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Abstract

We attempt to reconcilethetwo distinct views of approximationclasses. syntacticand computational.
Syntactic classes such as MAX SNP permit structura results and have natural complete problems, while
computational classes such as APX allow usto work with classes of problems whose approximability is
well-understood. Our results provide a syntactic characterization of computationa classes, and give a
computational framework for syntactic classes.

We compare the syntacticaly defined class MAX SNP with the computationally defined class
APX, and show that every problem in APX can be “placed” (i.e, has approximation preserving
reduction to a problem) in MAX SNP. Our methods introduce a general technique for creating
approximati on-preserving reductions which show that any “well” approximable problem can be reduced
in an approximation-preserving manner to a problem which is hard to approximate to corresponding
factors. We demonstrate thistechnique by applying it to the classes RMAX(2) and MIN F*15(1) which
have the clique problem and the set cover problem, respectively, as complete problems.

We use the syntactic nature of MAX SNP to define a generd paradigm, non-obliviouslocal search,
useful for devel oping simple yet efficient approximation agorithms. We show that such algorithms can
find good approximationsfor all MAX SNP problems, yielding approximation ratios comparable to the
best-known for a variety of specific MAX SNP-hard problems. Non-oblivious loca search provably
out-performs standard local search in both the degree of approximation achieved and the efficiency of
the resulting algorithms.
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1 Introduction

The approximability of NP optimization (NPO) problems has been investigated in the past via the def-
inition of two different types of problem classes: syntactically-defined classes such as MAX SNP, and
computationally-defined classes such as APX (the class of optimization problemsto which a constant factor
approximation can be found in polynomia time). The former is useful for obtaining structural results
and has natural complete problems, while the latter allows us to work with classes of problems whose
approximability is completely determined. We attempt to develop linkages between these two views of
approximation problems and thereby obtain new insights about both types of classes. We show that a
natural generalization of MAX SNP rendersit identical to the class APX. Thisisan unexpected vaidation
of Papadimitriou and Yannakakis's definition of MAX SNP as an attempt at providing a structura basis
to the study of approximability. As a side-effect, we resolve the open problem of identifying complete
problems for MAX NP. Our technigues extend to a generic theorem that can be used to create an approx-
imation hierarchy. We also develop a generic agorithmic paradigm which is guaranteed to provide good
approximationsfor MAX SNP problems, and may also have other applications.

1.1 Background and Motivation

A wide variety of classes are defined based directly on the polynomial-timeapproximability of the problems
contained within, e.g., APX (constant-factor approximable problems), PTAS (problems with polynomial-
time approximation schemes), and FPTAS (problems with fully-polynomial-time approximation schemes).
The advantage of working with classes defined using approximability as the criterion isthat it allows usto
work with problems whose approximability iswell-understood. Crescenzi and Panconesi [9] have recently
al so been ableto exhibit compl ete problemsfor such classes, particularly APX. Unfortunately such complete
problems seem to be rare and artificial, and do not seem to provide insight into the more natural problems
in the class. Research in this direction has to find approximation-preserving reductions from the known
completebut artificial problemsin such classesto the natural problemstherein, with aview to understanding
the approximability of the latter.

The second family of classes of NPO problems that have been studied are those defined via syntactic
considerations, based on a syntactic characterization of NP due to Fagin [10]. Research in this direction,
initiated by Papadimitriou and Yannakakis [22], and followed by Panconesi and Ranjan [21] and Kolaitis
and Thakur [19], has |led to the identification of approximation classes such as MAX SNP, RMAX(2), and
MIN FtM2(1). The syntactic prescription in the definition of these classes has proved very useful in the
establishment of complete problems. Moreover, the recent results of Arora, Lund, Motwani, Sudan, and
Szegedy [3] have established the hardness of approximating complete problems for MAX SNP to within
(specific) constant factors unless P = NP. It isnatural to wonder why the hardest problemsin this syntactic
sub-class of APX should bear any relationto all of NP,

Though the computational view alows usto precisely classify the problems based on their approxima-
bility, it does not yield structural insightsinto natural questions such as: Why certain problems are easier
to approximate than some others? What is the canonical structure of the hardest representative problems
of agiven approximation class? and, so on. Furthermore, intuitively speaking, this view is too abstract to
facilitate identification of, and reductions to establish, natural complete problemsfor aclass. The syntactic
view, on the other hand, is essentially a structural view. The syntactic prescription gives a natural way of
identifying canonical hard problems in the class and performing approximation-preserving reductions to
establish complete problems.

Attempts at trying to find a class with both the above mentioned properties, i.e., natural complete
problemsand capturing al problemsof a specified approximability, have not been very successful. Typically
the focus has been to relax the syntactic criteria to alow for a wider class of problems to be included in



the class. However in all such cases it seems inevitable that these classes cannot be expressive enough to
encompass al problems with a given approximability. Thisis because each of these syntactically defined
approximation classesisstrictly contained in the class NPO; the strict contai nment can be shown by syntactic
considerationsalone. Asaresult if we could show that any of these classes contains all of P, then we would
have separated P from NP. Wewould expect that every class of thisnature would be missing some problems
from P, and this has indeed been the case with all current definitions.

We explore a different direction by studying the structure of the syntactically defined classes when we
look at their closure under approximation-preserving reductions. The advantage of thisisthat the closure
mai ntai nsthe compl ete problems of the set, while managing to include all of Pinto the closure (for problems
in P, the reduction is to simply use a polynomial time algorithm to compute an exact solution). It now
becomes interesting, for example, to compare the closure! of MAX SNP (denoted MAX SNP) with APX.
A positiveresolution, i.e., MAX SNP = APX, would immediately imply the non-existence of a PTAS for
MAX SNP-hard problems, sinceit isknown that PTAS isastrict subset of APX, if P # NP. On the other
hand, an unconditional negative result would be difficult to obtain, sinceit would imply P # NP.

Hereweresolvethisquestionintheaffirmative. Theexact nature of theresult obtained depends upon the
precise notion of an approximation preserving reduction used to define the closure of the class MAX SNP.
The strictest notion of such reductions available in the literature are the I.-reductions due to Papadimitriou
and Yannakakis [22]. We introduce a new notion of reductions, called F-reductions, which are a dight
extension of L-reductions. Using such reductions to define the class MAX SNP we show that this equals
APX-PB, the class of al polynomially bounded NP optimization problems which are approximable to
within constant factors. By using slightly looser definitions of approximation preserving reductions (and
in particular the PTAS-reductions of Crescenzi et a [8]) this can be extended to include al of APX into
MAX SNP. We then build upon this result to identify an interesting hierarchy of such approximability
classes. An interesting side-effect of our resultsis the positive answer to the question of Papadimitriou and
Yannakakis[22] about whether MAX NP has any compl ete problems.

Thesyntacticview seemsuseful not only in obtaining structural complexity resultsbut al'so in developing
paradigms for designing efficient approximation algorithms. Exploiting the syntactic nature of MAX SNP,
we develop a general paradigm for designing good approximation algorithms for problems in that class
and thereby provide a more computational view of it. We refer to this paradigm as non-oblivious local
search, and it isamodification of the standard local search technique[24]. We show that every MAX SNP
problem can be approximated to within constant factors by such agorithms. It turns out that the perfor-
mance of non-obliviouslocal search is comparable to that of the best-known approximation algorithms for
severa interesting and representative problemsin MAX SNP. An intriguing possibility isthat thisisnot a
coincidence, but rather ahint at the universality of the paradigm or some variant thereof.

Our results are related to some extent to those of Ausiello and Protasi [4]. They define a class GLO
(for Guaranteed Local Optima) of NPO problems which have the property that for al localy optimum
solutions, the ratio between the value of the globa and the local optimum is bounded by a constant. It
follows that GLO is a subset of APX, and it was shown that it is in fact a strict subset. We show that
a MAX SNP problem is not contained in GLO, thereby establishing that MAX SNP is not contained in
GLO. Thiscontrasts with our notion of hon-obliviouslocal search which is guaranteed to provide constant
factor approximations for al problemsin MAX SNP. In fact, our results indicate that non-obliviouslocal
search is significantly more powerful than standard local search in that it delivers strictly better constant
ratios, and aso will provide constant factor approximationsto problemsnot in GLO. Independently of our
work, Alimonti [1] has used a similar local search technique for the approximation of a specific problem
not contained in GLO or MAX SNP.

*Papadimitriou and Yannakakis [22] hinted at the definition of MAX SNP by stating that: minimization problems will be
“placed” in the classesthrough L-reductions to maximization problems.




1.2 Summary of Results

In Section 2, we present the definitions required to state our results, and in particular the definitions of an F-
reduction, APX, APX-PB, MAX SNP and MAX SNP. In Section 3, we show that MAX SNP = APX-PB.
A generic theorem which alows to equate the closure of syntactic classes to appropriate computational
classesis outlined in Section 4; we aso devel op an approximation hierarchy based on this result.

The notion of non-oblivious local search and NON-OBLIVIOUS GLO is developed in Section 5. In
Section 6, we illustrate the power of non-obliviousness by first showing that oblivious local search can
achieve at most the performance ratio 3/2 for MAX 2-SAT, even if it is allowed to search exponentially
large neighborhoods; in contrast, avery simplenon-obliviouslocal search algorithm achieves aperformance
ratio of 4/3. We then establish that this paradigm yields a 2 /(2F — 1) approximationto MAX k-SAT. In
Section 7, we provide an aternate characterization of MAX SNPviaaclassof problemscalled MAX k-CSP.
It is shown that a simple non-oblivious algorithm achieves the best-known approximation for this problem,
thereby providing auniformapproximationfor al of MAX SNP. In Section 8, wefurther illustratethe power
of this class of agorithms by showing that it can achieve the best-known ratio for a specific MAX SNP
problem and for VERTEX COVER (which is not contained in GLO). Thisimpliesthat MAX SNP is not
contained in GLO, and that GLO is strict subset of NON-OBLIVIOUS GLO. In Section 9, we apply it to
approximating the traveling salesman problem. Finally, in Section 10, we apply thistechniqueto improving
along-standing approximation bound for maximum independent sets in bounded-degree graphs.

A preliminary version of this paper appeared in [18].

2 Prdiminariesand Definitions

Given an NPO problem IN and an instance Z of I, we use |Z| to denote the length of Z and O PT'(Z) to
denote the optimum value for this instance. For any solution S to 7, the value of the solution, denoted
by V(Z, S), is assumed to be a polynomial time computable function which takes positive integer values
(see[7] for a precise definition of NPO).

Definition 1 (Error) Asolution S to aninstanceZ of an NPO problem N haserror £(Z, S) if

1 _VEs)
1+£&(Z,5) = OPT(T)

<1+ &(Z,5).

Notice that the above definition of error applies uniformly to the minimization and maximization
problemsat al levels of approximability.

Definition 2 (Performance Ratio) An approximation algorithm A for an optimization problem N has
performance ratio R (n) if, given an instance Z of M with |Z| = n, the solution A(Z) satisfies

V(Z,A(Z)) OPT(I)
m { OPT(I) ’V(I,A(I))}—R(n)'

A solution of value within a multiplicativefactor r of the optimal valueisreferred to as an r-approximation.

The performanceratio for A isR if it dways computes a solutionwith error at most R — 1.



2.1 E-reductions

We now describe the precise approximation preserving reduction we will use in this paper. Various other
notions of approximation preserving reductions exist in the literature (cf. [2, 16]) but the reduction which
we use, referred to asthe F-reduction (for error-preserving reduction), seemsto be the strictest. Aswe will
see, the F-reduction is essentialy the same as the L-reduction of Papadimitriou and Yannakakis [22] and
differs from it in only one relatively minor aspect.

Definition 3 (E-reduction) A problem IN E-reduces to a problem M’ (denoted M g M’) if there exist
polynomial time computable functions f, ¢ and a constant  such that

e fmapsaninstanceZ of N to aninstanceZ’ of M’ such that O PT'(Z) and O PT(1') are related by a
polynomial factor,

e g maps solutions S’ of 7’ to solutions S of Z such that

£(I,8) < BE(T', ).

Remark 1 An E-reductionisessentially the strictest possible notion of reduction. It requiresthat the error
for M belinearly related to the error for M’. Most other notions of reductionsin the literature, for example
the F-reductions and P-reductions of Crescenzi and Panconesi [9], do not enforce this condition. One
important consequence of this constraint is that £-reductions are sensitive, i.e.,, when Z € I is mapped
to Z' € M’ under an E-reduction then a good solution to 7’ should provide structural information about
a good solution to Z. Thus, reductions from real optimization problems to decision problems artificially
encoded as optimization problems are implausible.

Remark 2 Having N o« M’ impliesthat N is as well approximable as M’; in fact, an F-reductionis an
FPTAS-preserving reduction. An important benefit is that this reduction can applied uniformly at all levels
of approximability. Thisis not the case with the other existing definitionsof FPTAS-preserving reductionin
theliterature. For example, the FPTAS-preserving reduction (F-reduction) of Crescenzi and Panconesi [9]
is much more unrestricted in scope and does not share this important property of the F-reduction. Note
that Crescenzi and Panconesi [9] showed that there exists a problem M’ € PTAS such that for any problem
M e APX, NN g M’. Thus, there is the undesirable situation that a problem N with no PTAS has a
FPTAS-preserving reduction to a problem M’ with a PTAS.

Remark 3 The L-reduction of Papadimitriouand Yannakakis[22] enforces the condition that the optima of
aninstanceZ of I belinearlyrelated to the optima of theinstanceZ’ of M’ towhichitismapped. Thisappears
to be an unnatural restriction considering that the reduction itself is allowed to be an arbitrary polynomial
time computation. Thisisthe only real difference between their I -reduction and our F-reduction, and an
FE-reductioninwhich thelinearity relation of the optimasis satisfiedisan L-reduction. Intuitively, however,
inthe study of approximability the desirableattributeis simply that the errorsin the corresponding solutions
areclosdly (linearly) related. The somewhat artificial requirement of a linear relation between the optimum
val ues precludes reductions between problems which are related to each other by some scaling factor. For
instance, it seems desirable that two problems whose objective functions are simply related by any fixed
polynomial factor should beinter-reducibleunder any reasonabl e definition of an approxi mation-preserving
reduction. Our relaxation of the .-reduction constraint is motivated precisely by this consideration.

Let C be any class of NPO problems. Using the notion of an F-reduction, we define hardness and
completeness of problemswith respect C, aswell its closure and polynomially-bounded sub-class.



Definition 4 (Hard and Complete Problems) Aproblem[N’ issaidtobeC-hard if for all problems € C,
we have N g M’. AC-hard problem I is said to be C-completeif in addition € C.

Definition 5 (Closure) Theclosureof C, denoted by C, isthe set of all NPO problems 1 such that M o« z M’
for somel’ € C.

Remark 4 The closure operation maintainsthe set of complete problems for a class.

Definition 6 (Polynomially Bounded Subset) The polynomially bounded subset of C, denoted C-PB, is
the set of all problems N € C for which there exists a polynomial p(n) such that for all instancesZ € I,
OPT(T) < p(|T).

2.2 Computational and Syntactic Classes
We first define the basic computational class APX.

Definition 7 (APX) An NPO problem N isin the class APX if there exists a polynomial time computable
function A mapping instances of N to solutions, and a constant ¢ > 1, such that for all instances7Z of I,

VI, A7)

c

< OPT(I) < V(I, A(T)).

The class APX-PB consists of al polynomialy bounded NPO problems which can be approximated
within constant factors in polynomial time.

If welet F-APX denote the class of NPO problems that are approximable to within a factor F, then
we obtain a hierarchy of approximation classes. For instance, poly-APX and log-APX are the classes of
NPO problems which have polynomial time algorithms with performance ratio bounded polynomially and
logarithmically, respectively, in the input length. A more precise form of these definitions are provided in
Section 4.

Let us briefly review the definition of some syntactic classes.

Definition 8 (MAX SNP and MAX NP [22]) MAX SNPisthe classof NPO problemsexpressible asfind-
ing the structure .S which maximizes the objective function

V(Iv S) = {7 | CD(Iv S, f)}|7

where 7 = (U; P) denotes the input (consisting of a finite universe U and a finite set of bounded arity
predicates P), S isa finite structure, and @ is a quantifier-free first-order formula. The classMAX NP is
defined anal ogously except the objective function is

VI(Z,5) =737, ®(Z,5, §)}.

A natural extension isto associate aweight with every tuplein the range of the universal quantifier; the
modified objectiveisto find an S which maximizes V' (Z, S) = Yz w(Z)®(Z, S, %), where w(Z) denotes
the weight associated with thetuple z.

Example 1 (MAX k-SAT) The MAX k-SAT problemis: given a collection of m clauses on n boolean
variableswhereeach (possibly weighted) clauseisadisjunction of precisely & literal s, find a truth assignment
satisfying a maximum weight collection of clauses. For any fixed integer £, MAX k-SAT belongs to the
classMAX SNP. Theresults of Papadimitriou and Yannakakis[22] can be adapted to showthat for & > 2,
MAX k-SAT is complete under F-reductionsfor the classMAX SNP.



Definition 9 (RMAX(K) [21]) RMAX (k) isthe class of NPO problems expressible as finding a structure
S which maximizes the objective function

v(z,5)={ {FIS@L if ¥5, (T, 5,5)
T 0 otherwise

where S isasingle predicate and ®(Z, S, 7)) is a quantifier-free CNF formulain which S occurs at most &
timesin each clause and all its occurrences are negative.

Theresults of Panconesi and Ranjan [21] can be adapted to show that MAX CLIQUE is complete under
E-reductionsfor the classRMAX(2).

Definition 10 (MIN F* I, (k) [19]) MIN F*Iy(k) isthe class of NPO problems expressible as finding a
structure S which minimizes the objective function

{7 :S(@)} ifvE, 3y, ®(Z, 5,7, )
/ —
VI(Z,5) { 0 otherwise

where S isasinglepredicate, ®(Z, S, ) isaquantifier-free CNF formulain which .S occursat most k times
in each clause and all its occurrences are positive.

The results of Kolaitis and Thakur [19] can be adapted to show that SET COVER is complete under
E-reductionsfor the classMIN F+M;(1).

3 MAX SNP Closure and APX-PB

In this section, we will establish the following theorem and examineitsimplications. The proof is based on
the results of Aroraet a [3] on efficient proof verifications.

Theorem 1 MAX SNP = APX-PB.

Remark 5 The seeming weakness that MAX SNP only captures polynomially bounded APX problems
can be removed by using looser forms of approximation-preserving reduction in defining the closure. In
particular, Crescenzi and Trevisan [ 8] definethe notion of a PTA S-preserving reduction under which APX =
APX-PB. Usingtheir result in conjunctionwith the above theorem, it iseasily seen that MAX SNP = APX.
This weaker reduction is necessary to allow for reductions from fine-grained optimization problems to
coarser (polynomially-bounded) optimization problems (cf. [8]).

Thefollowing is a surprising consegquence of Theorem 1.
Theorem 2 MAX NP = MAX SNP.

Papadimitriou and Yannakakis [22] (implicitly) introduced both these closure classes but did not con-
jecture them to be the same. It would be interesting to see if this equality can be shown independent of the
result of Aroraet a [3]. We a so obtain the following resol ution to the problem posed by Papadimitriou and
Yannakakis [22] of finding complete problemsfor MAX NP.

Theorem 3 MAX SAT is complete for MAX NP.

Thefollowing sub-sections establishthat MAX SNP > APX-PB. Theideaistofirst F-reduce any min-
imization problem in APX-PB to a maximization problem in therein, and then E£-reduce any maximization
problem in APX-PB to a specific complete problem for MAX SNP, viz.,, MAX 3-SAT.

Since an E-reduction forces the optimas of the two problems involved to be related by polynomial
factors, it is easy to seethat MAX SNP C APX-PB. Combining, we establish Theorem 1.

6



3.1 Reducing Minimization to Maximization

Observe that the fact that I belongs to APX implies the existence of an approximation algorithm A and a
constant ¢ such that

O%T(I) < V(T,A(T)) < ¢ x OPT(T).

Henceforth, wewill usea(Z) todenoteV (Z, A(Z)). Wefirst reduceany minimizationproblemll € APX-PB
to a maximization problem N’ € APX-PB, where the latter is obtained by merely modifying the objective
function for N, as follows: let M’ have the objective function V/(Z, S) = (¢ + 1)a(Z) — ¢V(Z, S), for al
instances Z and solutions S for M. It can be verified that the optimum value for any instance 7 of N’ aways
lies between a(7) and (¢ + 1)a(Z). Thus, A isa(c + 1)-approximation algorithm for M’. If S isad-error
solution to the optimum of M, i.e.,

OPT'(I)

/! ) >

> (1-9)OPT(2),

where OPT'(Z) isthe optimal value of V' for Z. We obtain that

(c+1)a(Z)-V'(Z,S)
(c+ 1)a(I)C— OPT'(I)+ 6 x OPT'(Z)
¢ x OPT(I) + 6 x COPT’(I)

c

< OPT(I)+ (c+1)§OPT(T).

V(Z,5) =

<

Thus asolution s to M’ with error § isasolution to I with error at most (¢ + 1)4, implying an E-reduction
with g = ¢+ 1.

3.2 NP Languagesand MAX 3-SAT

The following theorem, adapted from aresult of Arora, Lund, Motwani, Sudan, and Vazirani [3], is critical
to our F-reduction of maximization problemsto MAX 3-SAT.

Theorem 4 Given alanguage I, € NP and an instance » € 2", one can compute in polynomial time an
instance F,. of MAX 3-SAT, with the following properties.

1. Theformula F, hasm clauses, where m depends only on n.

2. Thereexistsaconstant e > O suchthat (1— ¢)m clauses of F,. are satisfied by some truth assignment.
3. If z € L, then F, is(completely) satisfiable.

4. If 2 ¢ L, then no truth assignment satisfies more than (1 — €)m clauses of F.

5

. Given a truth assignment whi ch satisfiesmore than (1 — €)m clauses of F.., a truth assignment which
satisfies F,. completely can be constructed in polynomial time.

Some of the properties above may not be immediately obvious from the construction given by Arora,
Lund, Motwani, Sudan, and Szegedy [3]. It iseasy to verify that they provide a reduction with properties
(1), (3) and (4). Property (5) is obtained from the fact that all assignments which satisfy most clauses are



actually close (in terms of Hamming distance) to valid codewords from a linear code, and the uniquely
error-corrected codeword obtained from this* corrupted code-word” will satisfy all the clauses of 7.

Property (2) requires abit more care and we provide a brief sketch of how it may be ensured. The idea
isto revert back to the PCP model and redefine the proof verification game. Suppose that the original game
had the properties that for z € I there exists a proof such that the verifier accepts with probability 1, and
otherwise, for = ¢ L, the verifier accepts with probability at most 1/2. We now augment this game by
adding to the proof a Oth bit which the prover uses asfollows: if thebit isset to 1, then the prover “ chooses”
to play the old game, else heiseffectively “giving up” on the game. The verifier in turnfirst looksat the Oth
bit of the proof. If thisis set, then she performs the usual verification, else she tosses an unbiased coin and
accepts if and only if it turnsup heads. It is clear that for = € I there exists a proof on which the verifier
aways accepts. Also, for z ¢ L no proof can cause the verifier to accept with probability greater than 1/2.
Finally, by setting the Oth bit to O, the prover can create a proof which the verifier accepts with probability
exactly 1/2. This proof system can now be transformed into a 3-CNF formula of the desired form.

3.3 Reducing Maximization to MAX 3-SAT

We have aready established that, without loss of generaliity, we only need to worry about maximization
problems T € APX-PB. Consider such a problem I, and let A be a polynomial-time agorithm which
delivers a c-approximation for N, where ¢ is some constant. Given any instance Z of 1, let p = ca(Z) be
the bound on the optimum value for Z obtained by running A oninput Z. Notethat this may be a stronger
bound than theapriori polynomial bound on the optimumvalue for any instance of length | Z|. Animportant
consequenceisthat p < cOPT(Z).

We generate a sequence of NP decision problems L; = {Z|OPT(Z) > i} for 1 < i < p. Given an
instance Z, we create p formulas F;, for 1 < ¢ < p, using the reduction from Theorem 4, where ith formula
is obtained from the NP language ;.

Consider now theformulaF = A!_, ; that has the following features.

e The number of satisfiable clauses of F isexactly
MAX =(1—-¢)mp+em OPT (1),
where ¢ and m are as guaranteed by Theorem 4.

e Given an assignment which satisfies (1 — €)mp + emj clauses of F, we can construct in polynomial
time a solution to Z of value at least j. To see this, observe the following: any assignment which
S0 many clauses must satisfy more than (1 — ¢)m clausesin at least 5 of the formulas F;. Let ¢ be
the largest index for which this happens; clearly, : > j. Furthermore, by property (5) of Theorem 4,
we can now construct atruth assignment which satisfies F; completely. Thistruth assignment can be
used to obtain asolution S such that V' (Z, S) > i > j.

In order to complete the proof it remains to be shown that given any truth assignment with error 4, i.e.,
which satisfies M AX /(1+ §) clauses of F, we can find a solution S for Z with error £(Z,.5) < 36 for
some constant 3. We show that thisis possiblefor 3 = (¢2 4 ce)/e. The main idea behind finding such a
solution isto use the second property aboveto find a“good” solutionto 7 using a“good” truth assignment
for F.

Suppose we are given a solution which satisfies M AX /(1 + §) clauses. Since MAX /(14 §) >
(1-6)MAX and MAX = (1 - ¢)ymp + em OPT(Z), we can use the second feature from above to
construct a solution S such that

(1-6) MAX —(1—e)mp

em

V(Z,51) >




> (1-6)OPT(T) - 2p

> (1— 5 <1+ g)) OPT(I).

Let 6* = 6(1+ ¢/¢), thenitisreadily seen that

| S

OPT(I)
1+~

wherey = 6*/(1 — §*). Assuming 6* < (¢ — 1)/c, we obtain that

v < (02+ce) 5.
€

Ontheother hand, if 6 > (¢ —1)/c, thentheerror in asolution S, obtained by running the c-approximation
algorithmfor N isgiven by
2
1< ( +“)5.
€

Therefore, choosing 8 = (2 + ce) /¢, weimmediately obtain that the solution with larger value, among .Sy
and S, has error a most 3. Thus, thisreduction isindeed an E-reduction.

‘/(Iv 51) >

4 Generic Reductions and an Approximation Hierarchy

In this section we describe ageneric technique for turning a hardness result into an approximation preserving
reduction.

We start by listing the kind of constraints imposed on the hardness reduction, the approximation class
and the optimization problem. We will observe at the end that these restrictions are obeyed by al known
hardness results and the corresponding approximation classes.

Definition 11 (Additive Problems) An NPO problem [T issaid to be additiveif there exists an operator +
which maps a pair of instances Z; and Z, to an instance Z; + Z suchthat O PT (Z1 + 1) = OPT(I1) +
OPT(Zy).

Definition 12 (Downward Closed Family) A family of functions F = {f : Z+ — Z*} is said to be
downward closed if for all g € F and for all constantse, ¢'(n) € O(g(n°)) impliesthat ¢’ € F. Afunction
g issaid to be hard for the family F’ if for all ¢’ € F, there exists a constant ¢ such that ¢'(n) € O(g(n°));
the function g is said to be completefor F' if g ishardfor Fand g € F.

Definition 13 (F-APX) For a downward closed family F, the class F-APX consists of all problems
approximableto within aratio of ¢(|Z|) for some function g € F.

Definition 14 (Canonical Hardness) An NP maximization problem[1 issaid to be canonicaly hard for the
class F’-APX if there exists a transformation T, constantsng and ¢, and a gap function GG which is hard for
the family ', such that given an instance z of 3-SAT onn > ng variablesand N > n°,Z = T'(z, N) isan
instance of ' with the following properties.

o Ifz € 3-SAT, then OPT(I) = N.
o Ifz ¢ 3-SAT, then OPT(Z) = N/G(N).



e Given a solution S to Z with V/(Z,S) > N/G(N), a truth assignment satisfying z can be found in
polynomial time.

Canonica hardness for NP minimization problems is analogously defined: OPT'(Z) = N when the
formulaissatisfiableand O PT(Z) = NG(N), otherwise. Given any solutionwithvaluelessthan NG (V),
one can construct a satisfying assignment in polynomia time.

41 TheReduction

Theorem 5 If F' isa downward closed family of functions, and an additive NPO problem Q is canonically
hard for the class F-APX, then all problemsin F'-APX E-reduceto .

Proof: Let N be aproblem in F-APX, approximable to within ¢(.), and let Q be a problem shown to
be hard to within a factor Gi(.) where GG is complete for F'. We start with the special case where both IM
and Q are maximization problems. We describe the functions f, g and the constant 5 as required for an
E-reduction.

Let Z € I be an instance of size n; pick N so that ¢(n) isO(G(N)). To describe our reduction, we
need to specify the functions f and ¢g. The function f is defined as follows. Let m = V(Z, A(Z)). For
eech: € {1,...,me(n)}, let L; denote the NP-language {Z| O PT'(Z) > ¢}. Now for each ¢, we create an
instance ¢; € Q of size N suchthatif Z € L; then OPT(¢;) isN,anditis N/G(N) otherwise. We define
JZ)=9¢=73¢:.

We now construct the function g. Given aninstance Z € I and a solution s’ to f(Z), we compute a
solution s to 7 in the following manner. We first use A to find a solution s;. We also compute a second
solution s, to 7 asfollows. Let j bethe largest index such that the solution s’ projects down to asolution s’
totheinstance ¢; suchthat V' (¢;, s’) > N/G(N). Thisinturnimplieswe can find asolution s; to witness
V(Z,s2) > j. Our solution s is the one among s; and s, that yields the larger objective function value.

We now show that the reduction holdsfor 5 = 1+ ¢(n)/(G(N) — 1).

Let o« = OPT(I)/m. Observe that

N N c(n) a
OPT(I') = Nm <a + GN) ~ G(Ni)) .

Consider the following two cases:

Casel[j < m]: Inthiscase V(Z,s) = m. Thussisan (« — 1) approximate solutionto Z. We now
arguethat s’ isat best a (o — 1)/ approximate solution to ¢. We start with the following upper bound on
Vg, s).

/ , c(n) 1
Vig,s') < Nm (l—l— GV — G(N)) .

Thus the approximation factor achieved by s’ is given by

Nm(a+ cn) o
o) > ( ( GO G(lN))) 4
Nm (14 53 — atvy)

v

G(N)-1
-1
(@-1) <G(N) +e(n) — 1)
a—1
5
So in this case s; (and hence s) approximates 7 to within a factor of e, if s’ approximates ¢ to within a
factor of e.

10



Case2[j > m]: Letj=~ym. Notethaty > 1andthat sisan (a — )/~ approximate solutionto Z. We
bound the value of the solution s’ to ¢ as

V(g,s') < Nm <’y—|— cn) __7 ),

and its quality as

GN) ~ GOV
=
7\ 1+ e
1

> <a — 7) =,
- v /B
Thusinthiscase also wefind that s (by virtue of s,) isasolution of quality 3¢ if s’ isasolutionof quality s.

We now consider the more general cases where 'l and Q are not both maximization problems. For the
case where both are minimization problems, the above transformati on works with one minor change. When
creating ¢;, the NP language consists of instances (Z, ¢) such that there exists s with V/(Z, s) < 1.

For the case where I isaminimization problem and Q is a maximization problem, wefirst E-reducel
to amaximization problem N’ and then proceed as before. The reduction proceeds asfollows. The objective
function of N’ isdefined asV'(Z, s) = [2m?/V (Z, s)|. To begin with, it iseasy to verify that [ € F-APX
impliesi’ € F-APX.

Let s bea s approximate solution to instance Z of M. We will show that s is at best a 5/2 approximate
solution to instance Z of M’. Assume, without loss of generality, that 5 # 0. Then

V(Z,s) - OPT(I) = BOPT(I) > 1.

Multiplying by 2m?/(OPT(T)V(Z, s)), we get

2m? 2m? 2m?
- =4 - > 2.
V(Z,s) OPT(I) V(Z,s)
Thisimpliesthat
2m?2 3 2m?2 S 1_}_} 2m?2 2m?2
OPT(I) V(I,s) = 20PT(I) V(Z,s)
_ é 2m?2
N 2V(Z,s)
Upon rearranging,
2 2
VI(T, ) < 1 2m~ 1< 1 ‘ 2m .
(1+53/2) OPT(T) (1+5/2) [OPT(7)

Thus the reduction from I to M’ isan E-reduction.
Finaly, the last remaining case, i.e., I being a maximization problem and Q being a minimization
problem, is dealt with similarly: we transform IM into a minimization problem IM’. [ ]
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Remark 6 This theorem appears to merge two different notions of the relative ease of approximation of
optimization problems. One such notion would consider a problem M, easier than IM, if there exists an
approximation preserving reduction from I, to My. A different notion would regard M4 to be easier than
MM, if one seems to have a better factor of approximation than the other. The above statement essentially
states that these two comparisons are indeed the same. For instance, the MAX CLIQUE problem and the
CHROMATIC NUMBER problem, which are both in poly-APX, are inter-reducible to each other. The
above observation motivates the search for other interesting function classes f, for which the class f-APX
may contain interesting optimization problems.

4.2 Applications

Thefollowing is a consequence of Theorem 5.
Theorem 6

a) RMAX(2) = poly-APX.

b) If SET COVER is canonically hard to approximate to within a factor of Q(logn), then log-APX =
MIN F+(1).

We briefly sketch the proof of this theorem. The hardness reduction for MAX SAT and CLIQUE
are canonical [3, 11]. The classes APX-PB, poly-APX, log-APX are expressible as classes F-APX for
downward closed function families. The problems MAX SAT, MAX CLIQUE and SET COVER are
additive. Thus, we can now apply Theorem 5.

Remark 7 Wewould like to point out that almost all known instances of hardness results seem to be shown
for problems which are additive. In particular, this is true for all MAX SNP problems, MAX CLIQUE,
CHROMATIC NUMBER, and SET COVER. One case where a hardness result does not seem to directly
apply to an additive problem is that of LONGEST PATH [17]. However in this case, the closely related
LONGEST S-T PATH problemis easily seen to be additive and the hardness result essentially stems from
this problem. Lastly, the most interesting optimization problems which do not seem to be additive are
problems related to GRAPH BISECTION or PARTITION, and these also happen to be notable instances
where no hardness of approximation results have been achieved!

5 Local Search and MAX SNP

In this section we present a formal definition of the paradigm of non-abliviouslocal search, and describe
how it applies to a generic MAX SNP problem. Given a MAX SNP problem 1, recall that the god is to
find a structure S which maximizes the objective function: V(Z,5) = Yz P(Z, S, Z). In the subsequent
discussion, we view S as a k-dimensional boolean vector.

5.1 Classical Local Search

We start by reviewing the standard mechanism for constructing alocal search algorithm. A §-local agorithm
AforMisbased onadistancefunction D (S1, S2) whichistheHamming distance between two -dimensional
vectors. The §-neighborhood of a structure S is given by N(S,4) = {S" C U™ | D(S,S’) < 4}, where
U isthe universe. A structure S iscalled §-optimal if VS’ € N(S,6), wehaveV(Z,S) > V(Z,S’). The
algorithm computes a §-optimum by performing a series of greedy improvementsto an initia structure So,
where each iteration moves from the current structure S; to some S; 11 € N(S;, §) of better value (if any).
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For constant 4, a §-local search agorithm for a polynomially-bounded NPO problem runs in polynomial
time because:

e each local changeis polynomially computable, and

e the number of iterationsis polynomially bounded since the value of the objective function improves
monotonically by an integral amount with each iteration, and the optimum is polynomially-bounded.

5.2 Non-ObliviousL ocal Search

A non-oblivious local search agorithm is based on a 3-tuple (So, F, D) where Sy is the initial solution
structure which must beindependent of theinput, 7 (Z, .S) isareal-valued function referred to asthe weight
function, and D isareal-valued distance function which returns the di stance between two structuresin some
appropriately chosen metric. The distance function D is computable in time polynomial in |U|. Thus as
before, for constant &, a non-obliviousé-local agorithm terminatesin time polynomial in the input size.

Theclassica loca search paradigm, which we call obliviouslocal search, makes the natura choice for
the function F(Z, S, and the distance function D, i.e,, it chooses them to be V(Z, S) and the Hamming
distance. However, as we show later, this choice does not always yield a good approximation ratio. We
now formalize our notion of this more genera type of local search.

Definition 15 (Non-Oblivious L ocal Search Algorithm) A non-oblivious local search algorithmis a é-
local search algorithmwhose weight function is defined to be

‘7:(1—7 S) = ZZPZCDZ(I7 57 f) )
=1

-

T

where r isa constant, ®;’s are quantifier-free first-order formulas, and the profitsp; arereal constants. The
distance function D is an arbitrary polynomial -time computabl e function.

A non-obliviouslocal search can beimplemented in polynomial timein much the same way as oblivious
local search. Note that the we are only considering polynomially-bounded weight functions and the profits
p; are fixed independent of the input size. In general, the non-oblivious weight functions do not direct the
search in the direction of the actual objective function. In fact, aswewill see, thisisexactly the reason why
they are more powerful and alow for better approximations.

Definition 16 (Non-Oblivious GLO) The classof problemsNoN-OBLIVIous GLO consistsof all problems
which can be approximated within constant factors by a non-oblivious §-local search algorithm for some
constant 4.

Remark 8 We make some observations about the above definition. 1t would be perfectly reasonable to
allow weight functions which are non-linear, but we stay with the above definition for the purposes of this
paper. Allowing only a constant number of predicates in the weight functions enables us to prevent the
encoding of arbitrarily complicated approximation algorithms. The structure S isa k-dimensional vector,
and so a convenient metric for the distance function D is the Hamming distance. This should be assumed
to be the underlying metric unless otherwise specified. However, we have found that it is sometimes useful
to modify this, for example by modifying the Hamming distance so that the complement of a vector is
considered to be at distance 1 fromit. Finally, it is sometimes convenient to assume that the local search
makes the best possible move in the bounded neighborhood, rather than an arbitrary move which improves
the weight function. We believe that this does not increase the power of non-obliviouslocal search.
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6 The Power of Non-Oblivious L ocal Search

We will show that there exists a choice of a hon-obliviousweight function for MAX k-SAT such that any
assignmentwhichis 1-optimal with respect to thisweight function, yieldsaperformanceratio of 2% /(2% — 1)
with respect to the optimal. Buit first, we obtain tight bounds on the performance of obliviouslocal search
for MAX 2-SAT, establishing that its performance is significantly weaker than the best-known result even
when alowed to search exponentially large neighborhoods. We use the following notation: for any fixed
truth assignment Z, S; isthe set of clauses in which exactly i literals are true; and, for a set of clauses S,
W (S) denotesthe total weight of the clausesin S.

6.1 ObliviousLocal Search for MAX 2-SAT

We show astrong separationin the performance of abliviousand non-obliviouslocal searchfor MAX 2-SAT.
Suppose we use a §-local strategy with the weight function F being the total weight of the clauses satisfied
by the assignment, i.e., 7 = W (S1) + W(S2). The following theorem shows that for any § = o(n), an
obliviousé-local strategy cannot deliver a performance ratio better than 3/2. Thisisrather surprising given
that we are willing to allow near-exponentia timefor the oblivious algorithm.

Theorem 7 The asymptotic performance ratio for an oblivious §-local search algorithmfor MAX 2-SAT
is 3/2 for any positive § = o(n). Thisratiois still bounded by 5/4 when § may take any value less than
n/2.

Proof: We show the existence of an input instance for MAX 2-SAT which may dlicit arelatively poor
performanceratiofor any §-local agorithmprovided § = o(n). Inour construction of such aninput instance,
we assumethat n > 2§ + 1. The input instance comprises of a disjoint union of four sets of clauses, say
1, Mo, M3 and Iy, defined as below:

= U @=+7),
1<i<i<n

. = U GE+2),
1<i<i<n

s = J Gi

0<i<5

r4 = LJ Ch
2542<i<n
G = U (Z: + ;).
1<j<n
Clearly, |F1| = |I2| = (5), and |3 + [[4] = (5) — nd + §(8 + 1). Without loss of generality, assume
that the current input assignment is Z = (1,1,...,1). Thissatisfiesall clausesin 'y and I'. But none of
the clausesin '3 and I 4 are satisfied. If we flip the assignment of valuesto any £ < ¢ variables, it would
unsatisfy precisely k(n — k) clausesin "1 + 2. Thisisthe number of clausesin "1 + I'; where aflipped
variable occurs with an unflipped variable.
On the other hand, flipping the assigned values of any k& < § variables can satisfy at most k(n — k)
clausesin I 3 + 4 aswe next show.
Let M(n,d) denote the set of clauses on n variables given by Up<;<s C2i+1 + Uzsyo<icn ¢ Where
26 + 1 < n. We claim the following.

Lemma 1l Anyassignment of valuestothe » variablessuchthat at most & < ¢ variableshave been assigned
value false, can satisfy at most k(n — k) clausesinM(n, §).

14



Proof: We prove by simultaneous induction on » and ¢ that the statement is true for any instance
M(n,d) wheren and § are non-negative integers such that 26 + 1 < n. The base case includesn = 1 and
n = 2 and istrividly verified to be true for the only allowable value of §, namely § = 0. We now assume
that the statement is true for any instance M(n’, §’) such that n’ < n and 26’ + 1 < »’. Consider now the
instance M(n, §). The statement istrivialy truefor § = 0. Now consider any § > O such that 25 + 1 < n.
Let {z;,, 2;,,...2; } beany choice of £ < § variables such that j, < j, for p < ¢. Again the assertion is
trividly trueif £ = Oor £ = 1. We assumethat £ > 2 from now on. If we delete al clauses containing the
variables z; and z, from M(n, §), we get theinstance M(n — 2,5 — 1). We now consider three cases.

Casel[j; > 3]: Inthiscase, we are reduced to the problem of finding an upper bound on the maximum
number of clauses satisfied by setting any & variablestofaseinM(n — 2,6 — 1). If £ < § — 1, wemay use
the inductive hypothesis to conclude that no more than (n — 2 — k) (k) clauses will be satisfied. Thusthe
assertion holdsin thiscase. However, we may not directly use theinductive hypothesisif £ = 4. Butinthis
case We observe that since by the inductive hypothesis, setting any ¥ — 1 variablesinM(n — 2,6 — 1) to
false, satisfiesat most (n — 2 — (k — 1)) (k — 1) clauses, assigning the value false to any set of k variables,
can satisfy at most

m—2—-(k-1)(k-1)+ (n—2—(k-—1:))(k—1):(n—k)k—kz

clauses. Hence the assertion holdsin this case also.

Case2[j1 = 2]: Inthiscase z;, satisfies one clause and the remaining & — 1 variables satisfy at most
(n—2—(k—1))(k—1) clauses by theinductive hypothesison I (n — 2, § — 1). Adding up the two terms,

we see that the assertion holds.

Case3[j1 = 1]: Weanalyzethiscasebased onwhether j, = 2o0r j, > 3. If j, = 2, then z; and 25, together
satisfy precisely n — 1 clauses and theremaining k& — 2 variables, satisfy at most (n — 2 — (k — 2))(k — 2)
clauses using theinductive hypothesis. Thusthe assertion still holds. Otherwise, z1 satisfiesprecisely n — 1
clauses and the remaining & — 1 variables satisfy no morethan (n — 1 — (k — 1))(k — 1) clausesusing the
inductive hypothesis. Summing up the two terms, we get (n — &)k as the upper bound on the total number
of clauses satisfied. Thus the assertion holdsin this case also.
To see that this bound is tight, simply consider the situation when the & variables set to fase are
21,23, ..., 22k_1, fOr any k < é. Thetotal number of clauses satisfied is given by Ele |C2i—1| = (n — k)k.
[ |
Assuming that each clause has the sameweight, Lemmal alows usto concludethat ad-local algorithm
cannot increase the total weight of satisfied clauseswith this starting assignment. An optimal assignment on
the other hand can satisfy all the clauses by choosing the vector Z = (0,0,...,0). Thus the performance
ratio of aé-local agorithm, say R, isbounded as

IFal + T2 + T3 + T4
Fal + T2
3(5) +8(0+1) —én
2(3)
For any § = o(n), this ratio asymptotically converges to 3/2. We next show that this bound is tight

since a 1-local agorithm achievesit. However, before we do so, we make another intriguing observation,
namely, for any § < n/2, theratio R; isbounded by 5/4. [ |

Rs =
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To seethat a 1-local agorithm ensures a performance ratio of 3/2, consider any 1-optimal assignment
7 and let o; denote the set of clauses containi ng the variable z; such that no literal in any clause of «; is
satisfied by Z. Similarly, let 38; denote the set of clauses containing the variable z; such that precisely one
literal issatisfied in any clausein 3; and furthermore, it isprecisaly theliteral containing the variable z;. If
we complement the value assigned to the variable z;, it is exactly the set of clauses in «; which becomes
satisfied and the set of clauses in 5; which is no longer satisfied. Since 7 is 1-optimal, it must be the
case that W («;) < W(5;). If wesum up this inequality over all the variables, then we get the inequality
Yima Wiai) < 37 W(Bi). We observe that 3573 W(a;) = 2W(So) and 371y W(Bi) = W(S1)
because each clause in Sy gets counted twice while each clause in S1 gets counted exactly once. Thus the
fractional weight of the number of clauses not satisfied by a 1-local assignment is bounded as

W (S50) < W (So) < Wl _ 1

W (So) + W(S1) + W(S2) = 3W (So) + W(S2) — 3W(So) 3
Hence the performance ratio achieved by a 1-local agorithm is bounded from above by 3/2. Combining
this with the upper bound derived earlier, we conclude that R, = 3/2. We may summarize our results as
follows.

Lemma 2 The performanceratio Rs for any -local algorithmfor MAX 2-SAT using the weight function
F =W(S1) + W(S2),is3/2for any positiveinteger § = o(n). Furthermore, thisratio is till bounded by
5/4 when § may take any value lessthan n /2.

6.2 ObliviousLocal Search for MAX 2-SAT

We now illustrate the power of non-obliviousloca search by showing that it achieves a performance ratio
of 4/3 for MAX 2-SAT, using 1-loca search with a simple non-obliviousweight function.

Theorem 8 Non-oblivious 1-local search achieves a performance ratio of 4/3 for MAX 2-SAT.

Proof: We use the non-obliviousweight function

F(T,7) = gvv(sl) 2 (SH).

Consider any assignment Z which is 1-optimal with respect to this weight function. Without loss of
generality, we assume that the variables have been renamed such that each unnegated literal gets assigned
thevaluetrue. Let P; ; and N; ; respectively denote the total weight of clausesin S; containing the literals
z; and z;, respectively. Since 7 is a 1-optimal assignment, each variable z; must satisfy the following

equation.

1 3 1 3
_Epz’j — EPL]' + 5]\717]' + EEVOJ <0.

Summing thisinequality over all the variables, and using

n

ZPL]'ZZNLJ' = W(S),
7=1

i=1

Y Py o= 2W(S2),
7=1

Z 17\707]‘ == ZW(SO),

i=1
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we obtain the following inequality:
W(Sz) + I/V(Sl) > 31/1/(50).

This immediately implies that the total weight of the unsatisfied clauses at this local optimum is no more
than 1/4 times the total weight of al the clauses. Thus, this algorithm ensures a performance ratio of 4/3.
[ |

Remark 9 The same result can be achieved by using the oblivious weight function, and instead modifying
the distance function so that it corresponds to distancesin a hypercube augmented by edges between nodes
whose addresses are complement of each other.

6.3 Generalizationto MAX k-SAT

We can aso design anon-obliviousweight function for MAX k-SAT such that a 1-local strategy ensures a
performance ratio of 2% /(2" — 1). The weight function F will be of the form F = % ;W (S;) where
the coefficients ¢;'s will be specified | ater.

Theorem 9 Non-oblivious 1-local search achieves a performanceratio of 25 /(2% — 1) for MAX k-SAT.

Proof: Again, without loss of generality, we will assume that the variables have been renamed so that
each unnegated literal is assigned true under the current truth assignment. Thus the set S; is the set of
clauses with 7 unnegated literals.

LetA; =c¢; —c;—1andlet 2 af denote the change in the current weight when we flip the value of z;, that
is, setittoO. Itiseasy to verlfy thefollowmg equation:

oF

2
9. = 0Py + > (AiNi—1; — Di—1Pisyj) + A No; (1)
J

1=k

Thuswhen the algorithm terminates, we know that S’;’: <0,forl < j < n. Summingover al values of

Jyandusingthefact 3°7_; P ; = iW(S;) and 3°7_; N; ; = (k — 1)W(S;) we get the following inequality.

2
EOGW (Sk) + > (i — (b — i) Dip) W (S) > kbW (So). )
i=k—1

We now determinethe values of A;’s such that the coefficient of each term on theleft hand side is unity.

It can be verified that
S 50)
A, = .
(k i+ )( )] 0 J

achieves this goal. Thus the coefficient of W (So) on the right hand side of equation (2) is2* — 1. Clearly,
the weight of the clauses not satisfied is bounded by 1/2* times the total weight of all the clauses. It is
worthwhileto note that thisis regardless of the value chosen for the coefficient cq. |

7 Local Search for CSP and MAX SNP

We now introduceaclass of constraint satisfaction problemssuch that the problemsin MAX SNP are exactly
equivalent to the problemsin this class. Furthermore, every problem in this class can be approximated to
within a constant factor by a non-obliviouslocal search algorithm.
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7.1 Constraint Satisfaction Problems

The connection between the syntacti c description of opti mization problemsand their approximability through
non-oblivious loca search is made via a problem called MAX k-CSP which captures al the problemsin
MAX SNP as aspecia case.

Definition 17 (k-ary Constraint) Let Z = {z1,..., 2, } bea set of boolean variables. A k-ary constraint
onZisC = (V; P), where V isa size k subset of 7, and P : {T, F}* — {T, F} is a k-ary boolean
predicate.

Definition 18 (MAX k-CSP) Given a collection 4, . . ., C,, of weighted k-ary constraints over the vari-
ablesZ = {z,..., z,}, theMAX k-CSP problemisto find a truth assignment satisfying a maximumweight
sub-collection of the constraints.

The following theorem showsthat MAX k-CSP problemisa*“universal” MAX SNP problem, in that it
contains as specia cases al problemsin MAX SNP.

Theorem 10
a) For fixed &k, MAX k-CSP € MAX SNP.

b) Let M € MAX SNP. Then, for some constant k, N1 € MAX k-CSP. Moreover, the k-CSP instance
corresponding to any instance of this problem can be computed in polynomial time.

7.2 Non-ObliviousLocal Search for MAX k-CSP

A suitable generalization of the non-obliviouslocal search agorithm for MAX k-SAT yields the following
result.

Theorem 11 A non-oblivious 1-local search algorithm has performanceratio 2* for MAX k-CSP.

Proof: We use an approach similar to the one used in the previous section to design a non-oblivious
weight function F for theweighted version of the MAX k-CSP problem such that a 1-loca agorithmyields
2" performance ratio to this problem.

We consider only the constraints with at least one satisfying assignment. Each such constraint can be
replaced by amonomia whichisthe conjunction of somek literal s such that when themonomial evaluatesto
true the corresponding literal assignment represents a sati sfying assignment for the constraint. Furthermore,
each such monomial has precisely one satisfying assignment. We assign to each monomial the weight of
the constraint it represents. Thusany assignment of variableswhich satisfies monomial s of total weight W,
also satisfies constraintsin the origina problem of total weight .

Let S; denote the monomiaswith ¢ true literals, and assume that the weight function  is of the form
Zi-;l ¢;W(S;). Thus, assuming that the variables have been renamed so that the current assignment gives
valuetrueto each variable, we know that for any variable z;, % isgiven by equation (1). Asbefore, using

the fact that for any 1-optima assignment, % < 0forl < j < n,and summing over al vaues of j, we
can write the following inequality.

kA1W(So) + ((k — i)Ai+l — ZAZ)W(SZ) < kAkW(Sk) . (3)
2

Bl
=

K3
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We now determine the values of A;’s such that the coefficient of each term on the left hand sideis unity. It

can be verified that _
p= LS (k)
Z 'i(k) =0 J

achieves thisgoa. Thusthe coefficient of 1 (S;) on the right hand side of equation (1) is2* — 1. Clearly,
the total weight of clauses satisfied isat least 1/2* timesthe total weight of all the clauses with at |east one

satisfiabl e assignment. [ |
We conclude the following theorem.

Theorem 12 Every optimization problem M € MAX SNP can be approximated to within some constant
factor by a (uniform) non-oblivious 1-local search algorithm, i.e.,

MAX SNP C NoN-OBLIVIoUs GLO.

For a problem expressible as k-CSP, the performance ratio is at most 2*.

8 Non-Oblivious ver sus Oblivious GLO

Inthissection, we show that there exist problemsfor which no constant factor approximation can be obtai ned
by any §-local search algorithm with oblivious weight function, even when we alow & to grow with the
input size. However, asimple 1-loca search agorithm using an appropriate non-oblivious weight function
can ensure a constant performance ratio.

81 MAX2-CSP

The first problem is an instance of MAX 2-CSP where we are given a collection of monomials such that
each monomial isan “and” of precisely two literals. The objectiveisto find an assignment to maximize the
number of monomials satisfied.

We show an instance of this problem such that for every § = o(n), there exists an instance one of whose
local optimahas value that is a vanishingly small fraction of the globa optimum.

The input instance consists of a digoint union of two sets of monomials, say I'; and Iy, defined as
below:

M = U (Ei /\Ej)7

1<i<i<n
M = U U (ZZ'/\Z]').
1<i<8 i<j<n

Clearly, [T1| = (3), and |I'2| = nd — (*F1). Consider thetruth assignment Z = (1, 1,..., 1). It satisfies
al monomialsin I'» but none of the monomialsin I';. We claim that this assignment is §-optimal with
respect to the oblivious weight function. To see this, observe that complementing the value of any p < §
variables will unsatisfy at least p/2 monomiasin I, for any § = o(n). On the other hand, thiswill satisfy
precisely (5) monomialsiny. For any p < &, we have (dp)/2 > (5), and so Z isad-local optimum.

The optimal assignment on the other hand, namely ZOPT = (0,0,...,0), satisfiesal monomialsinT .
Thus, for § < n/2, theperformanceratio achieved by any §-local agorithmisnomorethan (3) /(né — (531))
which asymptotically diverges to infinity for any 6 = o(n). We have aready seen in Section 7 that a 1-
local non-oblivious algorithm ensures a performance ratio of 4 for this problem. Since this problemisin
MAX SNP, we obtain the following theorem.
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Theorem 13 Thereexist problemsin MAX SNP such that for § = o(n), no é-local obliviousalgorithmcan
approximate themto within a constant performanceratio, i.e.,

MAX SNP ¢ GLO.

8.2 Vertex Cover

Ausiello and Protasi [4] have shown that VERTEX COVER does not belong to the class GLO and, hence,
there does not exist any constant ¢ such that an oblivious §-local search agorithm can compute a constant
factor approximation. In fact, their example can be used to show that for any 6 = o(n), the performance
ratio ensured by é-local search asymptotically diverges to infinity. However, we show that there exists a
rather simple non-obliviousweight function which ensures afactor 2 approximation viaa 1-local search. In
fact, the agorithm simply enforces the behavior of the standard approximation agorithm which iteratively
builds avertex cover by simply including both end-points of any currently uncovered edge.

We assume that the input graph G is given as a structure (V, { E'}) where V' is the set of vertices and
E C V x V encodes the edges of the graph. Our solution is represented by a 2-ary predicate M which
is iteratively constructed so as to represent a maximal matching. Clearly, the end-points of any maximal
matching constitute a valid vertex cover and such avertex cover can be at most twice as large as any other
vertex cover in the graph. Thus M isan encoding of the vertex cover computed by the agorithm.

Theagorithm starts with M initialized to the empty relation and at each iteration, at most one new pair
isincluded init. The non-obliviousweight function used is as below:

1

‘7:(17M) - E Ech(xvva) - CDZ(xvwa)v
(z,y,2)EV3
where
CDl(.f,y,Z) = (M(CL‘,y) A E(Q?,y) A (:C = Z))v

Dy(z,y,2) = (M(z,y) ANM(z,z)).
Let M encode avalid matching in the graph G2 We make the following observations.

e Any relation M’ obtained from M by either deleting an edge from it, or including an edge in which
isincident on an edge of M, has the property that F(Z, M') < F(Z,M). Thusin a1-loca search
from M, wewill never moveto arelation M’ which does not encode a valid matching of G.

e On the other hand, if arelation M’ corresponds to the encoding of a matching in G which is larger
than the matching encoded by M, then F(Z, M') > F(Z, M). Thusif M doesnot encode amaximal
matching in GG, there dways exist arelation in its 1-neighborhood of larger weight than itself.

These two observations, combined with the fact that we start with a valid initial matching (the empty
matching), immediately allow us to conclude that any 1-optimal relation M aways encodes a maximal
matching in G. We have established the following.

Theorem 14 A 1-local search algorithmusing the above non-oblivious weight function achieves a perfor-
mance ratio of 2 for the VERTEX COVER problem.

Theorem 15 GLO isa strict subset of NON-OBLIVIOUS GLO.

2|t isimplicit in our formulation that M will correspond to alower triangular matrix representation of the matching edges.
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9 TheTraveling Salesman Problem

The TSP(1,2) problem is the traveling salesman problem restricted to complete graphs where al edge
weights are either 1 or 2; clearly, this satisfies the triangle inequality. Papadimitriou and Yannakakis [23]
showed that thisproblemishard for MAX SNP. Thenatural weight functionfor TSP(1,2), that is, theweight
of thetour, can be used to show that a4-local agorithmyieldsa3/2 performanceratio. Theagorithm starts
with an arbitrary tour and in each iteration, it checks if there exist two disjoint edges (a, b) and (¢, d) onthe
tour such that deleting them and replacing them with the edges («, ¢) and (b, d) yields atour of lesser cost.

Theorem 16 A 4-local search algorithmusing the oblivious weight function achieves a 3/2 performance
ratio for TSP(1,2).

Proof: Let C be a4-optima solution and let Let = be a permutation such that the verticesin C' occur in
theorder vy, , vr,, . . ., vr,. Consider any optimal solutionO. With each unit cost edge e in O, we associate
aunit cost edge ¢’ in C asfollows. Let e = (v, v,,) Wherei < j. If j =i+ 1thene’ = e. Otherwise,
consider the edges e1 = (vr;, Un;y,) @Nd €2 = (Ur,, Ur,,,) ONC. We claim either e1 or e must be of unit
cost. Suppose not, then the tour € which is obtained by simply deleting both e; and e, and inserting the
edges e and f = (vn,,,,vr,;,,) has cost a least one less than C'. But ' is 4-optima and thus thisis a
contradiction.

Let Up denotesthe set of unit cost edgesin O and let U be the set of unit cost edgesin C' which form
theimage of Uy under the above mapping. Since an edge e’ = (vr,, vr,,,) in Uc can only be the image of
unit cost edges incident on v, in O and since O is atour, there are at most two edges in Up which map to
e'. Thus|Uqx| > |Up|/2 and hence

cost(O) < |Uol+ 2(n — |Uos|)
cost(C') ~ |Uol|/24 2(n - |Uo|/2)

2
< -
-3

The above bound can be shown to be tight.

Theorem 17 There exists a TSP(1,2) instance such that the optimal solution has cost » + O(1) and there
exists a certain 4-optimal solution for it with cost 3n/2 4+ O(1).

10 Maximum Independent Setsin Bounded Degree Graphs

Theinput instance to the maximum independent set problem in bounded degree graphs, denoted MIS-B, is
agraph G such that the degree of any vertex in GG isbounded by a constant A. We present an algorithm with
performanceratio (v'8A? + 4A + 1 — 2A + 1)/2 for this problem when A > 10.

Our agorithm usestwo local search algorithmssuch that thelarger of thetwo independent sets computed
by these algorithms, gives us the above claimed performance ratio. We refer to these two algorithms as A,
and ./42.

In our framework, the algorithm A, can be characterized as a 3-local agorithm with the weight function
simply being |7| — 3|(I x I) N E|. Thusif we start with I initialized to empty set, it is easy to see that at
each iteration, 7 will correspond to an independent set in G. A convenient way of looking at this agorithm
is as follows. We define an ¢ «+» j swap to be the process of deleting ¢ vertices from S and including j
verticesfromtheset V' — S to theset S. In each iteration, the algorithm .4, performs either a0 <> j swap
wherel < j < 3,oral <« 2swap. A 0 < 5 swap however, can be interpreted as 5 applications of 0 <+ 1
swaps. Thus the algorithm may be viewed as executing a0 «» 1 swap or al < 2 swap at each iteration.
The algorithm terminates when neither of these two operations is applicable.
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Let I denote the 3-optimal independent set produced by the algorithm .A1. Furthermore, let O be any
optimal independent set and let X = I N O. We make the following useful observations.

e Sincefor no vertex in I, a0 <+ 1 swap can be performed, it impliesthat each vertex in V' — I must
have at least oneincoming edgeto 7.

e Similarly, sinceno 1 «» 2 swaps can be performed, it impliesthat at most |7 — X | verticesinO — I
can have precisely one edge cominginto . Thus|O — X| — |I — X| = |O| — |I| verticesinO — X
must have at |east two edges entering the set /.

A rather straightforward consequence of these two observationsis the following lemma.
Lemma 3 The algorithm.A41 has performanceratio (A + 1)/2 for MIS-B.

Proof: The above two observations imply that the minimum number of edges entering I from the
verticesinO — X is|I — X |+ 2(|O] — |I]). On the other hand, the maximum number of edges coming out
of the verticesin I totheverticesin O — X isbounded by |I — X'|A. Thuswe must have

I = X8> |1 - X|+2(0] - |1]).

Rearranging, we get
It S 2 v | X[(A-1)
0] = 8+1 " 0[(A+ 1)’
which yields the desired result. [ ]
This nearly matches the approximation ratio of A/2 due to Hochbaum [15]. It should be noted that the
above result holds for a broader class of graphs, viz., k-claw free graphs. A graph is called k-claw freeif
there does not exist an independent set of size & or larger such that al the verticesin the independent set are
adjacent to the same vertex. Lemma 3 appliesto (A + 1)-claw free graphs.
Our next objective is to further improve this ratio by using the algorithm .41 in combination with the
algorithm A,. Thefollowing lemmausesasdlightly different counting argument to give an alternative bound
on the approximation ratio of thealgorithm .4; when thereis a constraint on the size of the optimal solution.

Lemma 4 For any real number ¢ < A, thealgorithm.A4; has performanceratio (A — ¢)/2 for MIS-B when
the optimal valueitselfisno morethan ((A — ¢)|V|) /(A + c + 4).

Proof: Asnoted earlier, each vertex in V' — I must have at |east one edge coming into the set 7 and at
least |O| — || verticesin O must have at |east two edges cominginto 7. Therefore, thefollowinginequality
must be satisfied:

A= V] =]+ O] = |1].

Thus|T| > (V] + |O])/(A+ 2). Findly, observe that

Vi+o] 2
A+2 —A-c

whenever |O| < (A—o)|V|/(A+ c+ 4). [ |
The above lemma shows that the algorithm A1 yields a better approximation ratio when the size of the
optimal independent set isrelatively small.
Theagorithm A, issimply the classical greedy algorithm. Thisalgorithm can be conveniently included
in our framework if we use directed local search. If welet N (I) denote the set of neighbors of the vertices
in I, then the weight functionissimply [/{(A+ 1)+ |V — (I + N(I))| — |(I x I) N E|(A+ 1). Itisnot

O]
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difficult to see that starting with an empty independent set, a1-local algorithm with directed search on above
weight function simply simulates a greedy algorithm. The greedy agorithm exploits the situation when
the optimal independent set is relatively large in size. 1t does so by using the fact that the existence of a
large independent set in G ensures alarge subset of verticesin G with relatively small average degree. The
following two lemmas characterize the performance of the greedy agorithm.

Lemma5 Suppose there exists an independent set X' C V' such that the average degree of verticesin X
is bounded by «. Then for any o > 1, the greedy algorithm produces an independent set of size at least
[ X[/(1+ a).

Proof: The greedy algorithm iteratively chooses a vertex of smallest degree in the remaining graph
and then deletes this vertex and al its neighbors from the graph. We examine the behavior of the greedy
by considering two types of iterations. First consider the iterations in which it picks a vertex outside X.
Suppose in the ¢th such iteration, it picks avertex in V' — X with exactly &; neighborsin the set X in the
remaining graph. Since each one of these &; vertices must also have at least k; edges incident on them,
we loose at least k2 edges incident on X. Suppose only p such iterations occur and let °%_, k; = . We
observethat S°%_, k? < a|X|. Secondly, we consider the iterations when the greedy selects avertex in X
Then we do not loose any other vertices in X because X is an independent set. Thus the total size of the
independent set constructed by the greedy algorithmisat least p + ¢ where ¢ = | X| — .

By the Cauchy-Schwartz inequality, S°%_, k2 > 22/p. Therefore, we have (14 «)|X| > 22/p + z.
Rearranging, we obtain that

z? a? [ X] % 2q
Pz T 2 > + ~ - .
14+ )| X|—2~ 1+a)|X| " 14+a (14+a)|X| 14+«
Thus 5
PRUPPA L P R T
“1l+ta (14 a))X] 1l4a )
But 2¢/(1+ «) < ¢ for a > 1, and the result follows. |

Lemma6 For A > 10 and any non-negative real number ¢ < 3A — v/8A2 + 4A + 1 — 1, thealgorithm A,
has performanceratio (A — ¢) /2 for MIS-B when the optimal valueitselfisat least ((A—¢)|V])/(A+c+4).

Proof: Observe that the average degree of verticesin O isbounded by (|V — O|A/|O]) and thus using
thefact that |O| > (A — ¢)|V|/(A+ ¢+ 4), we know that the algorithm .4, computes an independent set of
sizeat least |O|/(1+ a) where o« = (4A + 2Ac) /(A — ¢), and o > 1for ¢ > 0. Hence it is sufficient to
determine the range of values ¢ can take such that the following inequality is satisfied:

O] ( 2 )
> .
14+ = \A-c 10

Substituting the bound on the value of o and rearranging the terms of the equation, yields the following
guadratic equation :

®— (60— 2)c+A%-100>0.

Since ¢ must be strictly bounded by A, the above quadratic equation is satisfied for any choice of
c<3A—-V8A2+4A+1—1if A> 10. |

Combining the results of Lemmas 4 and 6 and choosing the largest alowable value for ¢, we get the
following result.
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Theorem 18 An approximation algorithm which simply outputs the larger of the two independent sets
computed by the algorithms.A; and A,, has performanceratio (v8A2 + 4A + 1 — 2A + 1) /2 for MIS-B.

The performance ratio claimed above is essentialy A/2.414. This improves upon the long-standing
approximation ratio of A/2 due to Hochbaum [15], when A > 10. However, very recently, there has been
aflurry of new results for this problem. Berman and Furer [6] have given an agorithm with performance
ratio (A + 3)/5+ ¢ when A iseven, and (A + 3.25)/5 + ¢ for odd A, where ¢ > 0 is a fixed constant.
Halldorsson and Radhakrishnan [14] have shown that algorithm .4, when run on &-cliquefree graphs, yields
an independent set of sizeat least 2n/(A + k). They combine this algorithm with a clique-removal based
scheme to achieve a performance ratio of A/6(1+ o(1)).
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