] hierarchy
theorem for deterministic complexity. As a consequence, for every time-bound 7'(n),
there are distributional problems (L, p) that can be solved using only a slight increase
in time but that cannot be solved on the p-average in time T'(n).

2 Preliminaries

We assume that all languages are subsets of ¥* = {0,1}* and we assume that ¥* is
ordered by standard lexicographic ordering. We use C to denote proper inclusion.



2.1 Turing machine running times

Although Turing machine running times are frequently given as functions on the
natural numbers, 7' : N — N, we will often need the more accurate view that a
Turing machine running time is a function S : ¥* — N. In this case, the relation
between the two interpretations is clear. Namely, T'(n) = max{S(z) | |z| = n}.
For two functions T' and T, where T,T' : N — N, recall that 7'(n) = o(T(n))
if im0 7'(n)/T(n) = 0. Similarly, if 5,5 : ¥* — N, then S’(z) = o(S(z)) if
lim|g oo S'(2)/S(2) = 0. We adhere to the customary convention that T'(n) > n + 1
(S(z) > |z| 4+ 1), for any Turing machine running time 7' (S, respectively).

The following proposition is one of the main theorems of Geske, Huynh, and

Seiferas [GHS91].

Proposition 2.1 If S(z) is fully time-constructible, then there is a language L €
DTIME(O(S(x))) such that for every function S', if S'(z)log S'(x) = o(S(z)), then
every Turing machine M that accepls L requires more than S'(x) steps for all but
finitely many input strings x.

2.2 Distributional problems

A distribution function p : {0,1}* — [0,1] is a nondecreasing function from strings to
the closed interval [0, 1] that converges to one. The corresponding density function u'
is defined by p'(0) = p(0) and p'(x) = p(x) — p(e —1). Clearly, p(x) = <, 1’ (y).
For any subset of strings S, we will denote by u(S) = 3 ,cs p'(x), the probability of
the event S. Define u, = p({z | |z| = n}). For each n, let p! (z) be the conditional
probability of z in {z | |#| = n}. That is, p,(z) = p'(z)/un, if u, > 0, and gl (z) =0
for x € {z | |z| = n}, if u, =0.

A function p from ¥* to [0,1] is computable in polynomial time [Ko83] if there
is a polynomial time-bounded transducer T such that for every string = and every
positive integer n, [p(x) — T(x,1")| < 75. We restrict our attention to distributions p
that are computable in polynomial time. If the distribution function g is computable
in polynomial time, then the density function p’ is computable in polynomial time.
(The converse is false unless P = NP [Gur91].)

Levin [Lev86] defines a function f from ¥* to nonnegative reals to be linear on
p-average if

> w0l < o 1)

j[>1 2]
and f is polynomial on p-average if f is bounded by a polynomial of a function that

is linear on p-average. Thus, a function f is polynomial on p-average if and only if
there is an integer £ > 0 such that

)1/
> T @

jo[>1 ]



Average-P is the class of distributional problems (L, ), where L is a language and
p is a polynomial time computable distribution, such that L can be decided by some
Turing machine M whose running time T 1s polynomial on p-average.

Starting with Levin, a number of researchers have observed that the more naive
notion, that for each length n the expectation of the running time 7% of a Turing
machine M that accepts L is bounded above by a polynomial in n,

S () Tu(z) < p(n), (3)

|z|=n

is unsuitable for a number of good reasons. The definition that arises using Equation 3
is not robust under functional composition of algorithms (There are distributional
problems A and B so that A can be solved in average polynomial time using an
oracle B, B can be solved in average (or even deterministic) polynomial time, and A
cannot be solved in average polynomial time.) and is not closed under application of
polynomials (There are functions f that satisfy Equation 3 for which f? does not.).
As a consequence, from Equation 3, one loses machine independence of the definition
of the class of average polynomial time.

Levin’s definition is just as intuitively justified as that given by Equation 3. This
can be seen as follows:

The worst-case time complexity for P requires for all n, and for all x such that
|z| = n, that

Tam(z) < p(n).

Therefore for the case of bounding complexity on the average by some polynomial
p(n), it appears natural to require for all n, that

> (@) Tu(z) < p(n).

|z|=n

However, Ty(z) < n* is equivalent to Th(z)/n* < 1, which is also equivalent to
(TM(x))l/k/n < 1. Thus we might as well take the expectation now, after this manip-
ulation, which results in the established definition. (We will discuss this point further
in Section 4.)

2.3 Hardy’s class of logarithmico-exponential functions

We will need the notion of a class of functions £ defined by Hardy [Har24], called
the logarithmico-exponential functions. Every function in £ is a real valued function
of one variable that is defined on the real numbers. The class £ is defined to be the
smallest class of functions containing

(i) every constant function i(z) = ¢, for all real ¢,

(ii) the identity function ¢(z) = =,



and closed under the following operations:

(iii) If ¢(z) and s(z) are in £, then so is {(z) — s(z);

(iv) if ¢(x) is in £, then so is e*®);

(v) if t(z) is in £ and is eventually positive, then so is In(#(z)).

The closure properties are more inclusive than perhaps they first appear. For
example, if {(z) and s(z) are in £, then so are t(z) + s(z), t(z)s(z) and t(z)/s(z).
Also, functions such as {/t(z) = ert(®) and eoVmi@)/mint(z) belong to L.

Hardy [Har24] proved the following facts regarding the logarithmico-exponential
functions. He showed that every function in £ is either eventually positive or eventu-
ally negative or identically zero. Note that it is easily shown by induction that every
function ¢(z) in £ is differentiable and its derivative ¢'(x) is also in £ (thus infinitely
differentiable). Thus, it follows that every function in £ is eventually monotonic. The
main theorem of Hardy regarding the logarithmico-exponential functions is that they
form an asymptotic hierarchy: For any {(z) and s(z) in £, either t(z) = o(s(z)) or
s(z) = o(t(x)), or there exists a non-zero constant ¢, such that lim,_.. t(z)/s(z) = c.

Let f() denote the function that iterates £ applications of f. That is, f(l)(w) =
f(z) and f(£+1)({l:) = f(f(f))(x), for £ > 1. Hardy proved [Harll] that for ev-
ery function ¢ € L, if lim,_ t(z) = oo, then there is some constant ¢ so that
log(z)(x) = o(t(z)), as well as t(z) = o(exp®(z)) —informally, a logarithmico-
exponential function that goes to infinity cannot increase more slowly than every
iterated logarithm function, nor faster than every iterated exponential function.

The purpose of Hardy for introducing the class of logarithmico-exponential func-
tions was to provide what he called “a scale of infinities”. We propose to use only
logarithmico-exponential functions as time bounds in defining average case complexity
classes. Indeed, we propose that for most purposes it suffices to use only logarithmico-
exponential functions as time bounds for complexity classes in general. (To be pedan-
tic for a moment, we believe that it suffices to consider as time bounds for complexity
classes only functions f : N — N that result from first restricting some logarithmico-
exponential function to the domain of natural numbers, and then further restricting
the range to N by taking the floor of the result. For notational ease, we will call these
logarithmico-exponential functions as well.) These functions are at the same time
sufficiently well behaved and sufficiently expressive for the purpose of bounding time
complexity of any meaningful class of computational problems. While functions such
as z(1 4 sinz) or e® ST fhat gyrate infinitely often as © — oo are excluded, as are
functions that are, say, bounded on even length strings but tend to infinity on odd
length strings, we know of no circumstances where it is necessary or natural to bound
the running time, average case or otherwise, of a class of problems by such a function
that is not in £. This is in contrast to the case of bounding the complexity of an
individual problem, say, some number theoretic computation where the problem is



only interesting for certain lengths. The elegance that results from the exclusion of
these pathological cases well compensates for the price we pay for its restriction.
We will need the following lemma.

Lemma 2.1 If t{(n) belongs to L, lim,_ t(n) = +oo, and t(n) is polynomially
bounded, then there exvists a constant ¢ and an integer k, such that for all n > ¢
and a > 1,

t(an) < akt(n).

Proof: Let k be an integer such that lim,_., t(r)/n® = 0. Since ¢(n) is polynomially
bounded, such an integer exists. Let q(x) = {(x)/2", then ¢(x) belongs to £ and
lim,, o ¢(n) = 0. Since g(n) is eventually positive, and approaches 0, it is eventually
monotonic decreasing. This is because ¢(z) is not identically 0, and it can’t possibly
be monotonic increasing, and these are the only alternatives for functions in £. Thus,
for some constant ¢, if z > ¢, then ¢(z) is monotonic decreasing. It follows that

t(an) _ q(an)(an)*
akt(n) akq(n)nl‘C
_ glan)
q(n)
< 1,

for all n > ¢, and for all @ > 1. (Note that ¢ does not depend on a.) This implies
that t(an) < a*t(n). O

3 The first hierarchy theorem

Ben-David et al. [BDCGL92] propose the following definition.

Definition 3.1 (Ben-David et al. ) For a time-complezxily function T : N — N,
a function f is T on p-average if f is bounded by T of a function that is linear on
p-average; i.e., f(x) < T(l(zx)), where { is linear on p-average. AverDTime(T(n))
denotes the class of distributional problems (L, p), where L is a language and p is a
polynomial time computable distribution, such that I can be decided by some Turing
machine M whose running time Ty is T on p-average.

If 7" is monotonically increasing, and so invertible, then f is T on p-average if and
only if
-1
> i) < . ®)
jal 21 i
This definition is a direct adaptation of Levin’s notion of average polynomial
time, where the time bound T is polynomially bounded. Indeed, Average-P =
U AverDTime(n*). Thus, Definition 3.1, at least for the case of polynomials, is
just as intuitively justified as is Average-P.
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3.1 Inadequacy of Definition 3.1

Definition 3.1 for time-bounds T beyond polynomial time has serious difficulties,
which we will now explain.

It follows from the result of Geske, Huynh, and Seiferas [GHS91], Proposition 2.1,
that there exists a language I € DTIME(2*") that cannot be recognized in time 2"
almost everywhere—every Turing machine that accepts L requires more than 2" steps
on all but some finite number of inputs. Yet, it follows easily from the definition
that every distributional problem that belongs to AverDTime(2*") also belongs to
AverDTime(2"). This is inconceivable! How can a language L require more than 2"
time almost everywhere, but be 2" on the p-average for every distribution p?

To see that AverDTime(2*") C AverDTime(2"), let M accept L in time Ty, where
Tar is 2*™ = 4™ on p-average. Then, by definition,

S oy o)

e >1 ||

Thus,
9 Z p’(m)log4(TM($)) _ Z MI(Jj)lOgQ(TM(I’.)) < 50

jo[>1 2] |1
also. So, according to Definition 3.1, T/ is also 2" on p-average.

The same argument implies that AverDTime(2") = AverDTime(c¢"), for all con-
stant ¢ > 0. This is another weakness of the definition. Usually a time complexity
class should be defined in such a way that it is sufficiently fine to distinguish vary-
ing inherent time complexities of problems. In other words, one likes to have a fine
time hierarchy theorem. The fact that AverDTime(2") = AverDTime(4") prevents
us from having such a fine theorem.

3.2 A hierarchy theorem

We can prove a hierarchy theorem when we restrict our attention to functions that are
bounded above by some polynomial. More precisely, we shall require that the time
complexity bounds T and 7' belong to Hardy’s class of logarithmico-exponential
functions £ and that they are bounded above by a polynomial. Under these con-
ditions, we show that if 7'(n)logT'(n) = o(T(n)), then there is a language L in
AverDTime(T(n)) that does not belong to AverDTime(7"(n)).

Theorem 3.1 Let T,T' : N — N be logarithmico-exponential functions and assume
that T is fully time constructible. Assume T'(n)logT'(n) = o(T(n)) and assume
T'(n) is bounded above by a polynomial. Then

AverDTime(T'(n)) C AverDTime(T (n)).

We need the following lemmas.



Lemma 3.1 Let T be a logarithmico-exponential and fully time constructible func-
tion. If L € DTIME(O(T (n))), then for every polynomial time computable distribu-
tion p, (L, p) € AverDTime(T'(n)).

Proof. By the hypotheses, T'(r) > n 4 1, for all n, and T is monotonically
increasing. Since T is logarithmico-exponential, either (i) n = o(T(n)), or (ii) for
some constant ¢ > 1, T'(n) < cn, for all sufficiently large n. If case (i) holds, then the
well-known linear-speedup theorem applies [HS65]. In this case L € DTIME(T (n))
and the result follows immediately. If case (ii) holds, then L € DTIME(cn). Let M
be a Turing machine that witnesses L € DTIME(cn) and let Ty be the running time
of M. By definition, Ty is linear on p-average. Thus, by Definition 3.1 and the fact
that T'(n) > n+ 1, Ty is T on p-average. This completes the proof. O

Lemma 3.2 Ifa,b>0 and 1/h =1/a + 1/b, then min(a,b)/2 < h < min(a,b).

Proof.
h =+ ! - = ab = min(a, b) - max(a, b) < min(a, b).
Tty a+ a+
Also,
1 2
el
h ~ min(a,b)’

therefore A > min(a, b)/2. O
As a corollary, if a(n) and b(n) are functions such that both a(n),b(n) — 400,
then h(n) — +oo also, where

v a(n)b(n)
h(n) = a(n) + b(n)’

but no faster than either a(n) and b(rn). Furthermore, if both a(n),b(n) € L, the
class of logarithmico-exponential functions, then so is h(n).

Now we prove our theorem.

Proof.

Since T'(n) = o(T'(n)), it follows that AverDTime(7'(n)) C AverDTime(T'(n)).
We need to show that the classes are distinct. Without loss of generality, we assume
that lim,_., T'(n) = +00. Otherwise, the theorem is trivial.

Define sequences «,, and 3, by

1w

" T (n)log T'(n)
and log 7/(n)
~ logT'(n

bn = loglog T'(n)
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Then, both
a, and 3, — +oc.
Take B, = ./%, By Lemma 3.2, B, — 400, and yet, B, = o(a,) and B, =
o(Bn).
Define S(n) by S(n) = B, - T'(n). We claim that

iy 2()log S(n) _ o
In fact,

S(n)log S(n) _ B, -T'(n) - (log B, +1og T'(n))
T(n) T(n)

= Bylog B,—

We have B,/a, — 0. Also, B,/3, — 0, which implies that log B, < log 3, <

loglog T'(n). So for the second term, we have

B,log B, loglogT'(n)\ |
log T'(n) " log T'(n) = o(1)-

Thus, Proposition 2.1 applies: There is a language L € DTIME(O(T(n)))
such that for every Turing machine M that accepts L there is a constant ng such
that the runing time Tas requires more than S(|z|) steps for all inputs of length
> ng. That is, Ty(z) > S(|z|), for all z such that |z| > ng. By Lemma 3.1,
(L,p) € AverDTime(T(n)) for every polynomial time computable distribution p.
Now we will define a polynomial time computable distribution g such that (L, u) ¢
AverDTime(T'(n)).

By our assumption that 7’ is bounded by a polynomial and belongs to £, by
Lemma 2.1, there is an integer k and a constant ¢ such that T’(an) < a*T'(n), for
all @ > 1 and all n > ¢. In particular T'(B}L/lC -n) < B, -T'(n). Since T" € L and
lim,, oo 7'(n) = 400, it follows that 7" is monotonically increasing. Hence,

T'-'(B, - T'(n)) > B)* - n. (5)

Now, let b, = B}L/k. Since b, € L and b, — +oco, there is some constant £ so that
log(z)(n) = 0(b,). For this value ¢, there is some value n, so that for all n > n,, the

expression
1

nlognloglogn... (log(g) n)?
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is defined. Define |

nlognloglogn ... (log" n)?’

a, =

for all n > ny. Define a,, = 1, otherwise. Then, the series }°>? | a,, converges, but the
series y | a,b, diverges.
Let p be the distribution function whose density function is defined by

1 1
! - — . . —_—
() = 5 el S

where 37 a, = s.

Clearly, p is polynomial time computable.

Let M be a Turing machine that accepts L. For all z such that |z| > ng, Tayr(z) >
S(|x]) = By /T'(]x]). Hence, using Equation 5,

T (Tw(z)) > BY* - [a] = bpya].

Thus,

i (x) - T (Tw(2)) > 3 Anbn _ .

|z|>max(ng,c) |CL’|

So, (L, p) ¢ AverDTime(T'(n)). O

n>max(ng,c)

Corollary 3.1 For ¢ >1 and € > 0, AverDTime(n®) C AverDTime(nt°).

4 The new definition and second hierarchy theo-
rem

We have seen that there is a problem with the existing definition of average case
complexity for time bounds beyond those that are bounded by a polynomial. Now
we will develop a new definition of “T" on the p-average.” Let us first repeat the
guiding principles that we stated early. Our definition should be essentially the same
as Levin’s notion when we apply it to polynomial time bounds. At the same time we
want to avoid the anomaly that we demonstrated in Section 3.1. For this reason, we
want to show that

1. if L belongs to DTIME(T'(n)), for some time-bound 7', then any distributional
problem (L, ) is T on the p-average, and

2. if L is not in DTIME(T(n)) almost everywhere, then, for any distibutional
problem (L, p), L is not T" on the p-average.

10



To begin, let us revisit the intuitive justification that we discussed in Section 2.2.
Let T € L be some fully time constructible function, let Ths be some Turing machine
running time, and let p be some polynomial time computable distribution, for which
we want to say that Ths is T on the p-average. As earlier, we might want to say that
Tu(z) < T(|z|) for a p-average x. Equivalently, we want T~ (Ta(z)) < ||, or

I (Tu(z))

<1
|z|

Y
for a p-average x. At this point Levin and subsequent researchers, including Ben-
David et al., took it to say that the expectation &, over all z, is finite.

We propose that it is at least as justified, if not more so, to say that the expectation
is bounded above by one:

5[%1 o> ) DD (6)

Moreover, it is perfectly reasonable, with identical justification, to require that for all
—1 , .
n > 1, the expectation of u%ﬂl, for all z such that |z| > n is bounded above by

[t bl el 7

where p5, is the conditional probability distribution on {z | |z| > n}; ie., let W, =
p({z | |z]| = n}), for x with |z| > n,

(15, () = ¢ () /Wy, if W, >0, and 45, (z) =0, if W, = 0.

Equation 7 is equivalent to requiring that for all n > 1,

Z /j//(CC) . T_I(TM(:C))

j2l2n &

< W,. (8)

This is the condition that we will take for our definition.
Comparing this with the simpler requirement that

S oy T (Tu2)

|=|>1

2] < o0, (9)

we require not only that the infinite sum converges, but that it converges at a certain
rate. Note that W,, — 0 as n — oc.

A persistent criticism of the theory of average time complexity is that for any
reasonable definition of “default” distribution on the set of all positive integers, such
as u(n) = 1/n? or 1/n®, inevitably, a disproportionate weight of the total distribution
is on the first few (or few dozen?) integers. Thus, for instance, in Equation 9,

11



the first terms might be somewhat dominating, thus masking the true asymptotic
behavior. (This is the source of the complication in the proof of Theorem 3.1.) The
requirement that we impose in Equation 8, which stipulates that each sum is bounded
above, seems to be the correct approach because the same intuition supports it that
supports the previous definition, while at the same time it avoids an existing criticism
of the previous definition.

Thus, we arrive at our definition.

Definition 4.1 For any time constructible function T'(n) € L, a function f isT on
the p-average' if for alln > 1,

> p'(z)- (=) < W,. (10)

o[> LI

AVTIME(T(n)) denotes the class of distributional problems (L, p), where L is a lan-
guage and p is a polynomial time distribution, such that L can be decided by some
Turing machine M whose running time Thr ts T on the p-average.

To summarize, we departed from the previous definition by imposing two new
criteria. We insist (i) that the expectation given in Equation 6 is bounded by one,
rather than asking only that it be finite, and we insist (ii) that each conditional
expectation given in Equation 7 is bounded (indeed, bounded by one). If we were to
have added either one of these requirements without the other, the result would have
been trivially equivalent to the previous definition. To see that requirement (i) alone
adds nothing new, observe that one can always modify M so that for some fixed but
arbitrarily long initial segment of inputs, M takes little time. However, the tail of a
convergent sum can be made arbitrarily small, so the total sum with respect to the
new machine is bounded by one. To see that requiring each conditional expectation
converges alone adds nothing new, we simply note that every tail series of a convergent
series converges as well. Thus, it is the combination of the two modifications, which
amounts to restricting the rate of convergence that adds something new. Fither
modification alone, while justifiable, would have been trivial.

4.1 Equivalence theorem

Before proceeding to establish that Definition 4.1 satisfies our guiding principles, we
need to make one more point. A general theory of average time complexity is most
useful and most supportable if we avoid consideration of distributions that put too
much weight on the first few strings. (For example, we don’t consider p(n) = 27" to
be an acceptable default distribution on the natural numbers.) For this reason, we

define the following Condition W.

'We are redefining this expression, and henceforth all references to this expression will refer to
the meaning given herein.
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Condition (W) There exists s > 0 such that W, = (ni)

Now we prove that average polynomial time under Levin’s definition in unchanged
by our new definition, for distributional problems that satisfy Condition W.

Theorem 4.1 Let p be a polynomial time computable distribution thal satisfies
Condition W. Then, (L,pu) belongs to Average-P if and only if (L,p) belongs to
Ur AVTIME(r*).

Proof. Since our definition requires at least as much as the old definition, the
inclusion in one direction is trivial. So, let g be a polynomial time computable
distribution that satisfies Condition W, let M accept L with running time T, and
let k& be a positive integer such that

> w(x)

Tl _ ¢,

Define p(n) = (Cn)*, and observe that

S oy )

jel>1 ol T

Since p satisfies Condition W, there exists s > 0 such that W, = Q (72—5) Define
the polynomial ¢ by ¢(n) = p(n°), for ¢ > s + 2. We will show that

Z MI(CC)M <W,,

]

for all but a finite number of n. Observe that this suffices to complete our proof.
Namely, let ng be a fixed positive integer; if Equation 10 holds for all n > ng, then, as
we explained above, we can modify M to contain a look-up table in order to quickly
decide all strings of length smaller than ny. By doing so, we make the first terms of
the sum sufficiently small so that the nth sum is bounded by W, for all n > 1.

Now our goal is to estimate the sum

> 3 i) R
k>n |z|=k k 7

for all n > 1.
Note that ¢7'(y) = (p_](y))]/c. Recall that u, = p({z | |z| = k}). By convexity,
for all k&, such that uy > 0,

1/c

3 w(x) ¢ H(Tul(x)) _ 3 p(x) p~ (Tu(z))

Uy k - Uy ke

|=|=k |=|=k
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Since for all n > 1,

we have

k>n |z|=k
1 1 1/c
< ¥ owlpA
k>n Uk
up >0
B Z (uk>]—]/c
k>n k

By Holder’s inequality,

- <%>1_1/c ) (Z Uk) 1/p (Z kcl_l)l/q

k>n ’ k>n

where 1/p =1—1/c and g = ¢. Hence,

Z Z i () - q‘l(fl;CM(:L‘)) < WTZ_]/C- (Z P

Finally, we have



00 1/‘3
Wi-i/e. (/ ! 1dm>
n—1 T~
1 1/c
- W”’((c—?)nc-QWn) '

As we have taken ¢ > s 4+ 2,and W,, = Q (%), the last term is at most W, for
almost all n. O

IN

4.2 Second hierarchy theorem

Now we verify that our definition satisfies the remaining guiding principles and we
prove a hierarchy theorem for AVTIME classes.

Theorem 4.2 Let T' € L be fully time constructible. If L belongs to DTIME(T(n)),
then (L, p) belongs to AVTIME(T (n)), for every polynomial time computable distri-
bution p.

The proof is easy: For any Turing machine that accepts L in time T, the ratio
-1
u%ﬂl is <1 for every input .
Theorem 4.3 Let T € L be fully time constructible and suppose that I &

DTIME(T (n)) almost everywhere. Then, for every polynomial time computable dis-
tribution p, (L,p) € AVTIME(T (n)).

Again, the proof is easy. For any Turing machine that accepts L, choose nys so

-1
that Th(z) > T(|z|) for all = such that |z| > nas. Observe that the ratio %
is > 1, for every input z such that |z| > np;. The proof follows immediately by

observing that the sum

T~ (T(x))

1]

> Wy, (11)

Yo ()

|z|>nar

The fact that these theorems follow immediately, attests to the naturalness of

Definition 4.1.

Theorem 4.4 Let T,T' : N — N be logarithmico-exponential functions and assume
that T and T" are fully time constructible. Assume T'(n)logT'(n) = o(T(n)) Then,

AVTIME(T"(n)) C AVTIME(T (n)).

Further, there is a language L such that for every polynomial time computable
distribution p, (L,p) belongs to AVTIME(T(n)), but (L,p) does not belong to
AVTIME(T'(n)).
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Using Proposition 2.1, the proof follows immediately from Theorems 4.2 and 4.3.
This result is as strong as the well-known Hartmanis-Stearns hierarchy theorem [HS65]
for deterministic time.

Corollary 4.1 For all ¢ > 1 and for all ¢ > 0, AVTIME(n®) C AVTIME(n°t%). For
all ¢ > 1 and for all ¢ > 0, AVTIME(¢") C AVTIME((c + €)").

In analogy with traditional complexity theory, consider the following average case
complexity classes:

(i) AVP = Ussy AVTIME(r*).
(it) AVE = Upsy AVTIME(2").
(iii) AVEXP = U5, AVTIME(2"").
Corollary 4.2 AVP C AVE and AVE C AVEXP.

4.3 Some further discussions on the new definition

We have arrived at our current definition of average case complexity for arbitrary
time bounds after a careful analysis of the intuitive justifications and after carefully
considering the demands of a well-formed complexity theory. The new definition
is supported by the equivalence theorem, Theorem 4.1, and the second hierarchy
theorem, Theorem 4.4.

4.3.1 Pathological distributions

Here we briefly address the exceptional cases where the distribution does not satisfy
Condition W, so that our equivalence theorem, Theorem 4.1, does not apply. We show
in this case that our notion of polynomial on the p-average indeed differs from that of
Levin. (Thus, the restriction to distributions that satisfy Condition W in Theorem 4.1
is essential.) However, we will also argue (1) that these are pathological distributions,
for which one should not in general apply any notion of average polynomial time,
and (2) if one must consider such distributions in the context of average polynomial
time, then Levin’s notion is unsuitable while our new definition is still somewhat
meaningful.

To illustrate, let’s consider a (pathological) example where u, = 1/2"; i.e., all
strings of length n have total measure 1/2". It follows from the theorem of Geske,
Huynh, and Seiferas [GHS91], Proposition 2.1, that there is a language L that runs in
time 2" /n, but almost everywhere more than, say, 2" /n®. Then according to Levin’s
definition, the distributional problem (L, i) is in Average-P; indeed it is linear on the
p-average according to the definition in [BDCGL92], since

ZQ_TLE<%

n>1
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However, according to our definition, by Theorem 4.3 the problem (L, ) is not in
time 2" /n® on the p-average. Thus, the two definitions differ.

We believe that distributions, such as this g, that fail to satisfy Condition W are
pathological. Such distributions put too much weight on short strings, so that the
problem we are really dealing with becomes essentially a finitary problem, and not one
with an asymptotic behavior. However, if we must consider such distributions in the
context of average case analysis, we still stand by our guiding principle that a language
that requires more than polynomial time almost everywhere is not polynomial time
on the average for any distribution.

4.3.2 Worst case average case

Moving further in our direction, and away from the definition in [BDCGIL92], C.
Rackoff in discussion of a preliminary draft of this paper [Rac95], suggested the
following even more stringent requirement as a possible definition for a distributional
problem (L,p) to be T on the p-average: There exists a Turing machine M that
accepts L such that for all n, the running time Ths satisfies

-1
¥ (o) ) o (12)
|z|=n Ed
Clearly if Ty satisfies Equation 12 it also satisfies our definition in Equation 8.
Does the converse hold? What justification can one provide for such a definition?
It turns out, for the notion of polynomial time on the average, that the above def-
inition 12 is equivalent to ours, provided distributions satisfy an additional condition.

Condition (W*) There exists s > 0 such that u, = (%)

Clearly, Condition W* implies Condition W. Thus, the equivalence theorem ap-
plies, and so, for distributions p that satisfy Condition W*, this notion of polynomial
time on the p-average is also equivalent to Levin’s.

Theorem 4.5 If a distributional problem (L, p) satisfies Condition W*, then it is in
Average-P if and only if for some polynomial T, it satisfies Fquation 12 for every n.

Proof. We only need to show that if the running time Ths of a machine accepting

L satisfies (T ()1
TM T

5 ey T

|z|2n

< W, (13)

]

for some k, and all n > 1, then, it also satisfies Equation 12 for some polynomial T'.
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Let t(z) = (TM(x))l/k. Let £ > 1+ s, where s > 0 is given in Condition (W*). By

convexity
¢
plx) ()"
(E::n tn "
p(z) Uz
< A/
- |g§=:n Un, nt
1 R
- unnf—l |g§_:n:u (J“> |.I|
1
S unnf‘lwn'
So,

= oy LD, (1)

T T
|z|=n

which is less than u, for all but finitely many n, by u, = ©(1/n°) and our choice of
(. 0O

It is not hard to show that the class of distributional problems that are polynomial
on the p-average is not the same as the class that Equation 12 defines, for distributions
that do not satisfy Condition W*. The essential idea is to note that if a distribution
p satsfies Condition W but not Condition W*, then for all &k, there exists a length ny,
such that wu,, < nl—k, where ny < ny < .... Using this sequence and Proposition 2.1,

it is possible to define a language L that is polynomial on the p-average, but that
fails to satisfy Equation 12 at infinitely many lengths n; for any Turing machine that
accepts L.

We believe that the notion expressed in Equation 12 is an interesting one. For
example, since it refines ours, one can prove a fine hierarchy theorem. Also, it reflects
the intuitive notion of average case problems in some cases, where it is important
to bound the average hardness of a problem for every length n. This is especially
relevant in areas such as cryptography and number theoretic problems. However,
we feel that it is more like a hybrid requirement, best described as the worst case
bound (over all lengths n) of the average case complexity (within each length n). Tt is
less suitable for a general notion of average case complexity, where some flexibility of
“smoothing” the complexity over various lengths is required. For instance, one would
need such flexibility in encoding, and in problem reductions.

As to Condition W*, it appears that it is too stringent to require this for all
distributional problems. It is quite reasonable to have a set of infinitely many lengths
where the problem is under-weighted, as long as it still satisfies Condition W, so
that for all n, the set of all strings of length greater than n have some non-trivial
probability.
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5 Random-access machines

In order to illustrate our technique one more time, we complete this paper by giving
a hierarchy theorem for random-access machines

Theorem 5.1 Let T,T" : N — N be logarithmico-exponential functions and assume
that T and T" are fully time constructible. Assume T'(n) = o(T(n)) Then, there is
a language L such that for every polynomial time computable distribution u, there is
a random-access machine M that decides L whose running time Ty is O(T) on the
p-average, but for every random-access machine M’ that decides L, the running time
of M'" isnot T' on the p-average.

Proof. It is known [GHS91] that there is a language L that is decided by a
random-access machine in time O(7'(n)) such that the running time of every random-
access machine M’ that decides L exceeds T'(n) almost everywhere. (This result is an
almost-everywhere version of a hierarchy theorem of Cook and Reckow for random-
access machines [CR73].) Let p be any polynomial time computable distribution that
satisfies Condition W. It is immediate that the running time of M is O(T'(n)) on the
p-average. However, it is also immediate, as in the proof of Theorem 4.3, that the
running time of M’ is not T' on the p-average. O
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