Dynamic Fault Diagnosis

William Hurwood

Yale University
will@math.yale.edu

Abstract

We consider a dynamic fault diagnosis problem: There are n processors, to be
tested in a series of rounds. In every testing round we use a directed matching to have
some processors report on the status (good or faulty) of other processors. Also in each
round up to ¢ processors may break down, and we may direct that up to ¢ processors
are repaired. We show that it is possible to limit the number of faulty processors
to O(tlogt), even if the system is run indefinitely. We present an adversary which
shows that this bound is optimal.

1 Introduction

Consider a computer system made up of thousands of processors. It is inevitable that some
of the processors will fail. Fault tolerant systems will function under the presence of a limited
number of faults, but even these must be located and fixed before too many accumulate.
One approach to finding these faulty processors is by using some of the processors to test
others.

This problem has led to the development of system level fault diagnosis. FEach of n
atomic processing units is assumed to be able to test every other unit. But when a faulty
unit carries out a test the result is unreliable. Such testing protocols have been usefully
implemented [5, 4].

Preparata, Metze and Chien first proposed a fault diagnosis model in [11]. They sug-
gested viewing the system as a graph with the processors as nodes and tests as edges.
Nakajima [10] introduced adaptive tests, where the tests performed in later rounds were
chosen after considering the results of the earlier rounds.

This naturally led to asking how many rounds of adaptive tests are needed to carry out
a complete diagnosis. This model was used in [6, 8, 2, 7, 3] in which the upper bound on the
number of rounds of testing as a function of n was eventually reduced from a linear bound,
through logarithmic and doubly-logarithmic bounds to a large constant bound. Recent
work in [1] has reduced the upper bound to 10 rounds. [1] also shows that at least 5 rounds
are needed to carry out complete diagnosis in the most general case.

In this paper we will consider a natural extension of this model. We will remove the
requirement that every processor have a fixed status throughout the testing procedure. Such
dynamic models have been considered before [9, 5, 4]. In these papers the authors presented
self-stabilizing distributed algorithms: if the processors stopped changing status then the
remaining good processors would eventually discover the status of all the processors in the
system.

We will consider a different model, the ongoing fault diagnosis model defined in Section 2.
In this model up to ¢ processors will break down, and up to ¢ processors can be repaired in
each round. The object is to select the tests that are performed in such a way that we can
find an upper bound K on the number of faulty nodes that could ever be simultaneously
present in the system.

We will show two major results. First we will show, by presenting an algorithm, that we
can take K = O(tlogt), independent of the size of n. That is that regardless of the number
of processors it is possible to ensure that at any time O(%logt) processors are simultaneously
faulty.

Second we will show that up to a constant factor this bound is the best possible. An
adversary can force at least flog ¢ simultaneously faulty processors.

Section 2 defines the model. In Sections 3 and 4 the testing algorithm is presented, and
analyzed. The lower bound is proved in Section 5.

2 Definitions
We formalize the ongoing dynamic parallel model of fault diagnosis below:

e The computing system is considered to be partitioned into n complex indivisible units
called processors or nodes.

e The operations on the system are performed as a sequence of rounds. Fach round
is divided into three parts. In the first part testing is performed, in the second part
some processors are repaired, in the third part some processors are corrupted.

e At the beginning of each round every processor has a status. It can either be good or
faulty. At the start of the procedure all of the processors have good status.

o A test is an interaction between two processors, a tester and a testee. The tester
claims to determine the status of the testee. If the tester is good then it will correctly
diagnose the testee. But if the tester is itself faulty then it has the option of incorrectly
diagnosing the testee. A processor is not permitted to test itself. If the tester reports
that the testee was good we shall say that the tester likes the testee, or that the test
was good.

e 'I'wo or more tests may be performed simultaneously within the testing part of a round.
But no processor may participate in more than one test during a round of testing. (A
round of tests is a directed matching on the processors, but not necessarily a perfect
matching.)

¢ In the repair part of the round up to ¢ processors may be repaired. When a processor
is repaired, its status immediately becomes good.

¢ In the third part of the round, up to ¢t processors may be corrupted. When a processor
is corrupted its status is immediately changed to faulty. It is possible for a processor
to be repaired and then corrupted again in the same round.

We will find it convenient to view the testing process as a contest between a deterministic
controller and an omniscient adversary. The controller decides which tests to perform and
which processors to repair, knowing only the results of earlier tests. The adversary hinders
the controller by using its knowledge of the controller’s future behavior to select which
processors are corrupted.

The procedure described above will be performed indefinitely. The controller’s objective
is to ensure that there is an upper bound K on the number of faulty processors present at
the start of every round, no matter what strategy the adversary follows. Also the controller
must only repair processors that it can prove to be faulty. The adversary seeks to ensure
that there is some round in which more than K processors are faulty.

3 Sifting Procedure

The object of this section and the following section is to describe an algorithm that the
controller can use to perform ongoing diagnosis. In this section we will describe a procedure
called sIFTING, which will be used repeatedly in the ongoing diagnosis.

SIFTING is performed on a set M of nodes. SIFTING tells the controller which tests to
perform between the nodes in M, and how to use the test results to partition M into a
class GG that is mostly good and a class F that is mostly faulty. F contains all the nodes
that were already faulty before SIFTING was applied. /' may also contain some nodes that
were good then, but there is an upper bound on the number of these initially good nodes
that get placed in F. GG does not contain any nodes that were faulty in the first round in
which SIFTING was applied.

However nodes that become faulty during the performance of SIFTING could be placed in
either class. Since the algorithm takes a known number of rounds, we have an upper bound
on the number of faulty nodes which could be present in G at the end of the algorithm.

The way that SIPTING works is to grow large subsets of M, which have the property:
either all the nodes in the set are faulty at the end of the procedure, or none of the nodes
in the set were faulty at the start of the procedure. Provided we have an upper bound & on
the number of nodes that were faulty before we started to apply SIFTING we can conclude
that a sufficiently big subset with the property cannot contain any nodes that were faulty
at the start of the procedure.

The subsets are grown by a procedure DOUBLE (Algorithm 2) which pairs off the elements
of two subsets. Algorithm 1 is called DOUBLING. It initializes the subsets, and calls DOUBLE
to grow them. It returns the subsets A¢ that it grew, along with a set of processors B
that were discarded during the doubling operation; these processors are said to have been
rejected.

3.1 Double and Doubling

Suppose we apply DOUBLING to a set M of m processors. Let d be the number of times
that DOUBLE is called, and suppose that 2%|m. We have the following lemma

Lemma 1 If at most k processors were faulty before we applied DOUBLING then
a. DOUBLING lakes 2d rounds of testing to carry out. |C]d| =27,
b. If any one of the processors in Aé— was faulty at the start of DOUBLING then the entire
set A} is faully when it is generated by DOUBLE.
c. 0 <1< k+(2d—1)t. At least | of the rejected processors are faulty at the end of
DOUBLING.
d. |B] <244 20-2.

Proof: Part ais clear. Part b is easily obtained by induction on the index i of DOUBLING.
Suppose that Aéj and Aéj_l both satisfy the property, and DOUBLE forms A;-H from them.

Suppose A;-H contaills an initially faulty node p, wlog p € Aéj. Consider ¢ € A;-H, s0
q € Ay, or ¢ € Ay; ;. In the first case ¢ is faulty by induction. In the second case, by

Input: (M,d): M is a set of m processors, d is the number of times DOUBLE will be

called.
Output: (A4,.. '7Ai/2d’ B,l): Af,.. .,Ai/Qd, B is a partition of M. [is an integer
such that B contains at least / faulty processors.

Method: Suppose M = {ay,as,...,a,} and that 2¢|m. Set Iy = 0 and

A ={a} A ={a} ... A% ={am)
B} =90 BY =90 ... BY =10
Y ={a} CY ={ay} ... C°% ={an}

For i=0 to d—1 do (CiF', AT Bit1 [.,,) = poUBLE(CL, AL, BL,1;);
Set B =J; B;l and [= ;.

Algorithm 1: The procedure DOUBLING

examining Algorithm 2, we see that ¢ liked its partner from Aé ; which is faulty by induction.
Since ¢ liked a faulty node while DOUBLE was being performed, ¢ must by faulty at that
time. So A;-'*'l is entirely composed of faulty nodes, when it is constructed. The base case
for the induction is immediate.

For part ¢ observe that [counts the number of pairs that are put into B because one
element of the pair doesn’t like the other. So at least one of the processors in the pair must
be faulty, and so [is a lower bound on the number of faulty processors in B. The upper
bound on [follows since at most k + (2d — 1)t nodes of M are faulty when the tests are
performed.

The reason that the upper bound on [is k& + (2d — 1)t not k + 2dt is because the
testing part of each round comes before the part in which processors are corrupted. So any
processors which are corrupted during the final round of DOUBLE still had good status when
all the tests took place. So they connot contribute to the size of [.

For part d observe that there are two ways a node could be rejected. Either it is in a test
in which one node doesn’t like the other one, or for some i, j it is one of the |A§]—| — |Aéj_1|
nodes from Aéj which are rejected because there are no nodes in Aéj—l to pair them with.
As we have seen there are exactly 2/ nodes which are rejected for the first reason. The
reordering of the A;- described by equation (1) ensures that in the ith call to DOUBLE at

most |C*~1| = 2!~! nodes can be rejected for second reason. However when i = 1, every
A} is a single processor, so no processors are rejected on the first call to DOUBLE. So on
summing we get that at most 2l + 2+ 4+ -+ -+ 29=1 nodes can be rejected. O

3.2 Sifting

DOUBLING returns sets A%, and B which satisfy lemma 1. SIFTING (see Algorithm 3) calls
DOUBLING and constructs a partition of M, into two sets G and F. It defines F’ to be the

Input: (Ch,...,Cor, Ay, ..., Ay, B, ..., By, 1): The C; are equally sized disjoint sets.
Fach C; is partitioned into two sets: A; and B;. [is an integer such that UB; contains
at least [faulty processors.

Output: (Cy,...,CL, AL, ... AL By, ..., B l'): The (7 are equally sized disjoint sets
with UC; = UC?. Fach C7 is partitioned into two sets: A% and Bj. I is an integer such
that UB;- contains at least [’ faulty processors.

Method: We can reorder the A; so they satisfy
0 < [A] < JAg] <10 <Ay | <G (1)

Set C; = (-1 U Uy, for 1 < j < r. The procedure takes two rounds. In one round
have every processor in Ay;_; test a different processor in A,;. In the second round, let
each processor in Ay; that was tested in the first round, test the processor from Ay;_q
that tested it.

Let A; consist of those pairs of processors from Ay;_; and Ay; which liked each
other. Let B} contain any other processors from C?. Set I to be [plus the number of
pairs tested where some processor in the pair didn’t like the other processor.

Algorithm 2: The procedure DOUBLE

union of B and those A;‘-l satisfying
|AY < k4 (2d = 1)t - L. (2)

We say that GG is the set of processors accepted by sSIFTING, F'is the set of rejected processors.
We say that Ag' is rejected if its members are placed in F.

Lemma 2 All the processors accepted by SIFTING were good at the start of the procedure.

Proof: Suppose @ € M and a was initially faulty. If « € B then a is rejected, since B C F.

Input: (M,d,k): M is a set of m processors, d is the number of times that DOUBLE
is to be called and & is an upper bound on the number of faulty processors initially
present in M.

Output: (G, F): A partition of M.

Method: Tet (AY,.. .,Ai/Qd,B,l) = DOUBLING(M,d). Set G = M \ I where

F=BU[J{A? | <k+ (2d— 1)t —1}.

Algorithm 3: The procedure SIFTING

Otherwise we have a € A;l for some 7, and by lemma 1 part b all the processors in A;-l
are faulty during the last round of tests. There are at most k£ 4 (2d — 1)t faulty processors
in M, and by part c at least [of them are in B and so can’t be in A;-l. Thus we have that

|AY < b+ (2d = 1)t — L.

But this is precisely the condition that will cause A;—l to be rejected. |
Now we will use the bound on |B| given in lemma 1, to prove an upper bound on the
size of F.
Suppose A? is rejected. Then since |A%] + |B| = 27 we have

|BI > 27—k — (2d — 1)t + 1. (3)

Consider a set CJ‘-Z whose A;-l part is rejected. Then equation (3) gives a lower bound
on |B¢|. But lemma 1 gave an upper bound on |B|, the union of all the Bf. So we have
an upper bound on the number of C’;l whose A;-l parts were rejected. |F'| cannot be greater
than the value obtained by taking B and each rejected A;'-l to be as large as possible, and
by rejecting as many A;l as possible. That is

max(| B|).max(|rejected A¢])

<
= min(|rejected B;l|)

+ max(|B]) (4)

where by “rejected Bf” we mean a Bg whose corresponding A? was rejected.
Substituting in the lower and upper bounds for these quantities that were proved in (2,
lemma 1(d), 3) and simplifying we get

(24 — 2 4 2)24
T h—(2d— 1)t +1 (5)

7] <
2

This bound on the size of F' depends on [. But the adversary is able to control the size
of [by the manner in which it arranges the faulty processors, so we need a bound on F
independent of [.

Theorem 3

7] { 29 4 2k +2(2d — 1)t —2 when 2k + 2(2d — 1)t —2 < 24

#_% when k + (2d — 1)t < 24 < 2k + 2(2d — 1)t — 2.
(6)

Proof: Let f(/) be the expression on the right hand side of (5). Lemma 1(c) states

that 0 < [< k4 (2d — 1)t. It is easy to see that f(/) is monotonic within this range. If

2k+2(2d—1)t—2 < 2% then f is increasing and so it is maximized by taking [= k+(2d—1)t.

In the other case f is decreasing, and so f(/) is maximized by setting [= 0. a
Let F(d,k,t) denote the value of this bound for particular values of d, k and t.

Input: (T,U,Z,E,d, kr): T,U, Z, F are four disjoint sets of processors satisfying |T| =
|U| and |Z| + |E| = (2d 4 1)t for the given integer d. kr is a bound on the number of
faulty processors initially present in 7.

Output: (T',U',7"): A new partition of TUU U Z U E into T, U’ and 7'.

Method: Pair up the processors from 7" and U. Spend one round having every processor
from T testing its partner in U. Let (G, I") = sIFTING(T, d, kT + t). (We assume that
24||T| so that sIFTING can be applied.)

Spend the repair parts of these 2d + 1 rounds repairing all the processors in Z.
Perform no action at all with the processors in .

Let U, be those processors from U which were paired with some processor from F.
Partition U \ U, into Uy and U, where U, contains those processors from U whose
partner in & diagnosed that they were good, and Uy is the processors whose partner
diagnosed that they were faulty. Set 7" =GU ZUU,, U' = FUU, U F and Z' = Uy.

Algorithm 4: The procedure WINNOWING

4 Ongoing Diagnosis

Our objective is to provide an algorithm to be used by the controller which ensures that
at all times there is a known bound on the number of faulty processors in the system, and
which never repairs a good processor. The algorithm SIFTING presented in the last section
is unable to detect any faulty processors with certainty. Instead it identifies some processors
that were good at the start of the application of sIFTING.

This suffices, since we can make each processor a carry out some test T, before we apply
SIFTING. In effect siFTING validates some of the T, by showing that the processors which
made the tests were good at the start of SIFTING, and so were good when they made their
test. If @ was good, and I, said its testee was faulty, we now have a definite diagnosis of a
faulty processor.

This suggests the WINNOWING procedure given as Algorithm 4. In a call to WINNOWING
the set 1" of testers is used to test a set U of processors with unknown status. We are given
an initial bound k7 on the number of faulty processors in 'I’, so we can apply SIFTING to 1.
This will let us diagnose most of the processors from U/. The processors in % have been
previously identified as faulty and are repaired during the call. Nothing is done with the
extra processors in /; they are there in case we do not want to repair the maximum possible
number of processors in this call.

It is easy to establish that WINNOWING returns: in 7"’ processors that were good at some
point during the call, in U’ processors that were not diagnosed, and in 7’ processors that
were faulty at the start of the call. We deduce that

Lemma 4 The sets returned by WINNOWING(T, U, Z, E, d, kt) satisfy
a. All the processors in Z' are faulty.

b. |U'| <2E(d,kr+t,t)+ (2d + 1)t.

c. At most (2d + 1)t of the processors in T" are faulty.

Proof: Part a follows easily from the definition of WINNOWING.

Every processor in U’ was either in F, U,, or in E. (See Algorithm 4 for this notation.)
But |U,| = |F|, so |U'| = 2|F| 4 |F| and the bound for part b follows from theorem 3.

For part ¢ observe that every processor in 17 is known either to have been good at the
beginning of the application of SIFTING (those processors from G and Y,) or was repaired
while WINNOWING was executing. So if a processor in T” is faulty at the end of the procedure
it must have changed status to faulty during the procedure. Since wINNOWING takes 2d 4 1
rounds to perform, at most (2d 4 1)t processors can have done this. a

The ongoing diagnosis is performed by repeatedly calling WINNOWING. Given the sets
T', U" and 7' returned by WINNOWING, we have to construct new sets 7", U", Z" and E"
suitable for the next call to WINNOWING. Lemma 4 shows that elements of Z’ are suitable
to be used in Z” (since they are known to be faulty) and that elements of 7" are suitable to
be used in 7" (since there is a known bound on the number of faulty nodes in 7”). There
is no requirement that elements of /" must satisfy, so we assemble UU” from elements of U’
and any left over elements of 77 and Z'.

Since we want to repair as many processors as possible, we make Z” as large as possible,
so that E” =) if possible. But if |Z’| < (2d + 1)t we don’t have enough processors that are
known to be faulty. In that case we have E” # (). There is no special requirement on the
processors in £’ since nothing is done with them anyway. So they can be taken from 7"
or U’ as needed.

All that remains to be shown is that for a suitable choice of d, and for sufficiently large n,
there will always be enough elements in 7" to fill 7. By lemma 4(c) this means that we
can take k7 = (2d + 1)t, and so k = (2d + 2)t for each call to SIFTING.

Now choose d to be the smallest integer such that

29> 2k + 2(2d — 1)t — 2 = 8dt + 2t — 2 (7)

and so by theorem 3

E(d,k,t) =27 4 8dt + 2t — 2.

By lemma 4 we have

V/| <229 4 18dt + 5t — 4. (8)

Let us call a processor concealed if on the call to WINNOWING it is in fact faulty at the
end of the call but is not placed in Z’. Let C’ be the set of concealed processors. Since we
have a bound on the size of U’ and on the number of faulty processors in T’, we have a
bound on C’, namely |C'| < 2- 2% 4 20dt + 6t — 4.

On calling WINNOWING the total number of faulty processors can grow by at most
(2d + 1)t — |Z] processors. Hence |Z'| is less than or equal to the maximum number of
concealed processors (present after the previous call) plus (2d 4 1)t. We have

|Z!] < 2-2% 4 22dt + Tt — 4. (9)

Since |T’| + |U’'| 4+ |Z'| = n, the upper bounds given above for |U’| and |Z’| give us the
needed lower bound on |T7|:

|T'| > n — (4-2% + 42dt + 13t — 8) (10)

We need n sufficiently large so that, even if |T’| is minimal, we can still find the partition
into 7", U", Z", and W”. Since |T"| = |U"| and |Z"| + |E"| = (2d + 1)t we want 2|T"| +
(2d + 1)t > n. So using (10) we need

n > 8.2% 4 82dt + 25t — 16

In order to apply SIFTING we need Qd‘|T|. This increases the minimum n by at most
224,

We also need to estimate d. For t > 70, we can take d < 2logt. However we can
estimate 2¢ more closely by recalling that d is selected so that 291 < 8dt + 2t — 2 < 29,
Hence

29 < 16dt 4+ 4t — 4 < 4A8tlogt + 4t — 4

In the first call to WINNOWING no processors are faulty yet, so we can arbitrarily place
processors in T, U and F, with Z = (). In summary we have shown

Theorem 5 Lett > 70 and n > 562t log(t) + 65¢. Then we can perform ongoing diagnosis
so that at most 118t logt 4+ 15t processors are ever simultaneously faulty.

Theorem 5 doesn’t cover the cases with small . However the analysis is still mostly
accurate. For example, it can be shown that for ¢ = 1, if we take n = 560 a variant of
the algorithm can be run indefinitely, with never more than 131 processors simultaneously
faulty.

5 Lower Bound

The aim of this section is to prove that in the ongoing diagnosis model it is impossible for
the controller to prevent tlogt processors from being simultaneously faulty. So Theorem 5
is optimal up to a constant factor. Obviously we cannot prove that ¢ log ¢t processors become
faulty if n < tlogt. We shall assume that n > 3tlog?.

We will view the ongoing diagnosis as a series of phases. Each phase will consist of a
finite number of rounds. In every round the adversary will break ¢ processors. We will show
that during every phase at least one of the following statements must be true

1. The controller repairs a processor which in fact had good status.
2. There is some round in which the controller fails to repair ¢ processors.

3. At least tlogt processors were faulty at the start of the phase.

Its is clear that each phase in which statement 1 or 2 is true increases the number of
faulty processors in the system by one. So after at most tlogt phases, statement 3 will be
true.

Suppose the adversary declares some round to be the first round of a new phase. lLet
N be the set of processors, partitioned into a set Xy of initially faulty processors and Y;
of initially good processors. It is probable that the controller will have some information
about the status of some of the processors, which it gained from results of tests carried out
in previous phases.

We will allow for this information by supposing that the adversary presents the controller
with the status of every processor at the start of each phase. Thus the controller starts the
phase knowing the entire state of the system.

5.1 The Designated Strategy

Since the controller is deterministic and the adversary is omniscient, the adversary can
precisely predict what the controller will do in response to any particular set of test results.
The adversary can foresee how the controller would respond to the following scenario:

e Every faulty processor which performs a test announces that its testee is faulty.
¢ Inround 7, define R; to be the set of processors that the controller would have repaired.

e In round i, corrupt some S; C R;, where S; = Ry and |S;| = max{t — 2°~",0} for
> 1.

We call this scenario the designated strategy. The status that a processor would have had in
round ¢ if the adversary had used the designated strategy is called the processor’s designated
status.

The adversary will corrupt nodes in such a way that the controller sees precisely the
same test results as it would have seen if the adversary had been following the designated
strategy. So the deterministic controller will repair the same sets R; as it repairs for the
designated strategy.

Define the true strategy to be the strategy that the adversary actually follows. A node’s
status under this strategy is called its true status. Let p € N be the first node that the
controller repairs which it didn’t know to be faulty because it had been given its status at
the start of the phase. Let & + 1 be the round in which it performs this repair. (So it is
possible that p was faulty at the start of the phase, and the controller repairs it for the
second time in round k.) We shall show that the adversary can find a true strategy which
satisfies the following during the first [logt] rounds:

o All test results are the same as the results from the designated strategy. We say that
a strategy with this property is consistent (with the designated strategy).

e The adversary corrupts precisely ¢ processors in each round.

e The adversary never corrupts the processor p.

10

This suffices to show that the adversary has the required properties. If £ > logt¢ and
statement 2 is false, then 3 must be true, since the controller repaired at least tlogt faulty
processors from X;. But if £ < logt, then the controller will have repaired a processor
whose true status was good, and so statement 1 will be true.

5.2 The Adversary’s Strategy

We will call a processor a masquerade in a given round if its true status and its designated
status are different. Let M; denote the set of masquerades in round i. Since the adversary
wants to follow a consistent strategy, it wants to have as few masquerades as possible. The
next lemma will show that it will greatly simplify matters if the adversary follows a strategy
in which the only masquerade which is designated “faulty” (and thus is truly good) is p.

Lemma 6 If p is the only masquerade designated “faulty” then for 1 <1 < k—1 we have
a. M; C M;4q
b. If p € M; then |M;| = 2'. Otherwise |M;| = 2" — 2.

Proof: First we prove part a. Let p € M; and consider two cases: First suppose p is
designated “faulty” in round i, so p = p. By the definition of p the controller will not
repair p until round k£ 4+ 1, so p will have designated status “faulty” in round 7 + 1. Since
a true strategy never corrupts p, p’s true status in round ¢ + 1 will be good. So p € M;44.

Otherwise p was designated “good” in round 7. But in the designated strategy no
processor ever changes state from “good” to “faulty”, since 5; C R;. So p will be designated
“good” in round 7+ 1. In rounds 1 to k£ the controller only repairs processors that it knows
to be faulty. All of these processors must have designated status “faulty”. p has designated
status “good” so it will not be repaired. Thus its true status will be faulty in round 7 + 1,
and so p € M;4,.

For part b we have two cases: First suppose p € M;. In round 1 there are no masquer-
ades. Round j introduces |R;| — |S;| new masquerades that will be present in round j + 1.
So in round 7 the number of masquerades will be 0 +24+4+4 ...+ 2i=1 — 91 _ 9 But if
p € M, then the number of masquerades is increased by two, since p being designated
“faulty” forces an additional faulty processor to be designated “good”. |

So in moving from round 7 to round 2+ 1 the number of masquerades present increases
by at least a factor of two. So for every masquerade who position is forced in round 7 + 1,
(either because it is p becoming a masquerade for the first time, or because it is an existing
masquerade in round 7) the adversary has a new masquerade to place whose location is
undecided. It can place these to conceal the location of the existing masquerades. That is,
it will place them to ensure that the true strategy is consistent.

Consider a test that is carried out in round 74 1. The adversary uses its power to choose
which processors to corrupt in round ¢, to ensure that the test gives a consistent result.

The following table shows every possible combination of the true and designated status
of the tester v and the testee u. The entry in the table states the result that the controller
would see if the adversary was following the designated strategy. Those entries marked with
a 4/ are the ones where the adversary can give the required test result. Since the adversary
seeks a consistent strategy, it must avoid the combinations marked with an x.

11

Status of testee u
Round 7 + 1 test Designated “good” Designated “faulty”
truly good ‘ truly faulty | truly good ‘ truly faulty
truly good good faulty faulty
designated | good v X X v
Status “good” truly good good faulty faulty
of
tester faulty v v v v
v truly faulty faulty faulty faulty
designated | good X v X v
“faulty” truly faulty faulty faulty faulty
faulty | Vv v y

From the table we can see that if the tester » is truly faulty then the test will be
consistent. So if v # p and u € M;, it is sufficient for the adversary to corrupt » in round ¢
(if v isn’t already faulty). Similarly if v = p and it is designated “faulty” in round 7 4 1,
then we see from the table that it is sufficient for the adversary to corrupt « in round 1.
(Again the adversary would do nothing if u were already faulty.)

Since the adversary must corrupt ¢ processors, it is possible that the last two paragraphs
failed to specify all the processors that it needs to corrupt. In that case it is free to choose
the other processors to corrupt in any way that doesn’t lead to an inconsistent strategy. If
it corrupts processor u in round 7, then it must ensure that v is truly faulty in round 2 + 1,
if » tests # in round 7 + 1.

But there is a problem if p tests a masquerade (which is necessarily a faulty processor)
when p is designated “good”. The adversary gains nothing by corrupting the testee (indeed
it is already faulty), nor can it corrupt the tester since it is p. So it can do nothing in this
situation.

The way to avoid this problem is to plan ahead so it doesn’t occur. If it ever happens
that p is a masquerade then the problem cannot occur in subsequent rounds since p will
never be designated “good” in the future. As long as p doesn’t become a masquerade, the
only way that the adversary can be forced to make a processor into a masquerade is if it
tests a processor that was made into a masquerade in an earlier round. So by examining the
testing graphs we can find all the processors which, if they were made into masquerades,
would force p to test a masquerade in a later round. As long as we avoid corrupting any of
these processors, the problem will not arise. Define the sets Dy, Dy_1,..., D1 recursively
like this.

e Dy contains p and also the processor which tests p in round £, if there is one.

e D; contains all of D;y; and any processors which test a processor from D;iq in
tound 7 + 1.

Observe that |D;| < 2k=i+1 We argued that as long as we never make any processor in D;
into a masquerade in round 7 we will obtain a consistent strategy. A processor is unsuitable

12

to be a new masquerade if its already in M;, if it is designated “faulty” in round 7 + 1, if it
isin D;yq or if it is tested by a processor in D;y1. Since we are assuming that statement 3
is not true, fewer than ¢logt processors are masquerades or designated “faulty”. Since

9 . ok=(i41)+1 _ ok—i+1 < ok < tlogt

at most tlogt processors are eliminated because of the D;y1 condition. Because we are
assuming n > 3tlogt we will have more than enough processors available to choose the new
masquerades.

6 Conclusion

We have shown in Theorem 5 that no matter how large n is, the controller is able to follow a
strategy in which O(tlogt) processors become simultaneously faulty. Section 5 shows that
there is no strategy that the controller can follow that can prevent ¢logt processors from
becoming simultaneously faulty. So Theorem 5 is optimal, up to a constant factor.

A few other observations: Since the adversary presented in Section 5 corrupts t pro-
cessors every round, it will not help the controller if it is told how many processors are
corrupted each round. Similarly it will be no help to the controller if it isn’t required to
prove a processor is faulty before it repairs it. (It might seem that this is useful in situations
where the adversary doesn’t corrupt ¢ processors in some round.)

It is not hard to modify the arguments in Section 5 to apply without the restriction
n > 3tlogt. We find that for smaller n we can prove that eventually at least one ninth of
the processors must become simultaneously faulty.

However if is interesting to note that if we consider a changed model in which the
controller is permitted to repair 2t processors each round, and isn’t required to prove that
a processor is faulty before repairing it, then an algorithm can be found in which the bound
on the total number of faulty processors simultaneously present is linear in f.

References

[1] Richard Beigel, William Hurwood, and Nabil Kahale. Fault diagnosis in a flash. Tech-
nical Report 1051, Yale University, 1994.

[2] Richard Beigel, S. Rao Kosaraju, and Gregory F. Sullivan. Locating faults in a constant
number of testing rounds. In Proceedings of the 1st Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 189—-198, 1989.

[3] Richard Beigel, Grigorii Margulis, and Daniel A. Spielman. Fault diagnosis in a small
constant number of parallel testing rounds. In Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1993.

[4] Ronald P. Bianchini, Jr. and Richard Buskens. An adaptive distributed system level-
diagnosis algorithm and its implementation. In Proceedings of 21st Int. Symp. on Fault
Tolerant Computing, pages 222-229, 1991.

13

[5] Ronald P. Bianchini, Jr., K. Goodwin, and D. S. Nydick. Practical application and
implementation of distributed system-level diagnosis theory. In Proceedings of 20th Int.
Symp. on Fault Tolerant Computing, pages 332-339, June 1990.

[6] S. Louis Hakimi and Kazuo Nakajima. On adaptive system diagnosis. IEEFE Transac-
tions on Computers, C-33(3):234-240, March 1984.

[7] S. Louis Hakimi, M. Otsuka, Edward F. Schmeichel, and Gregory F. Sullivan. A parallel
fault identification algorithm. Journal of Algorithms, 11:231-241, 1990.

[8] S. Louis Hakimi and Edward F. Schmeichel. An adaptive algorithm for system level
diagnosis. Journal of Algorithms, 5:526-530, 1984.

[9] S. H. Hosseini, Jon G. Kuhl, and Sudhakar M. Reddy. A diagnosis algorithm for
distributed computing systems with dynamic failure and repair. IFFFE Transactions
on Computers, C-33(3):223-233, March 1984.

10] Kazuo Nakajima. A new approach to system diagnosis. In Proc. 19th Annu. Allerton
J pp y g
Conf. Commun. Contr. and Comput., pages 697-706, September 1981.

[11] Franco Preparata, Gernot Metze, and Robert Chien. On the connection assignment
problem of diagnosable systems. IEEF Transactions on FElectronic Computers, EC-

16(6):848-853, December 1967.

14

