Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

Re\/|S| on 01 Of FTP: ftp.eccc.uni-trier.de:/publ/eccc/

WWW:  http://www.eccc.uni-trier.de/eccc/

ECCC TR95-024 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Free Bits, PCPs and Non-Approximability—
Towards Tight Results

(2nd Preliminary Version)

Mihir Bellare? Oded Goldreich? Madhu Sudan?

August 31, 1995

In honor of Shimon Even’s 60" birthday.

1 IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. e-mail:
mihir@watson.ibm.com.

2 Department of Applied Mathematics, Weizmann Institute of Sciences, Rehovot, Israel. e-mail:

oded@wisdom.weizmann.ac.il. Partially supported by grant No. 92-00226 from the US-Israel Binational
Science Foundation (BSF), Jerusalem, Israel.

3 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA. e-mail:
madhu@watson.ibm.com.



Abstract

This paper continues the investigation of the connection between proof systems and approxima-
tion. The emphasis is on proving tight non-approximability results via consideration of measures
like the “free bit complexity” and the “amortized free bit complexity” of proof systems.

The first part of the paper presents a collection of new proof systems based on a new error-
correcting code called the long code, and means to test it. We provide a proof system which has
amortized free bit complexity of 2 + ¢, implying that approximating Max Clique within N3~¢, and
approximating the Chromatic Number within N5~¢, are hard assuming NP # coRP, for any € > 0.
We also derive the first explicit and reasonable constant hardness factors for Min Vertex Cover,
Max-2-SAT, and Max Cut, and improve the hardness factor for Max-3-SAT. We note that our
non-approximability factors for Max-SNP problems are appreciably close to the values known to be
achievable by polynomial time algorithms. Finally we note a general approach to the derivation of
strong non-approximability results under which the problem reduces to the construction of certain
“gadgets.”

The increasing strength of non-approximability results via the proof checking connection moti-
vates us to ask how far this can go, and whether proofs are inherent in any way. This is addressed
in the second part of the paper. Recall that [FGLSS] showed how to translate proof systems for
NP into NP-hardness of approximation results for Max Clique. We begin with a result of a novel
nature which essentially reverses this connection, showing how any NP-hardness of approximation
result yields a proof system for NP. Roughly our result says that for any constant f if Max Clique
is NP-hard to approximate within N'/(+f) then NP is in the class FPCP[log, f] of languages pos-
sessing proofs of logarithmic randomness and amortized free bit complexity f. This indicates that
proofs are inherent to obtaining non-approximability results. But it does more: it provides a tight
relation indicating that to get large hardness factors we must minimize the amortized free bit com-
plexity. Motivated by this result we look at how low the amortized free bit complexity can go.
We show that a 2 free bit complexity is inherent to verifiers constructed using “current” recursive
proof verification techniques, and thus the long code is optimal for its use here. In particular, new
techniques are required to prove a better than N'/3 factor hardness for Max Clique.

The third part of our paper initiates a systematic investigation of the properties of PCP and
FPCP as a function of the various parameters: randomness, query complexity, free bit complexity,
amortized free bit complexity, proof size, etc. We are particularly interested in “triviality” results
which indicate which combinations of parameters are not powerful enough to capture NP. We also
distill the role of randomized reductions in this area, and provide a variety of useful transformations
between proof checking complexity classes.



Table of Contents

1 Introduction 5
1.1 Overview of main results . . . . . . . . .. .. L 6
1.1.1  New proof systems and non-approximability results . . . . . ... ... . ... 6
1.1.2  Proofs and approximation: Potential and limitations . . . . . .. ... . ... 6
1.1.3 PCP and FPCP: Properties and transforms . . . . ... .. ... ... .... 7
1.1.4 Conceptual contributions . . . . . ... ... ... . L 7
1.1.5 Previous version, current version and future versions . . . . .. ... ... .. 8

1.2 Some background and definitions . . . .. . ... Lo 8
1.3 New proof systems and non-approximability results . . . . . .. .. ... ... . ... 10
1.3.1 New proof systems . . . . . . . . . .. 10
1.3.2 New non-approximability results . . . . .. . ... ... . 00000 11
1.3.3 Techniques . . . . . . . . . e 11

1.4 Proofs and approximation: Potential and limits . . . . . . ... .. ... .. ..... 12
1.4.1 Reversing the connection: Making proofs from gaps . . ... ... ... ... 13
1.4.2 A lower bounds on amortized free-bits . . . . . . . ... ... o000 13

1.5 Properties and transforms of PCP and FPCP . . . . ... .. ... ... ... .... 14
1.5.1  Triviality results . . . . . . . . L e 14
1.5.2 Other results . . . . . . . . . o 15

1.5.3 Transformations between proof systems . . . . .. ... .. ... ... .... 15

1.6 History . . . . . . e 16
1.7 Related work . . . . . . .. 17
1.8 Directions for further research . . . . . . . .. . ... L o Lo 18
1.9 Acknowledgements . . . . . . ... L 19
2 Notation and Definitions 20
2.1 General notation and definitions . . . . . ... L oL L L oL 20
2.2 Proofsystems . . . . . .. e 20



mrBellare, Goldreich, Sudan 2

2.3 Randomized reductions . . . . . .. oL 22
2.4 History . . . . o o e e e e e e e 23
3 New proof systems and non-approximability results 25
3.1 Overview and guidemap . . . . . . . . . . L 25
3.2 Preliminaries . . . . . . ... e e 26
3.3 Evaluation operators and thelong code . . . . ... ... ... ... ......... 28
3.4 Recursive verification of proofs . . . . . . .. oo 30
3.4.1 Outer verifiers . . . . . . .. L e 30
3.4.2 TInmner verifiers . . . . . . L. e 31
3.4.3 Composition of verifiers . . . . . . . ... L L 32
3.4.4 Constant-prover proofs in PCP — perspective . . . .. .. ... ... .. .. 34

3.5 The atomic tests . . . . . . . . 35
3.5.1 Atomic linearity test . . . . . . . ... 37
3.5.2 Atomic respect of monomial basis test . . . . ... ... . o000 L. 38
3.5.3  Atomic projection test . . . . ... L. 42
3.5.4 Atomic circuit test . . . . .. 42

3.6 Minimizing the number of queries . . . . . . . . ... oo L L 42
3.6.1 The PCP inner verifier . . . . . . . . . . .. 43
3.6.2 The new proof system . . . . . . . ... 45

.7 The MAX SNP verifier . . . . . . . . o o e 46
3.8 Max-3-SAT and Max-2-SAT . . . . . . . . . e 52
3.8.1 Definitions . . . . . . L e e 52
3.8.2 Previous work. . . . . .. 53
3.8.3 New Results . . . . . . . . . 54
3.8.4 Gadgets and the Hardness of MaxSAT . . . . ... ... .. ... ... .... 54
3.8.5 Maximum Satifiable Linear Constraints . . . . .. ... .. ... ... .... 59

3.9 Max CUT . . . . . e e e e e 59
3.9.1 Definitions . . . . . . e e 59
3.9.2 Previous work. . . . ... 60
3.9.3 New Result . . .. . . . 60
3.9.4 Gadgets and the hardness of Max CUT . . . ... ... ... ... ...... 60

3.10 Free bits and vertex cover . . . . . . . ... e 63
3.10.1 Minimizing the error achievable with two free bits . . . . . ... . ... ... 63
3.10.2 Hardness of vertex cover . . . . . . . . . . . . 67
3.10.3 On using the MaxSNP verifier to establish Min VC hardness . . ... . ... 69

3.11 Minimizing the error achievable with three query bits . . . . . ... ... ... ... 70
3.12 The iterated tests . . . . . . . . . oL 72
3.12.1 Linearity and randomness . . . . . . . . ... Lo oo 72
3.12.2 Tterated projection test . . . . . . . . . . Lo 73
3.12.3 Technical claim . . . . . . . . .. 74

3.12.4 Tterated linearity test . . . . . . . . . . ... 74



mrBellare, Goldreich, Sudan 3

3.12.5 Tterated RMB test . . . . . . . . . . 75
3.12.6 Putting some things together . . . . . . .. ... ... o oo 0. 76

3.13 Amortized free bits, Max Clique, and Coloring . . . . .. .. ... ... ... .... 76
3.13.1 Definitions . . . . . . .. L e 76
3.13.2 Sources of our improvements . . . . .. ... oL oo o 77
3.13.3 Construction and results . . . . . . . .. ..o oL 77
3.13.4 Previous work . . . . . .. L 79

3.14 The coding theory bound . . . . . . . .. ... ... 81
3.15 On the optimality of some choices in our analysis . . . .. .. ... ... ....... 82
4 Proofs and approximation: Potential and limitations 85
4.1 The reverse connection and its consequences . . . . . . . .. ... L. 85
4.1.1 The Clique-Gap Verifier . . . . . . . . . . . 85
4.1.2 Main Consequences . . . . . . v v v v it e e e e e e e 88
4.1.3 More Consequences . . . . . . v v v v it e e e e e e e e 93

4.2 On the Limitations of Some Common Approaches . . .. ... ... ... ...... 96
4.2.1 The tasks . . . . . . L 96
4.2.2 Lower Bound for the Codeword Test . . . . . ... .. ... ... ....... 98
4.2.3 Lower Bound for the Projection Test . . . . . . .. .. ... ... ... .... 100
4.2.4 Lower Bound for the Combined Test . . . . . . .. .. ... ... ....... 102

5 PCP: Properties and Transformations 105
5.1 The Complexity of PCP and FPCP . . . ... ... ... ... ... .. ....... 105
5.1.1 Query complexity and amortized query complexity . . . .. ... . ... ... 105
5.1.2  Free-bit complexity . . . . . . ... L. 111
5.1.3 Query complexity versus free-bit complexity . . . . . .. ... ... ... ... 113

5.2 Transformations of FPCP Systems . . . . ... ... .. ... ... ... ... . ... 114
5.2.1 Gap amplification maintaining amortized free-bit complexity . . . .. .. .. 114

5.2.2 Trading-off gap location and free-bit complexity . . .. .. ... ... .. .. 118



1.1
1.2

3.1

3.2
3.3

3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

List of Figures

New PCP Systems for NP, all with logarithmic randomness. . . . . . . . . ... ... 10

Approximation factors attainable by polynomial-time algorithms (Approx) versus
factors we show are hard to achieve (Non-Approx). . . . . .. . . . ... ... .... 12

Constant prover PCPs achieving error which is a fixed, but arbitrarily small, constant
€. Weindicate the number of provers, the randomness and answer sizes, and whether
or not the system is canonical. The notation ?? means “don’t know and don’t care
because stronger things have become available.” In all cases the randomness and
answer sizes hide factors which depend one. . . . . . . . . . .. ... ... ... .. 35
The atomic tests and their passing probabilities. . . . . . .. . ... ... ... ... 36

Worst case (q) and average (q., ) number of queries needed to get 1/2 soundness with
logarithmic randomness. le. results of the form NP C PCP; ;5[ coins = log; query =

G5 QUENY,. = Gay |-« v o v o e e e e e e e e e e e e e e e 43
The PCP inner verifier Vpcpinner - « = « + + + o o v e e e e e e e e e e i e e e 44
The Max-SNP inner verifier Vanpinner - « « « « « o o o o e e et e e e e e e e e e e 47
Non-approximability results for Max-3-SAT indicating the factor shown hard and

the assumption under which this was done. . . . . . .. . ... .. ... ... ... 53
The Max-E3-SAT Gadgets . . . . . . . . . i it e e 56
The Max-2-SAT Gadgets . . . . . . . . e 57
More atomic tests and their passing probabilities. . . . . . . . . .. ... ..., 64
The two free-bit inner verifier Vojnner = « « « « o o v v e e e e e e e e e e e e e 65
The three query inner verifier Vainner - « « « « « « o i v i i i e e e e 71
The iterated tests and their passing probabilities. . . . . . ... .. ... ... .... 75
The free inner verifier Viypfreesin - « « + « « ¢ =+ 0 o e b e e e e e e e e e 77

Some Milestones in the project of proving non-approximability of the Clique number:
Approximation Factor (in terms of the graph size N ) which is infeasible to achieve
under an indicated Assumption. In stating results from [BGLR] on, we ignore N°¢
terms in which € > 0 can be arbitrary small. . . . . . . .. ... .. ... ... ... 80



CHAPTER 1

Introduction

In the Max Clique problem we are given a graph G' and must find the value of MaxClique(G) =
max{ | S| : S is a clique in G }. It is an example of an NP-optimization problem, of which others
are to find the chromatic number of a graph; to find the size of the smallest vertex cover; etc. These
problems arise in a large and varied number of settings, and eflicient solutions are much desired.
Unfortunately, many important NP-optimization problems (those mentioned above in particular)
are NP-hard to solve. So algorithm designers seek efficient (polynomial time) approximation algo-
rithms.

An approximation algorithm A delivers a number that is supposed to be close to optimal. The
quality of the algorithm is measured in terms of what factor of optimal is the delivered number.
For example, a factor a(-) > 1 approximation for Max Clique is one which given G outputs a value
v satisfying MaxClique(G)/a(N) < v < MaxClique(G) where N is the number of nodes in G.

The search for efficient approximation algorithms achieving good factors has met with varied
success. In some cases, good approximation algorithms were found. But many important problems,
including Max Clique, Chromatic Number and Min Vertex Cover, escaped efforts to be approx-
imated at all (in the case of the first two problems) or reasonably well (in the case of the last).
Algorithm designers want to know whether this is due to some inherent intractability, or only to
the lack of cleverness in algorithm design.

Some early non-approximability results were able to indicate, in some cases, that very good ap-
proximation (ie. achieving factors very close to optimal) can be NP-hard. But the real breakthrough
came more recently, when a connection was established between proof checking and approximation,
yielding a strong non-approximability result for Max Clique. This connection has, over the last few
years, been broadened and deepened: more and more problems have fallen to this approach, and
meanwhile the factors that one can indicate hard to approximate increase. Indeed, in some cases,
even tight results seem in sight.

We will now provide a high level overview of our main contributions. Then we will provide
some definitions and state precise theorems.

The above, and most of the following discussion has omitted, for explanatory simplicity, the
historical story that accompanies the technical advances. In Section 1.6 we provide a history of the
main flow of works and ideas in the area. More detailed credits and historical discussions on specific
topics can be found in the text relating to the topic in question, and pointers to these discussions
are also given in Section 1.6.



mrBellare, Goldreich, Sudan 6

1.1 Overview of main results

This paper continues and expands the research in non-approximability via proof systems, with a
focus on the obtaining of tight results. Here we briefly summarize our contributions. Later we will
state the results more precisely.

1.1.1 New proof systems and non-approximability results

Our first set of results continues previous work by building new and more efficient proof systems
and thus improving (increasing) factors shown non-approximable for a wide variety of optimization
problems.

We obtain improved non-approximability results for Max Clique, Chromatic Number, and
Max-3-SAT. We also obtain the first reasonable and explicit constant factor non-approximability
result for the Min Vertex Cover problem, Max Cut, and Max-2-SAT. Several of these results are
strong enough to indicate that the gap between factors that are attainable by polynomial time
algorithms, and those we can indicate are not, is now quite narrow. See Figure 1.2.

The technical foundation of these results is a new code, call the long code, and a collection of
associated tests. The tests are used to construct proof systems for NP. Key to the improvements
in non-approximability factors (for some of the above problems) is the focus on certain measures of
proof checking complexity such as “free-bits” and “amortized free-bits.” In the latter domain the
main result is a proof system for NP using two amortized free-bits, and directly yielding a N'/3
non-approximability factor for Max Clique.

We emphasize a general framework for the derivation of strong non-approximability results for
Max-SNP problems which results from our tests and proof systems: obtaining a non-approximability
result for a particular problem is reduced to the construction of appropriate “gadgets” to “repre-
sent” two simple functions: boolean XOR and boolean AND.

1.1.2 Proofs and approximation: Potential and limitations

As the above indicates, non-approximability results are getting steadily stronger, especially for Max
Clique. How far can they go? And, in minimizing amortized free-bits, are we on the right track?
Are there other ways? The next set of results provides answers to these kinds of questions.

A reverse connection

We focus on the Max Clique problem. We present a result which indicates that proof checking
is necessary to getting non-approximability results. Furthermore, it indicates that not just proof
checking, but the minimization of the amortized free-bit complexity is necessary.

Roughly, we show that if, for some f > 0, Max Clique is NP-hard to approximate within N1/(+7)
then NP has proof systems of (logarithmic randomness and) amortized free-bit complexity f. This
result can be viewed as “inverting,” in a strong way, the FGLSS-connection.

So our current efforts (recall that we have the amortized free-bit complexity down to two,
yielding a N'/3 hardness for Max Clique) are in the right direction. To prove that, say Max Clique
is hard to approximate within v/N, our reverse connection says we must construct proof systems

b

with amortized free-bit complexity one.



mrBellare, Goldreich, Sudan 7

A lower bound on amortized free-bits

Now that we know we must minimize amortized free-bits, we ask ourselves how low we can take
them. Our approach here is to look at current techniques and assess their limitations. We derive
lower bounds showing that any proof system using the existing frameworks (of this and previous
papers) must use at least two amortized free-bits. Our reverse connection now implies that proving
a better than N'/3 hardness for Max Clique requires new techniques.

We stress that this last result makes various assumptions about methods, and is intended to show
that significantly novel techniques are required to go further. But it does not suggest an inherent
limitation. Indeed, if we believe Max Clique is hard to approximate within N'=°(Y) then our reverse
connection says proof systems with arbitrarily small constant amortized free-bit complexity exist;
we are just saying they may be hard to find.

1.1.3 PCP and FPCP: Properties and transforms

Probabilistic proofs involve a vast arena of complexity parameters: query complexity, free-bit
complexity, amortized free-bit complexity, randomness, and proof sizes to name a few. Some
might, at first glance, seem less “natural” than others; yet all are important in applications. A
better understanding of the basic properties and relations between these parameters would help
move us forward.

We initiate, accordingly, a systematic investigation of the properties of pcp complexity classes
as a function of the parameter values. Besides providing new results we take the opportunity to
state and prove a few folklore ones.

We focus in particular on “triviality” results. These are results which say that certain pa-
rameter combinations yield classes probably not capable of capturing NP. For example, the class
of languages recognizable with error 1/2 and logarithmic randomness using one (non-amortized!)
free-bit is in P— so don’t expect to prove NP using just one free-bit. (But nothing rules this out
when amortization is considered).

We also investigate transformations: to reduce the randomness, error or other complexities at
various costs.

1.1.4 Conceptual contributions

The reverse connection does more than guide our choice of parameters. It provides a new conceptual
tool because it enables us to reflect, in the language of proof systems, theorems, properties and
transformations of graphs, and vice versa. This turns out to be very useful and revealing. It also
leads, in some cases to new results derived by turning graphs into proof systems via our connection,
and then back to graphs via the FGLSS connection, in the process gaining some property. As an
example we show how all known hardness results for chromatic number can be viewed (with almost
no loss in efficiency) as reductions from Max Clique — even though these were essentially hardness
results based on proof checking. Other examples demonstrating the usefulness of the equivalence
may be found in Section 4.1.3. We believe that exploring and exploiting further this duality is a
fruitful avenue to pursue.

A second (and related) conceptual contribution of this work is to distill and formalize the role of
randomized reductions. These transforms provide an elegant and concise way of stating connections
between proofs and approximability, or just between different kinds of proof systems, and make it
easier to manipulate the many connections that exist to derive new results.



mrBellare, Goldreich, Sudan 8

1.1.5 Previous version, current version and future versions

This is a revised preliminary version of our work. This version improves over the previous one,
dated May 1995, in the analysis of the MAX-SNP verifier and consequently in the hardness factors
achieved via this verifier (i.e., for Max-3-SAT, Max-2-SAT, and Max CUT). In addition, a new
transformation of pcp systems is presented (Proposition 5.2.9) resolving an open problem mentioned
in the previous version (i.e., showing a pcp system for NP with perfect completeness, logarithmic
randomness, soundness error s < 0.943 < 1 and free-bit complexity log, 3 < 2). Finally, some minor
flaws in the previous expositions were removed (e.g., see Definition 3.3.1 and “double folding”).

We have recently improved many of the results of Chapter 3. In particular, we get hardness fac-
tors of 27/26,74/73, 66 /65 and 16/15 for Max3SAT, Max2SAT, MaxCUT and MinVC, respectively.
In addition, we have NP = PCP, o;llog,11] = FPCP, o5[log, 6] and NP = PCP, ;g5[log,3] =
FPCP, g 794[log, 2]. These were obtained via a new (adpative!) RMB test. Details will be provided
in the next version of this paper.

1.2 Some background and definitions

In the next sections we will state more precisely the results and theorems corresponding to the
above discussion. In order to do this we have to recall some minimal number of definitions and
background. Here we will be informal and as brief as possible; formal definitions can be found in
Chapter 2.

PROOF SYSTEMS AND PARAMETERS. A probabilistic proof system is described by a probabilistic,
polynomial time verifier V. It takes an input z of length n and tosses coins R. It has oracle access
to a poly(n) length string ¢ describing the proof: to access a bit it writes a O(logn) bit address
and is returned the corresponding bit of the proof. Following its computation it will either accept
or reject its input z. The accepting probability, denoted ACC[V(z)], is the maximum, over all o, of
the probability (over R) that V accepts @ on coins R and proof string o. While the task is typically
language recognition, we will, more generally, consider promise problems (A, B) consisting of a set
A of “positive” instances and a set B of “negative” instances [ESY]. (Languages are a special case
of promise problems; a language L is represented by the promise problem (L, L).)

Of interest in the applications are various parameters of the system. The completeness proba-
bility ¢ = ¢(n) and the soundness probability s = s(n) are defined in the usual ways. In case ¢ = 1
we say that the system has perfect completeness. The gap is ¢ = ¢/s. The query complexity is
the maximum (over all coin tosses and proof strings) of the number of bits of the proof that are
examined by the verifier. The free-bit complexity, roughly speaking, is the logarithm of number
of possible accepting configurations of V' on coins R and input z. (For example a verifier which
makes 3 queries and accepts iff the parity of the answers is odd has 4 accepting configuration and
thus free-bit complexity 2.)

Either the query or the free-bit complexity may be considered in amortized form: eg. the amor-
tized free-bit complexity is the free-bit complexity (of a proof system with perfect completeness)
divided by the logarithm of the gap. (That is, the number of free-bits needed per factor of 2 increase
in the gap.) Also, either the query or free-bit complexity may be considered on the average, the
average being over the random string of the verifier.

We use the notation PCP, [r, ¢] to denote the class of promise problems recognized by verifiers
tossing r coins, having query complexity ¢, and achieving completeness probability ¢ and soundness
probability s. FPCP, ,[r, f] is defined analogously with f being the free-bit complexity. PCPIr, ¢
is defined analogously with ¢ being the amortized query complexity, and FPCPJ[r, f] is defined



mrBellare, Goldreich, Sudan 9

analogously with f the amortized free-bit complexity.

Max CLIQUE APPROXIMATION. Although we look at many optimization problems there is a
particular focus on Max Clique. Recall the best known polynomial time approximation algorithm
for Max Clique achieves a factor of only N'~°(1) [BoHa], scarcely better than the trivial factor of
N. (Throughout the paper, when discussing the Max Clique problem, N denotes the number of
vertices in the graph.) There is not even a heuristic algorithm that is conjectured to do better.
(The Lovész Theta function had been conjectured to approximate the Max Clique size within VN
but this conjecture was disproved by Feige [Fei].)

The question of whether one can do even slightly better is of interest. Namely, can one present
an N'~¢ factor approximation algorithm for Max Clique for some ¢ < 1?7 An additional motivation
for searching for such “weak” approximation algorithms was suggested by Blum. He showed that
a polynomial-time N'~¢-factor approximation algorithm for Max Clique implies a polynomial time
algorithm to color a three colorable graph with O(log N') colors [Bl], which is much better than
currently known [KMS].

But perhaps N'=°(1) is the best possible. Resolving the approximation complexity of this basic
problem seems, in any case, to be worth some effort.

GAPs IN CLIQUE s1zE. Hardness of approximation (say of Max Clique) is typically shown via the
construction of promise problems with gaps in max clique size. Specifically, let Gap-Clique, , be the
promise problem (A, B) defined as follows: A is the set of all graphs G with MaxClique(G)/N > ¢(N),
and B is the set of all graphs G with MaxClique(G)/N < s(N). The gap is defined as ¢/s. Now, a
hardness result will typically specify a value of the gap g(N) = ¢(N)/s(N) for which Gap-Clique, ,
is NP-hard under a (randomized) Karp reduction. This means that there is no polynomial time
algorithm to approximate the Max Clique size of an N node graph within g(/N) unless NP has
randomized polynomial time algorithms.

Gap problems can be similarly defined for all the other optimization problems we consider.
From now on, we discuss approximation in terms of these gap problems.

THE CONNECTION: MAKING GAPS FROM PROOFS. We need to recall something about the manner
in which proof systems are translated into (NP-hard) gap problems. We will refer to the FGLSS-
reduction, which we recall is a reduction of a promise problem (A, B), or rather a pcp system for
(A, B), which maps an input € AU B to a graph G, so that MaxClique(G,) reflects ACC[V (z)].
For the best results one typically uses a randomized form of this reduction due to [BeSc, Zu] and
it is this that we will assume henceforth.

A NP-hard gap problem is obtained roughly as follows. First, one exhibits an appropriate
proof system for NP. Then one applies the FGLSS reduction. The factor indicated hard depends
on the proof system parameters. A key factor in getting better results has been the distilling of
appropriate pcp-parameters. The sequence of works [FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu]
lead us through a sequence of parameters: query complexity, free-bit complexity and, finally, for the
best known results, amortized free-bit complexity. The connection in terms of amortized free-bits
can be stated as follows: if NP reduces to FPCPllog, f] then NP also reduces to Gap-Clique, ,, with
gap ¢(N)/s(N) = NYO+D_ (In both cases the reduction is via randomized Karp reductions, and
terms of € > 0 which can be arbitrarily small are ignored.) In particular if NP C FPCPllog, f] then
approximating the max clique size of an N vertex graph within N'/('*/) in polynomial time is not
possible unless NP has efficient randomized polynomial time algorithms.



mrBellare, Goldreich, Sudan 10

1.3 New proof systems and non-approximability results

This section describes the proof systems that we construct and the non-approximability results that
we derive from them. All proof systems are based on the long code and its checking machinery. For
some of the non-approximability results we introduce new reductions or improve currently known
reductions.

1.3.1 New proof systems

The following theorem summarizes the new proof systems that we obtain. Some are motivated
by applications, others purely as interesting items in proof theory. Following the theorem is the
discussion and motivation.

Theorem 1.3.1 We provide the following new proof systems for NP—
(1) For every € > 0 it is the case that NP C FPCP[log, 2 + €].

(2) NP C PCPy 15[ coins = log ; query = 19 ; query,, = 15.58].

(3) NP C FPCP, ,[log,2] for s = 0.884464.

(4) NP C PCP, [log, 3] for s = 0.8999.

The search for proof systems of low amortized free-bit complexity is motivated of course by the
FGLSS reduction. Bellare and Sudan [BeSu] have shown that NP C FPCPJlog, 3 + €] for every
€ > 0. The first result above improves upon this, presenting a new proof system with amortized
free-bit complexity 2 + e.

The question of how low one can get the (worst-case and average) query complexity required
to attain soundness error 1/2 was investigated a lot in earlier works because they were applying
the result to obtain Max Clique hardness results. We now know we can do better with amortized
free-bit complexity. Nevertheless, the original question is still one to which we are curious to know
the answer.

Minimizing the soundness error obtainable using only two (non-amortized!) free-bits is impor-
tant for a more pragmatic reason. It enables us to get the first explicit and reasonably strong
constant non-approximability result for the Min Vertex Cover problem. This application is dis-
cussed below.

Finally, what soundness one can achieve using only three query bits is a natural question given
the Max 3S5AT gap results. Indeed, if there is an NP-hard Max 3SAT gap problem with certain

focus error queries free-bits || previous related result
worst | average
Max SNP 0.864 4 3.37 3
3 queries 0.900 3 3 2 error 22 via MaxSAT [BeSu]
2 free-bits 0.885 4 3.45 2
error 1/2 i 19 15.6 11 32 queries (24 on average) [FeKi]
amortized free-bits || O(27™) | 237 23m 2m 3m free-bits [BeSu]

Figure 1.1: New PCP Systems for NP, all with logarithmic randomness.



mrBellare, Goldreich, Sudan 11

gap then one can easily get a three query proof system with the same gap. But in fact one can do
better as indicated above.

In Figure 1.1 we present a table which depicts the parameters of our new proof systems and com-
pares them to previous related result. The first row in the table corresponds to a proof system (not
mentioned in Theorem 1.3.1) which we use to derive Max SAT and Max CUT non-approximability
results. The last row in the table corresponds to the proof system used to establish Part (1) of
Theorem 1.3.1.

1.3.2 New non-approximability results

Again we first state the theorem and then discuss it. But the best thing to do is look at Figure 1.2.

Theorem 1.3.2 The following indicate factors not achievable in polynomial time for the indicated
problems, and the assumption under which the result is shown. Here ¢ > 0 is an arbitrary constant
and N is, for the first two results, the number of vertices in the graph—

) A factor of N5~¢ for Max Clique assuming NP # coRP

) A factor of N3¢ for Chromatic Number assuming NP # coRP

) A factor of 27/26 for Min Vertex Cover assuming P # NP

) A factor of 38/37 for Max-3-SAT and Max Exact 3SAT assuming P # NP
A factor of 82/81 for Max CUT assuming P # NP.

A factor of 94/93 for Max-2-SAT assuming P # NP.

1
2

= oo

(
(
(
(
(5)
(6)
The conclusion for Max Clique follows, of course, from the FGLSS-reduction and Part (1) of
Theorem 1.3.1. The conclusion for the Chromatic Number follows from a recent reduction of
Furer [Fu], which in turn builds on reductions in [LuYa, KLS, BeSu].

The improvements for the Max-SNP problems are perhaps more significant than the Max Clique
one: for the first time, we see hardness results for Max-SNP problems which are comparable to the
factors achieved by known polynomial time approximation algorithms.

We are obtaining the first explicit and reasonable non-approximability factor for the minimum
vertex cover. Recall that it is approximable within 2-o(1) [BaEv, MoSp]. Our results for Max
CUT and Max-2-SAT show that it is not possible to find a solution with value which is only 1%
away from being optimal. This may be contrasted with the recent results of [GoWi2, FeGo] which
shows that solutions which are within 14% and 7.5%, respectively, of the optimum are obtainable
in polynomial time. Thus even though, we do not know if the “pcp approach” allows to get the
best possible non-approximability results for these problems, we feel that the current results are
u—1

not ridiculously far from the known upper bounds. Consider, for example, the ratio 9=, where u

and [ are the currently known upper and lower bounds, respectively. Then, the ratios for the above
mentioned Max-SNP problems are 5.3 for Max Exact 3SAT, 7 for Max-2-SAT, 11.3 for Max-CUT,
11.8 for Max-3-SAT, and 26 for MinVC (Minimum Vertex Cover).

Figure 1.2 we present a table which depicts, for each problem we have considered, the best
known factor achievable by a polynomial time algorithm, our lower bound, and the best previous
lower bound. We ignore, as usual, terms of N¢ where € > 0 is an arbitrary positive constant.

1.3.3 Techniques

As in all recent constructions of efficient pcp’s our construction also relies on the use of recursive
construction of verifiers, introduced by Arora and Safra [ArSa]. We have the advantage of being
able to use, at the outer level, the verifier of Raz [Raz] which appeared only recently and was not



mrBellare, Goldreich, Sudan 12
Problem Approx Non-Approx
Factor | Due to New Factor Previous Factor Assumption
Max-3-SAT 1.319 | [Ya, GoWil, GoWi2] 1.027 1+ = [BeSu] P #£NP
Max-E3-SAT 14+ 1 | folklore 14 2= unspecified [ALMSS] P # NP
Max-2-SAT 1.075 | [GoWi2, FeGo] 1.010 1+ 1= (implied [BeSu]) P #NP
MAX CUT 1.139 | [GoWi2] 1.012 unspecified [ALMSS] P £ NP
Min-VC 2 —o(1) | [BaEv, MoSp] 1+ L unspecified [ALMSS] P #£NP
Max-Clique N1=o(1) | [BoHa] N3 [BeSu NP ¢ coRP
N3 N3 coRP # NP
N3 N [BeSu] P # NP
Chromatic N1=e(1) | [BoHa] N6 [BeSu] NP ¢ coRP
Number N3 NTs coRP # NP
N7 N7 [BeSul P # NP

Figure 1.2: Approximation factors attainable by polynomial-time algorithms (Approx) versus fac-
tors we show are hard to achieve (Non-Approx).

available to previous works. The inner level verifier relies on the use of a “good” encoding scheme.
Since [ALMSS], constructions of this verifier have used the Hadamard Code for this purpose. In
this paper we change this aspect of the protocol and use instead a much more redundant code
which we call the long code. This code encodes an n-bit string as a 22" bit string which consists
of the value of every boolean function on the n bit string. It is easy to see such codes have large
Hamming distance. What is important is that this code is also easily “testable” and “correctable”.
This is shown in Section 3, where we show how this code translates into the theorem described
above.

A second aspect of the improved hardness result is the fact that we use direct reductions from
verifiers to the problems of interest. This follows and extends [BGLR], prior to which results had
used “generic” reductions, which did not take advantage of the nature of the tests performed by the
verifier. In particular, in our case it turns out that the verifier only performs two kinds of tests —
(1) verify that a+ b+ ¢ =0 (mod 2); and (2) verify that a-b = ¢+ d (mod 2), where a,b,c,d
are all elements of GF(2) = {0, 1}. By constructing local gadgets (i.e., one gadget per random coin
toss sequence) to verify each of the verifier’s tests, we achieve better non-approximability results
than using more general reductions. In particular our work seems to suggest that optimizing for
gadgets which “check” the two conditions listed above will lead to reasonably good lower bounds
for many Max-SNP problems.

1.4 Proofs and approximation: Potential and limits

Next we describe the results concerned with exploring the limitations of proof theoretic techniques
in approximation.



mrBellare, Goldreich, Sudan 13

1.4.1 Reversing the connection: Making proofs from gaps

The FGLSS Reduction Lemma indicates that one route to good non-approximability results for
Max Clique is to show NP C FPCPJlog, f] for values of f which are as small as possible. Our
reverse connection says that, in fact, this is the only way to proceed. Namely, we “invert” the
above FGLSS-reduction. The following states an equivalence: (2)=-(1) is just the FGLSS-reduction;
(1)=-(2) is our reversed connection. The following statement ignores terms of ¢ > 0 which can be
arbitrarily small. The proof and a more precise statement are in Section 4.1.

Theorem 1.4.1 Let f be a constant. Then the following statements are equivalent:

(1) NP reduces to Gap-Clique, , with gap ¢(N)/s(N)= N0+,

(2) NP reduces to FPCPllog, f].

In both cases the reduction is randomized. Furthermore the statement holds both for Karp and for
Cook reductions. Also, if (1) holds with a deterministic Karp reduction then NP C Wl[log, fl,
where FPCP' is defined as being the amortized free-bit complexity of proof systems with almost-
perfect completeness (i.e., ¢ =1 —o(1)).

In other words ANY method of proving NP-hardness of Max Clique approximation to a factor of
N0+ implies that NP has proof systems of amortized free-bit complexity f.

We stress both the “qualitative” and the “quantitative” aspects of this result. Qualitatively,
it provides an answer to the following kind of a question: “What do proofs have to do with
approximating clique size, and can we not prove non-approximability results without using proof
checking?” The result indicates that proofs are inherent, and explains, perhaps, why hardness
results avoiding the proof connection have not appeared.

However, at this stage it is the quantitative aspect that interests us more. It says that to get
tighter results on Max Clique hardness, we must construct proof systems to minimize the amortized
free-bit complexity. Thus our work with the long code was in the right direction. A question is
whether the amortized free-bit bound of 2 can be improved.

1.4.2 A lower bounds on amortized free-bits

We show that, under the framework used within this and previous papers on this subject, amortized
free-bit complexity of 2 seems to be a natural barrier: any proof system in this framework must
use 2 — € amortized free-bits, where € > 0 as usual can be aribtrarily small. The result, including
a definition of what we mean by the “framework,” is in Section 4.2. Loosely speaking, it considers
proof systems which, among other things, probe two oracles in order to check that one oracle is
“close” to a codeword (i.e., a codeword test) and the second oracle encodes a projection of the
information encoded in the first oracle (i.e., a projection test). We also prove a lower bound of
1 — € on the amortized free-bit complexity of performing only the codeword test (resp., only the
projection test). Our lower bound refers to a codeword test that is required to reject oracles
which are at distance at least d/2 from the code, where d is the distance of the coded. All three
lower bounds are tight (by proof systems presented in this paper). A more relaxed definition of
a codeword test only requires the test to reject oracles at distance more that (1 — ¢€) - d from the
code.! We do not know whether our lower bound (on the amortized free-bit complexity) holds also
for the relaxed codeword test.

All known constructions (of reasonablly efficient pcp systems) fall into the framework discussed
above (i.e., perform both a codeword test and a projection test). Furthermore, a pcp system of

! In contrast to the original definition, passing a relaxed codeword test does not guarantee unique decoding.
However, as we see in Section 3.4, this does not matter.



mrBellare, Goldreich, Sudan 14

amortized free-bit complexity 2 + € (cf. Theorem 1.3.1 Part 1) can be constructed both by using
the relaxed and non-relaxed forms of the codeword test. Thus improving on the amortized free-bit
count of 2 + € requires either departure from the abovementioned framework or the construction
of a relaxed codeword test with amortized free-bit complexity significantly lower than 1. In the
latter case (i.e., when remaining in the above framework), such a construction is necessary but not
sufficient in order to obtain a pcp system for NP with free-bit complexity lower than 2 (since one
needs to perform the projection test also in case the oracles are close but not equal to codewords).
Furthermore, in such a case the lower bound of 1 on the free-bit complexity of the projection test
still holds.

We conclude that improving on the amortized free-bit count of 2 4+ ¢ would require some signif-
icant changes in the design or analysis of pcp verifiers. It follows from our reverse connection that
proving a larger than N'/3 non-approximability factor for Max Clique would also require significant
new techniques.

We stress that these results are about limitations of techniques, not inherent limitations. We are
not saying there is any reason to dis-believe the existence of, say, of a pcp verifier with amortized
free-bit complexity of € > 0 for all NP languages, where ¢ > 0 is an arbitrary constant. Indeed, if
we believe Max Clique is hard to approximate within N*=°(1) then such verifiers exist! We are just
saying they may be hard to find.

1.5 Properties and transforms of PCP and FPCP

The results mentioned in the first two subsections can be found in Section 5.1; whereas the results
in the last subsection are from Section 5.2.

1.5.1 Triviality results

We begin our investigation of the roles of various parameters with triviality results. These results
are directed at seeing what kinds of parameter combinations we can expect are too weak to recognize
NP.

Perhaps the first thing to ask is whether, instead of amortized free-bit complexity, we could
work with any of the simpler measures. After all FPCPllog, f] contains each of the following classes:
(1) PCP; 1)5[log, f]; (2) PCPllog, f]; (3) FPCP, y5[log, f]. Thus it would suffice to minimize the
query complexity to get error 1/2; or the amortized query complexity; or the free-bit complexity
to get error 1/2. However it turns out these complexities will not enable us to reach our target
(of reducing the complexity to almost zero and thus proving that clique is hard to approximate to
within a N'~¢ factor, for every € > 0). This is because of the following (where the first result is
folklore and included here only for completeness).

Theorem 1.5.1 The following classes are all contained in P—
(1) PCPyo[log,2]

(2) PCPJ[log, 1]

(3) FPCP, q5log,1].

Thus we cannot expect to construct pcp systems for NP with query complexity 2; amortized query
complexity 1; or free-bit complexity 1. However it is a feature of amortized free-bit complexity
that so far it seems entirely possible that NP reduces to FPCPllog, f] with f an arbitrarily small
constant. Indeed, if we believe (conjecture) that Max Clique is hard to approximate with N*'~¢ for
any € > 0 then such proof systems must exist, by virtue of Theorem 1.4.1 above. In fact, even if we



mrBellare, Goldreich, Sudan 15

do not believe that Max Clique is hard to approximate with N'~¢ for any € > 0, it turns out that
the amortized free bit parameter will be too weak to capture the hardness of the clique function. In
fact if Max Clique is hard to approximate to within N, then the best hardness result obtainable
from the amortized query bit parameter would be of the form Nz=. This is shown by invoking
Corollary 5.1.9 which shows that the amortized query complexity parameter is always one larger
than the amortized average free bit parameter (and we know that the amortized free bit parameter
captures the hardness of Max Clique tightly).

1.5.2 Other results

We have already mentioned above (cf., Theorem 1.5.1) that strict limitations on various query
parameters make PCP very weak. Actually, for every s < 1, PCP; ([log,2] and FPCP, ,[log, 1]
collapse to P. This means that pcp systems with perfect completeness are very weak when restricted
to either two queries or to free-bit complexity one. However, pcp systems with completeness error
and the very same query (resp., free-bit) bounds are not so weak. In particular, it is well known
that NP = PCP, ,[log, 2] for some 0 < s < ¢ < 1 (e.g., by using the NP-hardness of approximating
Max2SAT). We show that NP = FPCP, ,[log, 1] for some 0 < s < ¢ < 1 (specifically, ¢ = + and
s = 0.885-¢). Furthermore, for some smaller 0 < s < ¢ < 1, the following holds

NP = FPCP, ,[log, 0] (1.1)

(specifically, with ¢ = i and s = 0.885-¢). We find the last assertion quite intriguing. It seems to
indicate that one needs to be very careful when making conjectures regarding free-bit complexity.
Furthermore, one has to be very careful also when making conjectures regarding amortized free-
bit complexity; for example, the result P = PCP[log, 1] holds also when one allows non-perfect
completeness (in the definition of PCP[-, -]) as long as the gap is greater than 27 per q queries, but
an analogous result cannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[-, -]).

Trying to understand the power of pcp systems with low free-bit complexity, we have waived
the bound on the randomness complexity. Recall that in this case pcp systems are able to recognize
non-deterministic exponential time (i.e., NEXPT = PCP, y,5[poly, poly]) [BFL]. Thus, it may be
of interest to indicate that for every s < 1,

FPCP, ([poly,0] C coNP (1.2)
FPCP, ([poly,1] C PSPACE (1.3)

It seems that FPCPy 15[log,0] is not contained in BPP, since Quadratic Non-Residuosity and
Graph Non-Isomorphism belong to the former class. (Specifically, the interactive proofs of [GMR]
and [GMW] can be viewed as a pcp system with polynomial randomness, query complexity 1 and
free-bit complexity 0.) Thus, it seems that also the obvious observation PCP;  [poly, 1] C AM (for
every s < 1, where AM stands for one round Arthur-Merlin games), would be hard to improve
upon.

1.5.3 Transformations between proof systems

We provide various useful transformation of pcp systems. These transformations are analogous to
transformations which can be applied to graphs with respect to the max-clique problem. In view
of the relation (mentioned above), between FPCP and the clique promise problem, this analogy is
hardly surprising.



mrBellare, Goldreich, Sudan 16

One type of transformations amplify the gap (i.e., the ratio between completeness and soundness
bounds) of the proof system while preserving its amortized free-bit complexity and incurring a
relatively small additional cost in the randommness complexity. Specifically, using a randomized
reduction we can transform FPCP, 1[log, f] into FPCP, »-x[log +k,k - f]. (This transformation is
analogous to the well-known transformation of Berman and Schnitger [BeSc].) Alternatively, using a
known deterministic amplification method based on [AKS, LPS] one can transform FPCPL%[log, /]
into FPCP; 5-«[log 42k, k - f] (ignoring multiplicative factors of 1 4 ¢ for arbitrarily small € > 0).
(To the best of our knowledge this transformation has never appeared with a full proof.) Both
alternatives are important ingredients in transforming pcp results into clique in-approximability
results via the FGLSS method.

A second type of transformations are ones which move the location of the gap (or, equivalently,
the completeness parameter). The gap itself is preserved by the transformation but moving it
is related to changing the free-bit complexity (and thus the amortized free-bit complexity is not
preserved). Moving the gap ‘up’ requires increasing the free-bit complexity, whereas moving the gap
‘down’ allows to decrease the free-bit complexity. For example, we randomly reduce FPCP, ([log, f]
to FPCP; ,.0llog, f+1log(1/c)+loglog]. On the other hand, for every k < f, we (deterministically)
reduce FPCP, ([log, f] into FPCPfkﬁ[log,f — k], provided that the original system has at least
2% accepting configurations per each possible sequence of coin-tosses. (This condition is satisfied in
many natural pcp systems, even for k = f.)

1.6 History

Early work in non-approximability includes that of Garey and Johmnson [GJ1] showing that it is
NP-hard to approximate the chromatic factor within a factor less than two. The indication of
higher factors, and results for other problems, had to wait for the interactive proof approach.

Interactive proofs were introduced by Goldwasser, Micali and Rackoff [GMR] and Babai [Bab].
Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] extended these ideas to define a notion of
multi-prover interactive proofs. Fortnow, Rompel and Sipser [FRS] showed that the class, MIP, of
languages possessing multi-prover interactive proofs equals the class of languages which have (using
todays terms) probabilistically checkable proofs (of unrestricted, and thus polynomial, randomness
and query complexity).

First indication to the power of interactive proof systems was given in [GMW], where it was
shown that interactive proofs exist for Graph Non-Isomorphism (whereas this language is not known
to be in NP). However, the real breakthrough came with the result of Lund, Fortnow, Karloff and
Nisan [LFKN] who used algebraic methods for showing that all coNP languages (and actually, all
languages in P#”) have interactive proof systems. These techniques were used by Shamir [Sh] to
show that IP = PSPACE.

A central result which enabled the approximation connection is that of Babai, Fortnow and
Lund [BFL] who showed that the class MIP equals the class NEXP (i.e., languages recognizable
in non-deterministic exponential time). The latter result has been “scaled-down” to the NP-level
by two independent groups of researchers. Babai, Fortnow, Lund and Szegedy [BFLS] showed
that if the input is encoded using a special error-correcting code (for which encoding and decoding
can be performed in polynomial-time) then NP has transparent proof systems (i.e., it is possible
to verify the correctness of the proof in poly-logarithmic time). Feige, Goldwasser, Lovdsz, Safra
and Szegedy [FGLSS] showed that NP has probabilistically checkable proofs of poly-logarithmic
randomness and query complexity; namely, NP C PCP, y,5[r, ¢], where r(n) = ¢(n) = O(logn -
loglog n).



mrBellare, Goldreich, Sudan 17

The breakthrough connection to approximation was made by Feige, Goldwasser, Lovdsz, Safra
and Szegedy [FGLSS]. They have shown that NP C PCP, ([r, ¢] implies that approximating the
maximum clique in a 2"")*4(")_vertices graph to within a 1/s(n) factor is infeasible (i.e., not doable
in polynomial-time), provided that NP is not in Dtime(2°0"*9). (Here n is the length of the input
z to the pcp verifier.) Combined with the above-mentioned results, they have obtained the first in
a sequence of strong non-approximability results for Max Clique: a non-approximability factor of
21087 N e > 0, assuming NP did not have quasi-polynomial time algorithms.

After the work of [FGLSS] the field took off in two major directions. One was to extend the
interactive proof approach to apply also to other optimization problems. Direct reductions from
proofs were used to show hardness of quadratic programming [BeRo, Felo], Max-3-SAT [ALMSS],
set cover [LuYa], and other problems [Be]. Also, reductions from Max Clique lead to hardness
results for the chromatic number [LuYa] and other problems [Zu], while previous reductions from
Max-3-SAT lead to hardness results for all of Max-SNP [PaYa].

The other direction was to increase factors and reduce assumptions for problems already shown
hard to some factor under some assumption, by improving the efficiency of the underlying proof
systems and/or the efficiency of the reductions.

The first stage of this enterprise started with the work of Arora and Safra [ArSa] which, show-
ing that NP C PCP, 15[log, o(log)], provided the first strong NP-hardness result for Max Clique

(specifically, a hardness factor of 2V'°8"). This work has introduced the idea of recursive proof
checking which turned out to play a fundamental role in all subsequent developments. Interest-
ingly, the idea of encoding inputs in an error-correcting form (as suggested in [BFLS]) is essential
to make “recursion” work. Arora, Lund, Motwani, Sudan and Szegedy [ALMSS], have reduced the
query complexity of pcp systems for NP to a constant, while preserving the logarithmic randomness
complexity; namely, they have shown that NP = PCP, ;,s[log, O(1)]. This immediately implied the
NP-hardness of approximating Max Clique within N¢, for some ¢ > 0. Furthermore, it also implied
that Max-3-Sat is NP-hard to approximate to within some constant factor [ALMSS] and so is the
entire class Max-SNP [PaYa].

Attempts to improve the constant in the exponent of the Max Clique hardness factor, and also
improve the constant values of the hardness factors in the Max-SNP hardness results, begin with
Bellare, Goldwasser, Lund and Russell [BGLR]. They presented new proof systems minimizing
query complexity and exploited a slightly improved version of the FGLSS-reduction due to [BeSc,
Zu] to get a N'/3° hardness of approximation factor for Max Clique. Feige and Kilian [FeKi],
however, observed that one should work with free-bits, and noted that the free-bit complexity of the
system of [BGLR] was 14, yielding a N'/'®> hardness factor. Bellare and Sudan then suggested the
notion of amortized free-bits and built new proof systems achieving amortized free-bit complexity
three, and in particular a N'/# hardness for Max Clique assuming NP ¢ coRP.

Detailed histories for specific topics are given in the sections addressing this topic. In particular
see Section 2.4 for history of PCP and its growing list of parameters; Section 3.4 for a perspective
of the role of constant prover proofs; Section 3.6 for previous work in query complexity minimiza-
tion; Section 3.8 for previous work, both on approximation algorithms and hardness results, for
Max-3-SAT and Max-2-SAT; Section 3.13 for previous work on Max Clique and history of various
chromatic number reductions.

1.7 Related work

Following the presentation of our results, Arora has also investigated the limitations of proof check-
ing techniques in proving non-approximability results [Ar]. Like in our free-bit lower bound result,



mrBellare, Goldreich, Sudan 18

he tries to assess the limitations of current techniques by making some assumptions about these
techniques and then showing a lower bound. His focus is on the reductions, which he assumes are
“code like.” In this setting he can show that one should not expect to prove non-approximability of
Max Clique within N'/2. In contrast we have a larger lower bound of N'/3, but we make different
kinds of assumptions about the way proof systems are designed. (The assumptions made by us and
by Arora do not seem to be comparable: neither implies the other.)

1.8 Directions for further research

A central open problem is whether NP has proof systems of amortized free-bit complexity less
than 2. We believe that the answer is in the affirmative. (However, Section 4.2 demonstrates that
this cannot be shown by using the current paradigms for constructing pcp systems.) Furthermore,
we conjecture that, for every € > 0, NP C FPCPJ[log, ¢] and challenge the reader to refute this
conjecture,.

Two questions of a de-randomization flavor follow. As stated above, we know that FPCP[log, f]
is randomly reducible to FPCP 5-x[log+k,k - f]. On the other hand, the former class is contained
in (i.e., is deterministically reduced to) the class FPCP; 5-x[log +(2 4 €)k, (1 + €)k - f], for arbi-
trarily small € > 0. Can one obtain the best of both worlds; namely, a deterministic reduction of
FPCPllog, f] to, say, FPCP; 5-x[log +(1+€)k, (1+¢€)k- f], for arbitrarily small € > 0. An affirmative
answer will allow to infer from NP C FPCP[log, f] that approximating Max Clique to within an
N7+ factor is NP-hard (rather than infeasible under the assumption that NP is not contained
in BPP).

One ingredient of our method for reversing the FGLSS-reduction is the randomized reduction of
the class FPCP, ,[log, f] to the class FPCP, 1. [log, f+1og(1/c)+loglog]. (This statement follows
the exposition in Section 5.2. An alternative eCXposition, making use of a randomized graph-layering
process, is given in Section 4.1.) Anyhow, randomness plays an essential role in obtaining a pcp
system with perfect completeness.? The question is whether the class FPCP, ([log, f] is contained
in the class FPCP, 1g [log, f 4 log(1/¢) + loglog] (rather than being randomly reducible to it).

Our NP-hardness (of approximation) results for MaxSNP make use of problem-dependent gad-
gets which implement two simple tests (i.e., testing that  + y = z and testing that z-y = z+w, for
variables/oracle-answers z,y, z and w). For example, when proving Max3SAT we construct 3CNF
formulii, over these and auxiliary variables, so that the formula is satisfied if and only if the basic
variables satisfy the test. Specifically, the formula for the first test has 4 clauses (and no auxiliary
variables) whereas the formula for the second has 7 clauses (and one auxiliary variable). In gen-
eral, what matters is the relation between the number of clauses satisfied by the best assignment
extending values which satisfy the test and the number of clauses satisfied by the best assignment
extending values which do not satisfy the test. Let a; (resp., a; — 8; < a;) denote the first (resp.,
second) number, for the i test, and let p; = 5 Then, the non-approximability factor has the form
m, where ¢; and ¢, depend on the proof system. Thus, constructing 3CNF (resp., 2CNF)
formulae for which the ratios p; are small is a key ingredient in getting better non-approximability
results. Currently, for 3CNF we have p; = 4 and p, = 7, whereas for 2CNF we have p; = 11
and p; = 16. Defining analogous quantities for Max Cut, we currently have p; = 9 and p, = 15.
(For MinVC we could obtain p; = 6 and p, = 9, but used an alternative method instead — see
Section 3.10). We suggest the construction of better gadgets as an open problem.

2This makes our results more elegant, but actually — as indicated in Section 4.1, we could have settled for “almost
perfect” completeness which suffices for presenting an inverse of the “FGLSS-reduction”.



mrBellare, Goldreich, Sudan 19

Regarding (non-amortized) free-bits, we know that NP C FPCP,  gsss/log, 2] and on the other
hand that FPCP, ([log, 1] C P, for every s < 1. As motivation to the following questions we note
that the first result was used to establish the NP-hardness of approximating Man Vertex Cover

upto a % factor. In general, NP C FPCP, ([log, f] implies that approximating Min Vertex Cover

up to a 27=: factor is NP-hard. We ask whether

271
(1) NP C FPCP, ,[log, 2] for every s > 0 (this would imply a hardness factor of 2 — ¢, Ve > 0).
(2) NP C FPCP, ,[log, log, 3] for every s > 0 (this would imply a hardness factor of 2 —¢, Ve > 0).
Note that obtaining a result for s < 27/2, where f is the free bit complexity, would imply amortized
free-bit complexity lower than 2. Thus, it may be easier to try to obtain soundness bounds of s = %
and s = \%7 respectively (yielding non-approximation factors of g and ~ 1.211, resp.).

1.9 Acknowledgements

We thank Marcos Kiwi and Luca Trevisan for carefully reading the previous version of our work
and pointing out several flaws and improvements. We also wish to thank Uri Feige for helpful
discussions.



CHAPTER 2

Notation and Definitions

2.1 General notation and definitions

For integer n let [n] = {1,...,n}. A graph always means an undirected graph with no self-loops,
unless otherwise indicated. We let ||G|| denote the number of vertices in graph G = (V, E).
A probabilistic machine K has one or more inputs z, s, ... and tosses some random coins R,

usually of some length r(-) which is a function of the (lengths of the) inputs. We let K(z;,z,,...; R)
denote the output of K when it uses the particular sequence of coin tosses given by R. Typically
we are interested in the probability space associated to a random choice of R.

A function is admissible if it is polynomially bounded and polynomial time computable. We
will ask that all functions measuring complexity (eg. the query complexity ¢ = ¢(n)) be admissible.

In defining complexity classes we will consider promise problems rather than languages.! Fol-
lowing Even et. al. [ESY], a promise problem is a pair of disjoint sets (A, B), the first being the set
of “positive” instances and the second the set of “negative” instances. A language L is identified
with (L, L). (We refer the reader to [ESY] for issues in promise problems.)

2.2 Proof systems

A verifier is a probabilistic machine V' taking one or more inputs and also allowed access to one or
more oracles. Let 2 denote the sequence of all inputs to V' and let n denote its length. During the
course of its computation on coins R and input z it makes queries of its oracles. Its final decision
to accept or reject is a function DECy (z,a; R) of z, R and the sequence a of all the bits obtained
from the oracle in the computation. Contrary to standard terminology, acceptance in this paper
will correspond to outputting 0 and rejection to outputting 1.

Oracles are formally functions, with the context specifying for each the domain and range;
sometimes, however, we may write strings, to be interpreted as functions in the natural way. Let
7 denote the sequence (tuple) of all proof oracles supplied to the verifier V. Now for verifier V
examining the proofs 7 and having input z, we let

ACC[V™(z)] = Prg[V™(z;R) = 0]

!This convention is adopted since approximation problems are easily casted as promise problems.

20



mrBellare, Goldreich, Sudan 21

denote the probability that V accepts in this particular case. We then let
ACC[V(z)] = max ACC[V™(z)]

denote the maximum accepting probability, over all possible choices of proof sequences 7; the
domain from which the proofs are chosen depending, as mentioned above, on the context.

Let patterny (z; R) be the set of all sequences a such that DECy(z,a; R) = 0. (That is, all
sequences of oracle answers leading to acceptance). A generator for V is a poly(n)-time computable
function G such that patterny (z; R) = G(z, R) for all z, R. (That is, it can efficiently generate the
set of accepted patterns.)

We are interested in a host of parameters which capture various complexity measures of the
proof checking process. They are all functions of the length n of the input z given to the verifier V.
In the following ¢ denotes the concatenation of all the proof strings given to the verifier. Also recall
we are interested in proof systems for promise problems (A, B) rather than just for languages.

coins = Number of coins tossed by verifier. Typically denoted r

pflen = Length of the proof provided to the verifier. Typically denoted I.

c= Completeness probability. Namely min{ ACC[V(z)] : « € A and |z| =n }.
s = Soundness probability. Namely max{ ACC[V(z)] : @ € B and |z| = n }.
g = Gap. Namely ¢/s.

Now we move to various measures of the “information” conveyed by the oracle to the verifier.
For simplicity we consider here only oracles which return a single bit; that is, they correspond to
“written” proofs.

query = The query complexity on input z is the maximum, over all possible coin
tosses R of V, of the number of bits of ¢ accessed by V on input z. The
query complexity of the system ¢ = ¢(n) is the maximum of this over all
inputs x € AU B of length n.

query,, = The average query bit complexity on input 2 is the average, over R, of the
number of bits of the proof ¢ accessed by V on input 2 and coins R. The
average query complexity of the system is the maximum of this over all
z € AU B of length n. Typically denoted g,,.

query = V is said to have amortized query bit complexity ¢ if ¢/1g(g) < ¢ where ¢
is the query bit complexity and g is the gap, and, furthermore, ¢ is at most
logarithmic in n.

free = The free bit complexity of V is f if there is a generator G such that
|G(z, R)| < 2/ for all R and all z € AU B of length n.

free,, = The average free bit complexity of V is f,, if there is a generator G such
that Eg [|G(z, R)|] < 2%+ for all z € AU B of length n.

free = V is said to have amortized free bit complexity f if f/lg(g) < f where f is
the free bit complexity and g is the gap.

Notice that amortized query complexity is restricted to be at most logarithmic. We don’t need to
explicitly make this restriction for the amortized free bit complexity: it is a consequence of the
efficient generation condition.



mrBellare, Goldreich, Sudan 22

In case the completeness parameter equals 1 (i.e., ¢ = 1), we say that the system is of perfect
completeness. In case the completeness parameter, ¢, satisfies ¢(n) = 1 — o(1), we say that the
system is of almost-perfect completeness.

The consideration of all these parameters give rise to a potentially vast number of different
complexity classes. We will use a generic notation in which the parameter values are specified
by name, except that, optionally, the completeness and soundness can, if they appear, do so as
subscripts. Thus for example we have things like:

PCP, ;[ coins = r; query = ¢ ; pflen = 2" ; free= f...].

However most often we’ll work with the following abbreviations:

PCP, ,[r, ¢] ! PCP, ;[ coins = r; query = ¢|
PCP.[r, q] ! PCP, [coins = r; query = ¢
FPCP, ([r, f] o PCP, ;[ coins = r; free = f]
FPCP. ([r, f,1] ! PCP, ;[ coins = r; free = f; pflen =[]

FPCP,[r, f] & PCP, [coins = r; free = f].

We stress that in the definitions of the amortized classes, PCP,[r, ¢] and FPCP.[r, f], we refer
c

B
to the completeness parameter ¢ (but not to the soundness parameter). In case ¢ = 1, we may
omit this parameter and shorthand the amortized classes of perfect completeness by PCP[r, ¢ ] and
FPCP[r, f], respectively. Namely,

PCP[Tvq] = PCPl[r7Q]

FPCP[r, f] = TFPCPy[r, f]

2.3 Randomized reductions

We will consider reductions between promise problems. A (randomized) Karp reduction from
(Ay, By) to (As, B) is a probabilistic, polynomial time function 7" which takes two arguments: an
input z and a security parameter k, the latter written in unary. The transformation is required to

have the property that

reA = Pr[T(z,1") e Ay Ep(a,k)>1-2""
zeB = Pr[T(z,1%) € By] ¥ py(a, k) >1-27%.

The probability is over the coin tosses of T'. We say the reduction has perfect completeness if p; = 1
and perfect soundness if p, = 1. (In the special case of deterministic transformations it must be
that p; = p, = 1.) We write (A, B;) <¥ (A,, B,) if there is a randomized Karp reduction from
(Ay, By) to (Ay, Bs). If the reduction is deterministic we omit the subscript of “R,” or, sometimes,
for emphasis, replace it by a subscript of “D.”

An example is the randomized FGLSS transformation [FGLSS, BeSc, Zu]. Here (A, By) is typ-
ically an NP-complete language I, and (A,, B) is Gap-Clique, , for some ¢, s which are determined
by the transformation. This transformation has perfect soundness, while, on the other hand, it is
possible to get p; = 1 — 2= Polv(n),



mrBellare, Goldreich, Sudan 23

Similarly one can define (randomized) Cook reductions. The notation for reductions is <§.

Let C be a complexity class (eg. NP). We say that C reduces to (A,, B;) if for every (A;, By)
in C it is the case that (A, By) reduces to (As, Bs). An example is to say that NP reduces to
Gap-Clique, .. We say that C; reduces to C,, where C; and C, are complexity classes, if for every
(Ay, By) in C; there is an (A,, By) in C, such that (A, By) reduces to (As, By). An example is to
say that NP reduces to FPCP[log, f]. The notation of <¥ or <¢ extends to these cases as well.

Notice that our definition of reducibility ensures that this relation is transitive.

For simplicity we sometimes view a reduction 7" as a function only of z, and write T(z). In
such a case it is to be understood that the security parameters has been set to some convenient
value, such as k = 2.

2.4 History

The model underlying what are now known as “probabilistically checkable proofs” is the “oracle”
model of Fortnow, Rompel and Sipser [FRS], introduced as an equivalent (with respect to language
recognition power) version of the multi-prover model of Ben-Or, Goldwasser, Kilian and Wigderson
[BGKW]. Interestingly, as shown by [BFLS, FGLSS], this framework can be applied in a meaningful
manner also to languages in NP. These works provide the verifier V with a “written” proof, modeled
as an oracle to which V' provides the “address” of a bit position in the proof string and is returned
the corresponding bit of the proof. Babai et. al. [BFLS] suggested a model in which the instances
are encoded in a special (polynomail-time computable and decodable) error-correting code and
the verifier works in polylogarithmic time. Here we follow the model of Feige et. al. [FGLSS]
where the verifier is probabilistic polynomial-time (as usual) and one considers finer complexity
measures such as the query and randomness complexity. The reduction of [FGLSS] identified the
parameters of query complexity (number of binary queries), randomness complexity and error. The
class PCP /,[r, ] was made explicit by [ArSa].

The parametrization was expanded by [BGLR] to explicitly consider the answer size (the oracle
is now allowed to return more than one bit at a time) and query size— their notation included
five parameters: randomness, number of queries, size of each query, size of each answer, and error
probability. They also similarly parametrized (single round) multi-prover proofs, drawing attention
to the analogue with pcp. This served to focus attention on the roles of various parameters,
both in reductions and in constructions. Also they introduced the consideration of average query
complexity, the first in a sequence of parameter changes towards doing better for clique.

Free bits are implicit in [FeKi] and formalized in [BeSu]. Amortized free bits are introduced in
[BeSu] but formalized a little better here.

Proof sizes were considered in [BFLS, PoSp]. We consider them here for a different reason—
they play an important role in that the randomized FGLSS reduction [BeSc, Zu] depends actually
on this rather than the randomness.

To deal with the now huge array of parameters we have generalized the notation of [BGLR] to
allow specification of parameters by name.

We’ve followed the common tradition regarding the names of polynomial-time reductions: many-
to-one reductions are called Karp-reductions whereas (polynomial-time) Turing reductions are
called Cook-reductions. This terminology is somewhat unfair towards Levin whose work on NP-
completeness [Lev] was independent of those of Cook [Co| and Karp [Ka]. Actually, the reductions
considered by Levin are more restricted as they also efficiently transform the corresponding NP-
witnesses (this is an artifact of Levin’s desire to treat search problems rather than decision problem).
In fact, such reductions (not surprisingly termed Levin-reductions) are essential for results such as



mrBellare, Goldreich, Sudan

Corollary 4.1.12. (Yet, this is the only example in the current paper.)

24



CHAPTER 3

New proof systems and
non-approximability results

This chapter presents some new proof systems minimizing complexity under various measures.
These proof systems are then used to derive the best known in-approximability results for Max-3-SAT,
Max-E3-SAT (Max Exact 3SAT), Max-2-SAT, Max Cut, Min Vertex Cover (Min VC), Max Clique,
and Chromatic number. This is a long chapter and it will help to begin with some indication of
what we will be doing.

3.1 Overview and guidemap

The starting point for all our proof systems is a two-prover proof system achieving arbitrarily small
but fixed constant error with logarithmic randomness and constant answer size, as provided by
Raz [Raz]. This proof system has the property that the answer of the second prover is supposed
to be a predetermined function of the answer of the first prover. Thus, verification in it amounts
to checking that the first answer satisfies some predicate and that the second answer equals the
value obtained from the first answer. Following the “proof composition” paradigm of Arora and
Safra [ArSa], we will “encode” the answers of the two provers under a suitable code and then,
“recursively”, check these encodings. As usual, we will check both that these encodings are valid
and that they correspond to answer which would have been accepted by the original verifier.

Our main technical contribution is a new code, called the long code, and means to check it. The
long code of an n-bit information word a is the sequence of 22" bits consisting of the values of all
possible boolean functions at a. The long code is certainly a disaster in terms of coding theory,
but it has big advantages in the context of proof verification, arising from the fact that it carries
enormous amounts of data about a. The difficulty will be to check that a prover claiming to write
the long code of some string « is really doing so.

The long code is described in Section 3.3. In Section 3.5 we provide what we call the “atomic”
tests for this code. These tests and their analysis are instrumental to all that follows. Section 3.4
is also instrumental to all that follows. This section sets up the framework for recursive proof
checking which is used in all the later proof systems.

In Section 3.6 we minimize the (worst-case and average) number of bits queried in a PCP to
attain soundness error 1/2 — the result is not of direct applicability, but it is intruiging to know

25



mrBellare, Goldreich, Sudan 26

how low this number can go. More importantly, the atomic tests are exploited in a different way
in Section 3.7, introducing a verifier which queries the proof at 3-4 locations and performs one of
two simple tests on the answers obtained. These simple tests are implemented by gadgets of the
MaxSNP problem at hand, yielding the non-approximability results. Section 3.8 presents gadgets
which are CNF formulae of the corresponding type and Section 3.9 presents Max-CUT gadgets.
The non-approximability results for Max-3-SAT, Max-E3-SAT, Max-2-SAT and Max-CUT follow.
The verifier of Section 3.7 benefits from another noval idea which is referred to as folding. We
stress that folding contributes to the improved results for Max-3-SAT, Max-E3-SAT, Max-2-SAT
and Max-CUT, but not to the results regarding Max Clique (and Chromatic Number).

A reasonable non-approximability result for Min-VC (minimum Vertex Cover) can be obtained
by the above procedure, but a better result is obtained by constructing a different verifier which
uses exactly two-free bits. The computation of this verifier is then reduced to the vertex cover
problem (by means of the FGLSS reduction). The latter approach is presented in Section 3.10
where we try to minimizing the soundness error attainable using exactly two free-bits.

We then turn to Max Clique (and Chromatic Number). In Section 3.12 we provide the “iterated”
tests (in which the atomic tests are sequentially invoked many times). These iterations will be
related to one another (pairwise independent to be more specific) leading to a proof system in
which the number of amortized free-bits used is two. We then draw the implications for Max Clique
(and Chromatic Number). A reader interested only in the (amortized) free-bit and Max Clique
results can proceed directly from Section 3.5 to Section 3.12 and Section 3.13.

The improvement in the complexities of the proof systems is the main source of our improved
non-approximability results. In addition we also use (for the Max-SAT and Max-CUT problems)
a recent improvement in the analysis of linearity testing [BCHKS] and introduce special (problem
specific) gadgets which represent the various tests.

Credits and histories pertaining to each topic are discussed alongside the topic. Thus each
subsection contains the historical material relevant to it.

3.2 Preliminaries

In this chapter, ¥ = {0, 1} will be identified with the finite field of two elements, the field operations
being addition and multiplication modulo two. If X and Y are sets then Map(X,Y') denotes the
set of all maps of X to Y. For any m we regard ¥™ as a vector space over 3, so that strings and
vectors are identified.

LINEARITY. Let G, H be groups. A map f: G — H is linear if f(z 4+ y) = f(z)+ f(y) for all
z,y € G. Let LIN(G, H) denote the set of all linear maps of G to H.

DisTaNcE. The distance between functions f;, fo defined over a common finite domain D is

Dist(fi, fo) = Pr_n [fi(z) # fo(2)] .

Functions fi, fo are e-close if Dist(fi, fo) < e. If f maps a group G to a group H we denote by
Dist( f, LIN) the minimum, over all g € LIN(G, H), of Dist(f, g). (Note the notation does not specify
G, H which will be evident from the context). We are mostly concerned with the case of G' being
a vector space V over ¥ and H being X. Notice that in this case we have Dist(f, Lin) < 1/2 for
all f: V = X,

BoOLEAN FUNCTIONS. Let [ be an integer. We let F, &' Map(X', X) be the set of all maps of X!
to X. We regard F; as a vector space (of dimension 2') over ¥. Addition and multiplication of
functions are defined in the natural way.



mrBellare, Goldreich, Sudan 27

We let £,, C F,, be the set LIN(X™, X)) of linear functions of ¥™ to ¥, and let £}, = £,, — {0}
be the non-zero linear functions.

Let g € F,,, and f: (fis-oesfm) € F*. Then go fdenotes the function in F; which assigns
the value A(fi(z),..., fm(z)) toz € X'

If a € ¥ then a() denotes its i-th bit. Similarly, if f is any function with range ™ then f()
denotes the i-th bit of its output.

THE MonoMIAL Basis. For each S C [l] we let X5 € F; be the monomial corresponding to 5,
defined for x € X' by

Xs(2) = Tlies 2t
The empty monomial, namely Xy, is defined to be the constant-one function (i.e., Xy(z) = 1, for
all z € X'). The functions {Xs}scp form a basis for the vector space F; which we call the monomial
basis. This means that for each f € F, there exists a unique vector C(f) = (C(5))scy € X
such that
;= ESQ[Z] Cf(s) “Xs . (3-1)

The expression of Equation (3.1) is called the monomial series for f, and the members of C(f)
are called the coefficients of f with respect to the monomial basis. We note that C: F; — ¥ is a
bijection.

ForLpinGg. Fix < to be some canonical, polynomial time computable total order (reflexive, anti-
symmetric, transitive) on the set #;. Given functions A: F; — ¥ and h € F;\ {0} (i.e., h is not the
constant function 0) and bit b € X, the (h, b)-folding of A is the function A, ;): F; — X given by

A (f) = { A = }.H— /

A(f+h)—b otherwise.
(Notice that the above is well-defined for any h # 0.) For sake of technical simplicity (see Defini-
tion 3.4.3), we define the (0, 0)-folding of A to be A itself; namely, Ao o\(f) = A(f), for every f € F.
As shown below, the (k,b)-folding of a function A is forced to satisy Ay, ) (f + h) = App(f) + b,
for every f € F; (whereas A itself may not necessarily satisfy these equalities). Before proving this,
let us generalize the notion of folding to folding over several, specifically two, functions hy, hy € F;

(and bits by, b, € X).

Definition 3.2.1 (folding): Let f,hy,hy € F;. The (hy, hy)-span of f, denoted SPAN,, 4, (f), is
defined as the set {f + o1hy + 02hy 1 01,05 € B}, Let At F; — X, hy # hy € F1\ {0} and by,b, € .
The folding of A over (hy,b;) and (hs,b,), denoted Ay, 4,9 (h,0.), is defined for every f € F; by

Athy b1y, (hava) () = A(f + 01hy + 05hy) — 01y — 03by

where 01,05 € X so that the function f + 1hy + 02h4 is the smallest function (according to <) in
SPAN, 5, (f).

The definition extends naturally to the the following two case. In case (hq,b1) = (ha,bs), folding
over the two (identical) pairs is defined as folding over one pair. In case h; = 0 and b; = 0, folding
over both (hy,b;) and (hs,by) is defined as folding over (hy,by). Note that folding over two pairs is
invariant under the order between the pairs; namely, A, 3,) (hs,05) = Ahs 2),(hy,p,)- Finally, observe
that a function A: 7; — X that is folded over two functions (i.e., over both (hy,b;) and (hs,bs)) is
folded over each of them (i.e., over each (h;,b;)).



mrBellare, Goldreich, Sudan 28

Proposition 3.2.2 (folding forces equalities): Let A: F; — X, hy,hy € F; and by, by € ¥ (with
b; = 0 in case h; = 0). Then, for every f € F,

A(hl,bl),(hQ,bg)(f + hy) = A(hl,bl),(h2,b2)(f) + b

Proof: By definition, Ax, 4,y (h,0.)(f) = A(f + 01hy + 03hs) — 01by — 05b,, where the function
[+ o1hy 4 03hs is the smallest function in SPAN,, ,,(f). Since SPANy, . (f + h1) = SPAN,, 1, (f),
we have Ay, 5,),(hs0)( [ + 1) = A(f + 01hy + 02hs) — (01 — 1)by — 05b,. The claim follows. |

It may be instructive to hint that the verifiers constructed below make virtual access to folded
functions rather to the function themselves. Virtual access to a folding of A is implemented by
actual accessing A itself according to the definition of folding (e.g., say one wants to access A o) at
f then one determines whether f < h+ f or not and accesses either A(f) or A(f+ h), accordinly).
One benefit of folding in our context is illustrated by Proposition 3.3.3; in case a (h,b)-folded
function is close to a codeword (in the long code), we infer that the codeword encodes a string «
satisfying h(a) = b. We will see that folding (the long code) over (h,0) allows us to get rid of a
standard ingrediant in proof verification; the so-called “circuit test”.

In the sequal, we will use folding over the pairs (h,0) and (1, 1), where h € F; is an arbitrary
function (typically not identically zero) and 1 is the constant-one function. Folding over (1,1)
allows us to simplify the “codeword” test (w.r.t. the long-code).

3.3 Evaluation operators and the long code

Let a € '. We define the map E,: 7; — X by E,(f) = f(a) for all f € F;. We say that a map
A: Fy — Y is an evaluation operator if there exists some @ € %! such that A = E,. We now provide
a useful characterization of evaluation operators. First we need a definition.

Definition 3.3.1 (respecting the monomial basis): A map A: F; — ¥ is said to respect the mono-
mial basis if A(Xy) =1 and

VS, TC[l] @ A(Xs)-A(Xr) = A(Xsur) -

Proposition 3.3.2 (characterization of the evaluation operator): A map A: F; — 3 is an evalua-
tion operator if and only if it is linear and respects the monomial basis.

Proof: Let a € Y. Tt is easy to see that F, is linear: E,(f+g) = (f+g)(a)= f(a)+g(a)= E(f)+
E,(g). It is also easy to see F, respects the monomial basis. Firstly we have E,(Xy) = Xy(a) = 1.
Next, for every S, T C [I],

Eo(Xs) Ea(Xr) = Xs(a)-Xr(a) = [Ties @ - TTier a® .
However z? = & for any z € ¥ so

[Tics at®) . [Tier a) = H al) = Xsur(a) = Eu(Xsur)

1eSUT

Now we turn to the converse. Let A: F; — X be linear and respecting the monomial basis. For
1=1,...,1, et a; o /I(X{Z-}), and let « ¥ a; ...a;. We claim that A = E,. The proof is as follows.
We first claim that

YSC] : A(Xs)=Xs(a). (3.2)



mrBellare, Goldreich, Sudan 29

Since A respects the monomial basis we have A(X@) = 1 which in turn equals Xy(a), proving
Eq. (3.2) for § = (. To establish Eq. (3.2) for 5 = {i1,...,i,} # 0, we write

A(Xs) = A(Xpgueopg) = e AXp) = o @, = Xs(a).

where the second equality is due to the fact that A respects the monomial basis. This establishes
Eq. (3.2). Now for any f € F; we can use the linearity of A to see that

A(f) = A(ZsCi(5)Xs)) = T Cr(8)-A(Xs) = L5 Cs(5)-Xs(a) = fla) = Eu(f).
Thus A = E,. 1

The long code E: X' — Map(F;,Y) is defined for any a € X' by E(a) = E,. Thus, formally, a
codeword is a map of F; to X. Intuitively, think of the codeword E(a) as the 22" bit string which
in position f € F; stores the bit f(a). It is thus an extremely “redundant” code, encoding an [-bit
string by the values, at a, of all functions in F;. In some sense F is the longest possible code: F is
the longest code which is not repetitive (i.e., does not have two positions which are identical in all
codewords).

We let Dist(A, EVAL) = minges: Dist(A, E,) be the distance from A to a closest codeword
of E. Tt is convenient to define E7'(A) € X' as the lexicographically least @ € %' such that
Dist(A, E,) = Dist(A, Evar). Notice that if Dist(A, EVAL) < 1/4 then there is exactly one a € ¥
such that Dist(A, F,) = Dist(A, EvaL), and so E~'(A) is this a. The following is useful in relating
folding to the long code.

Proposition 3.3.3 (folding and the evaluation operator): Let A: F; — X, h € F;, b € ¥ and
a € ¥'. Suppose that for any f € F it is the case that A(f+h) = A(f)+b. Then Dist(A, E,) < 1/2
implies h(a) = b. Consequently, if Dist(Ag, p) (npr), £a) < 1/2 then h(a) = b, provided b = 0 if
h=0.

Proof: By the hypothesis, we have A(h + f) = A(f) + b, for every f € F;. Suppose that
Dist(A, F,) < 1/2. Then, noting that F, is linear and applying Corollary 3.5.2 (below), we get
E,(h) = b. Using the definition of the Evaluator operator (i.e., F,(h) = h(a)) we have h(a) = b.
The consequence for A ) x5y follows since by Proposition 3.2.2 we have A(h7b)7(h/7b/)(f +h) =
A(h,b:),(h’,b’j)(f) + b for any f € F;. |

The long code is certainly a disaster in terms of coding theory, but it has a big advantage in the
context of proof verification. Consider, for example, the so-called “circuit test” (i.e., testing that
the answer of the first prover satisfies some predetermined predicate/circuit). In this context one
needs to check that the codeword corresponds to a string which satisfies a predetermined predicate
(i.e., the codeword encodes some w € {0,1}" which satisfies h(w) = 0, for some predetermined
predicate h). The point is that the value of this predicate appears explicitly in the codeword itself,
and furthermore it can be easily “self-corrected” by probing the codeword for the values of the
functions f and f + h, for a uniformly selected function f : {0,1}" — {0,1} (as all these values
appear explicitly in the codeword). Actually, the process of verifying, via self-correction, that the
value under h is zero can be incorporated into the task of checking the validity of the codeword; this
is done by the notion of “(h,0)-folding” (see above). The fact that we can avoid testing whether
the codeword encodes a string which satisfies a given function (or that this testing does not cost
us anything) is the key to the complexity improvements in our proof systems (over previous proof
systems in which a “circuit test” was taking place).



mrBellare, Goldreich, Sudan 30

3.4 Recursive verification of proofs

This section specifies the basic structure of proof construction, and in particular provides the
definitions of the notions of inner and outer verifiers which will be used throughout. Tt is useful to
understand these things before proceeding to the tests.

OVERVIEW. The constructions of efficient proofs that follow will exploit the notion of recursive
verifier construction due to Arora and Safra [ArSa]. We will use just one level of recursion. We
first define a notion of a canonical outer verifier whose intent is to capture two-prover one-round
proof systems [BGKW] having certain special properties; these verifiers will be our starting point.
We then define a canonical inner verifier. Recursion is captured by an appropriate definition of a
composed verifier whose attributes we relate to those of the original verifiers in Theorem 3.4.5.

The specific outer verifier we will use is one obtained by a recent work of Raz [Raz]. We will
construct various inner verifiers based on the long code and the tests in Section 3.5 and Section 3.12.
Theorem 3.4.5 will be used ubiquitously to combine the two.

For a better understanding of the role of constant-prover proof systems in this context, and an
explanation of what the use of [Raz] buys as opposed to the use of other systems, we have provided
at the end of this subsection an explanatory history.

3.4.1 Outer verifiers

As mentioned above, outer verifiers will model certain special kinds of two-prover, one-round proof
systems. We think of the verifier as provided with a pair of proof oracles 7,7, and allowed one
query to each. The desired properties concern the complexity of the system and a certain behavior
in the checking of the proof, as we now describe.

Let ry,8,8: Z¥ — Z% and let [ and /; be positive integers. A (I,l;)-canonical outer verifier Vy,er
takes as input @ € X", and has oracle access to a pair of proofs 7: [s(n)] — X! and 7;: [s;(n)] — L.
He does the following.

— Picks a random string R, of length r{(n).

— Computes, as a function of z and R;, queries ¢ € [s(n)] and ¢, € [s1(n)], and a (circuit
computing a) function o: ! — % (which is determined by z and R;). Determines, based on
¢ and ¢, a function h: X' — X (and computes an appropriate representation of it).

(We stress that h does not depend on R;, only on ¢ and z).

— Lets a = 7(q) and a; = T1(q1).

— If h(a) # 0 then rejects.

— If o(a) # ay then rejects.

— Otherwise accepts.

We call s, s; the proof sizes for Vyyier and 1y the randomness of V,ier.
Recall that by the conventions in Section 2, ACC[V_;/(z)] denotes the probability, over the
choice of Ry, that V.. accepts, and ACC[V, ...(z)] denotes the maximum of ACC[V, io(z)] over

all possible proofs 7, 7.

Definition 3.4.1 (soundness of outer verifier): An outer verifier V.., is e-good for a language L
if
(1) Ifz € L then ACC[V,..(z)]=1.

o]

(2) Tz ¢TI then ACC[V, ,.(z)] < e



mrBellare, Goldreich, Sudan 31

Employing the FRS-method [FRS] to any PCP(log,0(1))-system for NP (e.g., [ALMSS]) one gets
a canonical verifier which is §-good for some § < 1. Using the Parallel Repetition Theorem of Raz,
we obtain our starting point —

Lemma 3.4.2 (construction of outer verifiers [Raz]): Let L € NP. Then for every ¢ > 0 there
exist positive integers [,l; and ¢ such that there exists an (/,/;)-canonical outer verifier which is
e-good for L and uses randomness 7(n) = clog, n.

Actually, Raz’s Theorem [Raz] enables one to assert that [,/; and ¢ are O(loge='); but we will not
need this fact. Also, the function o determined by this verifier is always a projection, but we don’t
use this fact either.

3.4.2 Inner verifiers

We now describe the form of a typical inner verifier. It may be illustrative to remember that the
inner verifier will perform a combination of the atomic linear test, the atomic respect of monomial
basis test and the atomic projection test. It turns out that the inner verifiers never need to perform a
“circuit test” (i.e., test that A(a) = 0). This is achieved by use of the folding mechanism introduced
in Section 3.2, and we refer the reader there for the notation “A, ;)" that is used below.

Let rq,1,0; € Z*. A (l,l))-canonical inner verifier V; .. takes as inputs functions o: ¥/ — %=
and h € F;. (It may also take additional inputs, depending on the context). It has oracle access to
a pair of functions A: 7; — Y and A;: F;, — X, and uses r, random bits. The parameters 61,6, > 0
in the following should be thought as extremely small: in our constructions, they are essentially 0
(see comment below).

Definition 3.4.3 (soundness of inner verifier): An inner verifier Vipner is (p, 61, 62)-good if for all
o, h as above—

(1) Suppose a € X' is such that h(a) = 0. Let a; = o(a) € B"'. Then ACC[VE“’E”(U, h)]=1.

mner

(2) Suppose A, A; are such that ACC[ VA2 (0,h)] > p. Then there exists a € X' such that:

(21) DiSt(A(h,O:),(T,l)a Ea) < 1/2 - (51.
(22) DiSt(Al, Eo’(a:)) < 1/2 - (52.

We stress that although the inner verifier has access to the oracle A (and the hypothesis in condition
(2) of Definition 3.4.3 refers to its computations with oracle A), the conclusion in condition (2.1)
refers to A folded over both (h,0) and (1,1), where 1 is the constant-one function. (Typically,
but not necessarily, the verifier satisfying Definition 3.4.3 accesses the virtual oracle A o) 11)
by actual access to A according to the definition of folding.) Furthermore, by Proposition 3.3.3,
condition (2.1) implies that A(a) = 0. (Thus, there is no need to explicitly require h(a) = 0 in order
to make Theorem 3.4.5 work.) We comment that the upper bounds in conditions (2.1) and (2.2)
are chosen to be the largest ones which still allow us to prove Theorem 3.4.5 (below). Clearly, the
complexity of the inner verifier decreases as these bounds increase. This is the reason for setting
61 and 6, to be extremely small. We stress that this optimization is important for the MaxSNP
results but not for the Max Clique result. In the latter case, we can use §;’s greater than + which
simplifies a little the analysis of the composition of verifiers (below).

A tedious remark: The above definition allows h to be identically zero (although this case never
occurs in our constructions nor in any other reasonable application). This is the reason that we
had to define folding over (0,0) as well. An alternative approach would have been to require h # 0
and assert that this is the case with respect to the outer verifier of Lemma 3.4.2.



mrBellare, Goldreich, Sudan 32

3.4.3 Composition of verifiers

We now describe the canonical composition of a canonical outer verifier with a canonical inner
verifier.

Let Viuter be a (1, 11)-canonical outer verifier with randomness r; and proof sizes s, s;. Let Vipper
be a (I,l;)-canonical inner verifier with randomness r5. Their composed verifier (Vouter, Vinner) takes
as input z € ¥" and has oracle access to proofs 7: [s(n)] x F; — ¥ and 7;: [s;1(n)] x F;, — X. We
ask that it does the following —

— Picks random strings for both Vi ,ier and Viger; namely, picks a random string R; of length

r1(n) and a random string R, of length r,(n).

— Computes queries ¢ and ¢; and functions ¢ and h as V., would compute them given z, R,

—  Outputs V244 (0, h; Ry) where A(-) = 7(q,-) and Ay(-) = m (¢, ).
The randomness complexity of the composed verifier is r; + r, whereas its query and free-bit
complexities equal those of Vi .

We show how the composite verifier (Vouter, Vinner) inherits the goodness of the V,yer and Vigper.
To do so we need the following Lemma. It is the counterpart of a claim in [BGLR, Lemma 3.5]
and will be used in the same way. The lemma can be derived from a coding theory bound which is

slight extension of bounds in [MaSl, Ch. 7] and is provided in Section 3.14.

Lemma 3.4.4 Suppose 0 < 6§ < 1/2 and A: F; — X. Then

1

[{aeX : Dist(4,E,)<1/2-6}] < R

Furthermore, for § > 1/4 the above set contains at most one string.

Proof: We know that F, is linear for any a (cf. Proposition 3.3.2). So it suffices to upper bound
the size of the set
A = {X eLIN(F,E) : Dist(A4,X)<1/2-6}.

This set has the same size as
B ={X-A:XeLN(F,X)and Dist(4,X)<1/2-6}.

Let n = 2% and identify Map(F;, %) with ¥" in the natural way. Let w(-) denote the Hamming
weight. Now note that Z = X — A € B implies w(Z)/n = Dist(X,A) < 1/2 — 6. Furthermore if
Zy = X;— Aand Z; = Xy — A are in B then Dist(Z;, Z,) = Dist(X;, X5) and the latter is 1/2
if X; # X,, since X, X, are linear. So we can apply Lemma 3.14.1 (with @ = § and § = 0) to
upper bound the size of B as desired. Finally, when § > 1/4 the triangle inequality implies that we
cannot have a; # as so that Dist(A, E,,) < 1/2 -6 < 1/4 for both i = 1,2. |

In some applications of the following theorem, 6,6, > 0 will first be chosen to be so small that
they may effectively be thought of as 0. (This is done in order to lower the complexities of the
inner verifiers.) Once the §;’s are fixed, € will be chosen to be so much smaller (than the é;’s) that
€/(166762) may be thought of as effectively 0. The latter explains why we are interested in outer
verifiers which achieve a constant, but arbitrarily small, error €. For completeness we provide a

proof, following the ideas of [ArSa, ALMSS, BGLR].

Theorem 3.4.5 (the composition theorem): Let Ve be a (I, 1;)-canonical outer verifier. Suppose
it is e-good for L. Let Viyner be an (/,[;)-canonical inner verifier that is (p,6;,0,)-good. Let
V = (Vouters Vinner) be the composed verifier, and let z € ¥*. Then —



mrBellare, Goldreich, Sudan 33

(1) Ifz € L then ACC[V(z)]=1
(2) fzgLthen ACC[V(2)] < p+ 55557 -
For 6;,685 > 1/4 the upper bound in (2) can be improved to p + .

(The latter case (i.e., 61,065 > 1/4) suffices for the Max Clique results.)
Proof: Let n = |z|, and let s, s; denote the proof sizes of Vi yiep.

Suppose € L. By Definition 3.4.1 there exist proofs 7: [s(n)] — %! and 7y: [s1(n)] — X" such
that ACC[VJyim(z)] = 1. Let 7:[s(n)] x Fi — ¥ be defined by 7(q, ) = Ex(f). (In other
words, replace the [ bit string 7(¢) with its 22 it encoding under the long code, and let the new
proof provide access to the bits in this encoding). Similarly let 7;: [s1(n)] X F;, — X be defined by
T1(q1, f1) = Ez (g))(f1). Now one can check that the item (1) properties in Definitions 3.4.1 and 3.4.3
(of the outer and inner verifierpectively) imply that ACC[ V™™ (z)] = 1.

Now suppose z ¢ L. Let m: [s(n)] x F; — ¥ and 7: [s1(n)] X Fi, — X be proof strings for V. We
will show that ACC[ V™™ (z)] < p + €/(16676%). Since 7, m; were arbitrary, this will complete the
proof.

We set Ny = |1/(46%)] and N, = |1/(462)] (with Ny = 1if § > 1/4 and Ny = 1if &, > 1/4).
The idea to show ACC[ V™™ (z)] < p+ NN, -€is as follows. We will first define a collection of N,
proofs 7*,..., 7" and a collection of N, proofs 7,.. ., 7Y so that each pair (ﬁi,ﬁ{) is a pair of
oracles for the outer verifier. Next we will partition the random strings R; of the outer verifier into
two categories, depending on the performance of the inner verifier on the inputs (i.e., the functions
o,h and the oracles A, A;) induced by R;. On the “bad” random strings of the outer verifier, the
inner verifier will accept with probability at most p; on the “good” ones, we will use the soundness
of the inner verifier to infer that that the outer verifier accepts under some oracle pair (7¢, %), for
i € [N1] and j € [N;]. The soundness of the outer verifier will be used to bound the probability of
such acceptances. Let us now proceed to the actual proof.

We now turn to the actual analysis. We define N proofs #',..., 7V [s(n)] — X' as follows. Fix
q € [s(n)] and let A = 7(q,-). Let B, = {a € X' : Dist( A 0y,1,1), Fa) < 1/2—6;}. (Notice that for
this set to be well-defined we use the fact that & is well-defined given ¢.) Note that |B,| < N; by
Lemma 3.4.4. Order the elements of B, in some canonical way, adding dummy elements to bring
the number to exactly Ny, so that they can be written as a'(g),...,a"(q). Now set 7'(q) = a’(q)
for i = 1,...,N;. Tn a similar fashion we define J(q;) = a}(q) for j = 1,..., Ny, where each
@} = d)(q,) satisfies Dist(m (g1, ), Eui) £ 1/2 = 6.

Let Ry be a random string of V... We say that R, is good if

ACC[‘[W(q7')77"1(41")(g,h)] > p,

mner

where ¢,q;,0,h are the queries and functions specified by R;. If R; is not good we say it is bad.
The claim that follows says that if R, is good then there is some choice of the above defined proofs
which leads the outer verifier to accept on coins R;.

Claim. Suppose R; is good. Then there is an i € [N;] and a j € [N,] such that Voil’;{(x; Ry) = 0.
Proof. Let ¢, ¢, 0, h be the queries and functions specified by R;. Let A = n(q,-)and A; = 71(¢1, )
(be the oracles accessed by the inner verifier). Since R, is good we have ACC[Vih41(a,h)] > p. So
by Ttem (2) of Definition 3.4.3 there exists a € X! such that Dist( A 0)1,1), Fa) < 1/2 — 6; and
Dist(Ay, Eya)) < 1/2—65. Let ay = o(a). Since Dist( A 0),(1,1), La) < 1/2— 61 it must be the case
that a € B,, and hence there exists i € [NV;] such that a = 7°(¢). Similarly Dist(A;, F,,)) < 1/2-6



mrBellare, Goldreich, Sudan 34

implies that there is some j € [N] such that a; = #}(¢;). By Proposition 3.3.3 we have h(a) = 0,

and we have o(a) = a, by (the above) definition. Now, by definition of the (execution of the)
canonical outer verifier, Voilt’;{(x; Ri) =0 holds. O

By conditioning we have ACC[V™™ ()] < a + [ where
a = Prg, [R; is good]
B = Pre, g, [V"™(2;R1Ry) =0 Ryisbad] .

The definition of badness implies 8 < p. On the other hand we can use the Claim to see that
a < Prg [Hi €N, j €N+ Vouli (i By) = 0]

J
1

< TN TN Pr, [VO’L!;; (a5 By) = 0]
S ;N1N2 € ,

the last by the soundness of Viyier (i.e., Item (2) of Definition 3.4.1). Using the bound on N; and
N,, the proof is concluded. 1

3.4.4 Constant-prover proofs in PCP — perspective

Constant-prover proofs have been instrumental in the derivation of non-approximability results in
several ways. One of these is that they are a good starting point for reductions— examples of
such are reductions of two-prover proofs to quadratic programming [BeRo, Fel.o] and set cover
[LuYa]. However, it is a different aspect of constant prover proofs that is of more direct concern
to us. This aspect is the use of constant-prover proof systems as the penultimate step of the
recursion, and begins with [ALMSS]. Tt is instrumental in getting PCP systems with only a constant
number of queries. Their construction requires that these proof systems have low complexity: error
which is any constant, and randomness and answer sizes that are preferably logarithmic. The
number of provers and the randomness and query complexity determine the quality of many non-
approximability results (e.g., poly-logarithmic rather than logarithmic complexities translate into
non-approximability results using assumptions about quasi-polynomial time classes rather than
polynomial time ones). The available constant-prover proof systems appear in Figure 3.1 and are
discussed below.

The two-prover proofs of Lapidot-Shamir and Feige-Lovasz [LaSh, FeLo] had poly-logarithmic
randomness and answer sizes, so [ALMSS] used a modification of these, in the process increasing
the number of provers to a constant much larger than two. The later constructions of few-prover
proofs of [BGLR, Ta, FeKi] lead to better non-approximability results.

Bellare and Sudan [BeSu] identified some extra features of constant prover proofs whose pres-
ence they showed could be exploited to further increase the non-approximability factors. These
features are captured in their definition of canonical verifiers. But the proof systems of [FeKi] that
had worked above no longer sufficed— they are not canonical. So instead [BeSu] used (a slight
modification of) the proofs of [LaSh, FeLo], thereby incurring poly-logarithmic randomness and an-
swer sizes, so that the assumptions in their non-approximability results pertain to quasi-polynomial
time classes. (Alternatively they modify the [FeKi] system to a canonical three-prover one, but then
incur a decrease in the non-approximability factors due to having more provers).



mrBellare, Goldreich, Sudan 35

Due to Provers | Coins | Answer size | Canonical? | Can be made canonical?

[LaSh, FeLo] 2 polylog polylog No Yes [BeSu]

[ALMSS] poly(e™1) log polylog No 77

[BGLR] 4 log polyloglog No 77

[Ta] 3 log o(1) No 77

[FeKi] 2 log O(1) No At cost of one more prover
[BeSu]

[Raz] 2 log o(1) Yes (NA)

Figure 3.1: Constant prover PCPs achieving error which is a fixed, but arbitrarily small, constant
€. We indicate the number of provers, the randomness and answer sizes, and whether or not the
system is canonical. The notation ?? means “don’t know and don’t care because stronger things
have become available.” In all cases the randomness and answer sizes hide factors which depend
on e.

Our outer verifiers ask for almost the same canonicity properties. (The only difference is that
they have required o to be a projection function, whereas we can deal with an arbitrary function.
But we don’t take advantage of this fact.) In addition we need answer sizes of O(loglogn) as
opposed to the O(log n) of previous methods, for reasons explained below. This means that even the
(modified) [LaSh, FeLo] type proofs won’t suffice for us. We could use the three-prover modification
of [FeKi] but the cost would wipe out our gain. Luckily this discussion is moot since we can use
the recent result of Raz [Raz] to provide us with a canonical two-prover proof having logarithmic
randomness, constant answer size, and any constant error. This makes an ideal starting point. To
simplify the definitions above we insisted on constant answer size and two provers from the start.

The inner verifiers used in all previous works are based on the use of the Hadamard code
constructions of [ALMSS]. (The improvements mentioned above are obtained by checking this
same code in more efficient ways). We instead use a new code, namely the long code, as the basis
of our inner verifiers. Note the codewords (in the long code) have length double exponential in the
message, explaining our need for O(loglog n) answer sizes in the outer verifier. We also incorporate
into the definitions the new idea of folding which we will see means we don’t need a circuit test (a
hint towards this fact is already present in the definition of a good inner verifier).

3.5 The atomic tests

MoTIvATION. Our constructions of proofs systems will use the outer verifier of Lemma 3.4.2,
composed via Theorem 3.4.5 with inner verifiers to be constructed. The brunt of our constructions
is the construction of appropriate inner verifiers. The inner verifier will have oracle access to a
function A: F; — ¥ and a function A;: F;, — X. In all our applications, A is supposed to be a
folding of an encoding of the answer a of the first prover (in a two-prover proof system) and A, is
supposed to be the encoding of the answer a; of the second prover. The verifier will perform various
tests to determine whether these claims are true. The subject of this subsection is the design of
these tests.

The atomic tests we provide here will be used directly in the proof systems for showing non-



mrBellare, Goldreich, Sudan 36

The Atomic Tests. Here A: 7, — X and A;: F;, — X are the objects being tested.
The tests also take additional inputs or parameters: below f, fi, fs, fs € F1; g € F"; and
o: X — ¥h,

LinTest(A; f1, f») (Linearity Test)
If A(fi)+ A(f2) = A(fi1 + f2) then output 0 else output 1.

MBTest(A4; fi, f2, f3) (Respecting-Monomial-Basis Test)
If A(fi)-A(fa) = A(f1- f2+ f3) — A(f5) then output 0, else output 1.

ProjTest, (A, A; f,g) (Projection Test)
If Ai(g)=A(goo+ f)— A(f) then output 0, else output 1.

The Passing Probabilities. These are the probabilities we are interested in:

LiNnPass(A) = P n_ | LinTest(A; fi, f2) = 0]

T
fi,f2=F1

MBPass(A) = P MBTest(A; fi, fo, f3) = 0]

T
f17f27f3£7'-1 [

ProiPass,(A4,4,) = Pr ProjTest (A, Ay; f,9)=0]

&R ;gile [

Figure 3.2: The atomic tests and their passing probabilities.

approximability of Max-3-SAT, Max-2-SAT and Max CUT. Furthermore, they are also the basis of
iterated tests which will lead to proof systems of amortized free-bit complexity =~ 2, which in turn
are used for the Max Clique and Chromatic Number results. We remark that for the applications
to the above-mentioned Max-SNP problems it is important to have the best possible analysis of
our atomic tests, and what follows strives to this end. We stress that the exposition and analysis
of these tests, in this subsection, is independent of the usage of the codes in our proof systems.

TESTING FOR A CODEWORD. The first task that concerns us is to design a test which, with high
probability, passes if and only if A is close to an evaluation operator (i.e., a valid codeword). The
idea is to exploit the characterization of Proposition 3.3.2. Thus we will perform (on A) a linearity
test, and then a “respect of monomial basis” test. Linearity testing is well understood, and we will
use the test of [BLR], with the analyses of [BLR, BGLR, BCHKS]. The main novelty is the respect
of monomial basis test.

CIRCUIT AND PROJECTION. Having established that A is close to some evaluation operator F,, we
now want to test two things. The first is that h(a) = 0 for some predetermined function h. This
test which would normally be implemented by “self-correction” (i.e., evaluating h(a) by uniformly
selecting f € F; and computing A(f + h) — A(f)) is not needed here, since in our applications we
will use an (h, 0)-folding of A instead of A. Thus, it is left to test that the two oracles are consistent
in the sense that A; is not too far from an evaluation operator which corresponds to o(a) for some



mrBellare, Goldreich, Sudan 37

predetermined function o.

SELF-CORRECTION. The following self-correction lemma is due to [BLR] and will be used through-
out.

Lemma 3.5.1 (Self Correction Lemma [BLR]): Let A, A: Fi — % with A linear, and let
z = Dist(A, A). Then for every f € Fi:

Pron. [A(S+B) = A(h) = A(S)] > 1-20.

hEF

Corollary 3.5.2 Let A, A: F; — ¥ with A linear, and suppose z ! Dist(A,/Nl)~< 1/2. Suppose
also that A(f+ h) = A(h)+ o, for some f € F;, 0 € ¥ and every h € F;. Then A(f) =o.

Proof: By the hypothesis, we have A(f + h) — A(f) = o for all h’s. Thus, we can write

Pr,n, [A(J+R) = A(f) = A(f)| = Pr,x_ |o=A(f)].

h—TF;

But the right hand side (and hence the left) is either 0 or 1. However, by Lemma 3.5.1 the left
hand side is bounded below by 1 — 2z > 0 and so the corollary follows. 1

CONVENTION. All our tests output a bit, with 0 standing for accept and 1 for reject.

3.5.1 Atomic linearity test

The atomic linearity test shown in Figure 3.2 is the one of Blum, Luby and Rubinfeld [BLR].
We want to lower bound the probability 1 — LiNPass(A) that the test rejects when its inputs
fi, fo are chosen at random, as a function of z = Dist(A, LiN). The following lemma, due to
Bellare et. al. [BCHKS], gives the best known lower bound today. Detailed description of the
history of developments in this area follows.

Lemma 3.5.3 [BCHKS] Let A: 7, — ¥ and let z = Dist(A, LiN). Then 1 — LiINPass(A) > ', (z)
where the function I'y,: [0,1/2] — [0, 1] is defined as follows:

3z — 622 0<z<5/16
45/128  5/16 < z < 45/128
z 45/128 < © < 1/2.

def

an(ﬂC) =

The above lower bound is composed of three different bounds with “phase transitions” at z = 15—6

and z = ;2. It was shown in [BCHKS] (see below) that this combined lower bound is close to the

best one possible.

HisTory. The general problem of linearity testing as introduced and studied by Blum et. al. [BLR]
is stated as follows: given a function A: G — H, where GG, H are groups, obtain a lower bound on

b4 as a function of z 4, where
bp = Pra e [A(a) + A(b) # A(a + b)]

Dist(A, LiN) .

Ta



mrBellare, Goldreich, Sudan 38

Blum et. al. showed that §4 > 2z ,, for every A. Their analysis was used in the proof system and
Max-3-SAT non-approximability result of [ALMSS]. Interest in the tightness of the analysis from
the point of view of improving the Max-3-SAT non-approximability began with [BGLR]. They
showed that 6, > 3z, — 6%, for every A. This establishes the first segment of the lower bound
quoted above (i.e., of the function I'y,). Also, it is possible to use [BLR] to show that 6, > 2/9
when x4 > 1/4. Putting these together implies a two segment lower bound with phase transition
at the largest root of the equation 3z — 622 = 2 (i.e., at 1 + %) This lower bound was used in
the Max-3-SAT analyses of [BGLR] and [BeSu].

However, for our applications (i.e., linearity testing over #; as in Lemma 3.5.3), the case of
interest is when the underlying groups are G = GF(2)" and H = GF(2) (since F; may be identified
with GF(2)" for n = 2"). The work of [BCHKS] focused on this case and improved the bound on
64 for the case x4 > i where A: GF(2)" — GF(2). Specifically, they showed that 6, > 45/128 for
Ty > i which establishes the second segment of T'y,. They also showed that 64 > 2,4, for every
A: GF(2)" — GF(2). Combining the three lower bounds, they have derived the three-segment
lower bound stated in Lemma 3.5.3.

The optimality of the above analysis has been demonstrated as well in [BCHKS]. Essentially’,
for every < 5/16 there are functions A: GF(2)" — GF(2) witnessing §4 = Tin(24) with 24 = 2.
In particular, for # = 5/16 (and n > 4), there is a function A with 1/4 < 24 < 1/2 and 64 =
45/128 = Tyn(24). For the interval (=, $], no tight results are known. Instead, [BCHKS] reports
of computer constructed examples of functions A: GF(2)" — GF(2) with 24 in every interval
[5, 541] for k = 32,33,...,49, and 64 < I'in(24) + 55. Furthermore, they showed that there exist

1007 100
1

such functions with both z, and ¢, arbitrarily close to .

3.5.2 Atomic respect of monomial basis test

Having determined that A is close to linear, the atomic respect of monomial basis test makes sure
that the linear function close to A respects the monomial basis. Let us denote the latter function
(i.e., the linear function closest to A) by A. Recalling Definition 3.3.1 we need to establish two
things: namely, that A(Xy) = 1 and that A(Xs)-A(Xz) = A(Xsur), for every S,T C [I]. Recall that
we do not have access to A but rather to A; still, the Self-Correction Lemma provides an obvious
avenue to bypass the difficulty provided Dist( A, A) < 1/4. This would have yielded a solution but
quite a wasteful one (alas sufficient for the Max Clique and Chromatic Number results). Instead,
we adopt the following more efficient procedure.

Firstly, by considering only oracles folded over (1, 1), we need not check that A(Xy) = 1 since
it will be guaranteed that the (1,1)-folded oracle A satisfies A(f + 1) = A(f) + 1, for all f € F.
Secondly, we test that A(Xs) - A(Xp) = A(Xsur), for every S,T C [I], by taking random linear
combinations of the 5’s and 7”’s to be tested. Such linear combinations are nothing but uniformly
selected functions in F,. Namely, we wish to test A(f)-A(g) = (f-g), where f and g are uniformly
selected in F;. Thus, we can inspect A(f) (resp., A(g)) rather than A(f) (resp., A(g)) with little
harm. However, f - g is not uniformly distributed (when f and ¢ are uniformly selected in F;) and
thus Self Correction will be applied here. The resulting test is depicted in Figure 3.2. To analyze
the performance of this test, we need some technical lemmas. The reader skip their proofs, in first
reading, and proceed below to their usage (in Lemma 3.5.7).

TECHNICAL LEMMAS. First we recall the following lemma of [BGLR] which provides an improved
analysis of Frievalds’s matrix multiplication test in the special case when the matrices are symmetric
with common diagonal.

! Actually, the statment holds only for z’s which are integral multiple of 27"



mrBellare, Goldreich, Sudan 39

Lemma 3.5.4 (symmetric matrix multiplication test [BGLR]): Let M;, M5 be N-by-N symmetric
matrices over ¥ which agree on their diagonals. Suppose

Pr My = aMyy] > 5/8.

z,y EEN [
Then M1 = MQ.

Begin by imagining that A is actually linear. In that case, the following lemma provides a condition
under which A (or rather A) respects the monomial basis.

Lemma 3.5.5 (RMB test for linear functions): Suppose A: F; — ¥ is linear, A(Xy) = 1 and

Pr. o« [A(S)-Alg) = A(fg)] > 5/8.

I Zr
Then A respects the monomial basis.

Proof: Let N = 2!. We define a pair of N-by-N matrices whose rows and columns are indexed by
the elements of 211, Specifically, for S,T C [I], we set
M,[S,T] = A(Xs)- A(Xrp)

AIQ[S, T] - A(XSUT) .

We wish to show that M; = M,. Tt is easy to see that this implies that A respects the monomial
basis.

Recall that C: F, — 2" is the transformation which to any f € F; associates the vector ( C'4(.5) )scp
whose entries are the coefficients of f in its monomial series. Using the linearity of A we note that

A(f)-Alg) = A(ZsCr(8)-Xs) - A(Sr Cy(T) - Xp)
= [T CH8) - AXs)| - [T Cp(8) - A(Xa)]
= YsrCi(8)- A(Xs) - A(Xr) - Cr(g)
= C(f)MC(yg).

For the next step we first need the following.

Fact. Let f,g € Frand U C [l]. Then Cy,(U) =3 gup—p Cr(S) - Cy(T).
Using this fact (and the linearity of A) we have:

A(fg) A(Xy Cpy(U) - X))
= Yy Cr(U)- A(Xy)
= Yo Csurzw C5(8) - Cy(T) - A(Xv)
= Ysx Cr(8)- Cy(T) - A(Xsur)
= C(f/)M:C(g) .

Now we note that C is a bijection, so that if & is randomly and uniformly distributed in F; then
C(h) is randomly and uniformly distributed in Y2 From the above, it follows that

Pr, w, [AUN)Al) = A(fg)] = Pr, a_ [C(HMClg) = C(HMC(g)

= Pr eMyy = xMyy] .

z,y 5221 [



mrBellare, Goldreich, Sudan 40

Now by assumption this probability is more than 5/8. Furthermore M;, M, are symmetric and
agree on their diagonals. So Lemma 3.5.4 implies that M; = M,, as desired. |

Lemma 3.5.5 suggests that if we knew A was linear we could test that it respects the monomial
basis by picking f, ¢ at random and testing whether A(f)- A(g) = A(fg). However, we only know
that A is close to linear. But we can still perform an approximation of this test via self-correction
of the value A(fg). This, indeed, is our test as indicated in Figure 3.2. Obviously, the fact that
A is not quite linear will introduce some error. The purpose of the next lemma is to analyze this
error.

Lemma 3.5.6 (RMB test — error introduced by non-linear functions): Let A, A: Fy — % with A
linear and satisfying A(1) = 1. Let z = Dist(A, A). Then

P [ACR) - AR) # ACR) - Af)] < +a?.

T R
fi,f2<=F

If additionally the function A satisfies A(f + 1) = A(f) + 1, for all f € F;, then

Pr r. [A(fl)'A(ﬁ)75/1(][1)'/1(]”2)] = z—2%/2.

T
fuf

The additional claim is not required for the Max Clique result. Its main application is for the
MaxSNP results.

Proof: We start by analyzing the case of general A. Since A is linear and /i(i) = 1 it must be that

Proa, [A(f)=0] = Pr s [A()=1] = 1/2.

f=F

Now let
v = Proa_[A())=1] A(f)=0]
no= Pra_ [AN)=0]AfH=1].
Using this and conditioning arguments we have
p = P n, [AGR) AR £ ACR) AR
= Pr, , n, [(A(L) = AL) = DA (AS) - Af) = 0)]
+Pr, o [(ACR) - AR) = 0) A (A(f) = A(f) = 1)]

2

1 $0(1—$1)+

N

(ak — 2] 4 220 + 221 — 22021)

But conditioning shows that = L2+ $z;. Substituting 2, = 22—z, in the above and simplifying,
we get p =2 — 22 + 22/2. Using z, < 22 we upper bound p by z + z2.



mrBellare, Goldreich, Sudan 41

We now turn to the special case in which A satisfies A(f+ 1) = A(f)+ 1 for all f. By linearity of
A and A(1) = 1 we have A(f+ 1) = A(f) + 1, for all f’s. Thus, we can express x, as

to = Pra, (A +1=0] A(N)+1=1]

= Pr, [A(J+T1)=0] A(f+T)=1]

f‘i}—l
= I

and zo = z; = z follows. In this case, we get an exact expression for p = z — 2 + 22/2 (rather
than an upper bound); namely, p = x — 2%/2. The lemma follows. |

THE RMB TEsT. We are interested in lower bounding the probability 1 - MBPass(A) that the test
rejects when fi, fo, f5 are chosen at random, as a function of the distance of A to a linear function A,
given that A does not respect the monomial basis. We assume that A satisfies A(f+1) = A(f)+1
(forall f € F), as is the casein all our applications (since we use verifiers which access a (1, 1)-folded
function). The proof of the following exploits the above lemmas.

Lemma 3.5.7 (RMB test — final analy§is): Let A, A: F; — ¥ with A linear but NOT respecting
the monomial basis and let z = Dist(A, A). Suppose that z < 1/2 and that the function A satisfies
A(f+1)=A(f)+ 1,for all f € F,. Then

def 3 CC2 3 7 5 9 3

Consequently, for every A: F; — X and h € F, so that the linear function, A, closest to A DOES

NOT respect the monomial basis we have 1 — MBPASS(A(,,0y,1,1)) > Trms(Dist(A0y,1,1), 4))-

Proof: Using Lemma 3.5.1 we can lower bound the rejection probability of the test as follows:

1 — MBPass(4A) = P [A(f1) - A(f2) # A(fi - o+ f3) — A(f3)]
(AL - AR) # A 1) and A fo + f3) = Afs) = A(f 12)]
> Prno [AGR) A # AL - min {Pr, p, [AGASe+ f) = A(fs) = A(ffo)

1,f2€F

T R
fi.f2 fa=Fa

> Pr R
fi.f2.fs=Fa

> Pr, o a [A()-AL) £ AL (1 22)

Now, using Lemmas 3.5.5 and 3.5.6 (assuming for a moment that A(1) = 1), we get

Pl.fl,fztifl [A(fl) CA(f2) # A(f1f2)] > Prfhfg«}i}'l [/I(fl) . A(ﬁ) + z‘i(f1f2)]
rf17f2£f1 [A(fl) ) A(f2) ;é A(fl) : /i(f2)]

> 3/8 —a+ 2?2

—-P

It is left to justify the assumption that A(1) = 1. For 2 < 1/2 this is justified by Corollary 3.5.2
(using the hypothesis A(f+ 1) = A(f)+1,Yf € F,). Otherwise (i.e., in case z = 1/2) the claimed
bound (i.e., 3/8 — (1/2) + (1/2)*/2 = 0) holds vacuasly. This concludes the proof. |

Remark: An RMB test for arbitrary A’s (rather than folded ones) can be derived by augmenting
the above test with a test of A(f+ 1) = A(f)+ 1 for uniformly chosen f € F;. The analysis of the
augmented part is as in the circuit test (below).



mrBellare, Goldreich, Sudan 42

3.5.3 Atomic projection test

The final test checks that the second function A; is not too far from the evaluation operator F,,
where a; = o(a) is a function of the string @ whose evaluation operator is close to A. Here, unlike
previous works (for instance [BeSu]), ¢ may be an arbitrary mapping from X' to ¥* rather than
being a projection (i.e., satisfying o(z) = (1) ... 2(11) for some sequence 1 < i; < --+ < 4, <l and
all z € X!). Thus, the name “projection test” is adopted for historical reasons.

Lemma 3.5.8 Let A: 7, — ¥ and let 0: X' — X" be a function. Let @ € ¥/ and let = =
Dist(A, E,). Let a; = o(a) € £"'. Then 1 — ProIPAss, (A, A;) > Dist(Ay, E,,) - (1 — 22).

Proof: We lower bound the rejection probability as follows:
Prns oy [Aie) # Algo o+ )= A/
> Proa, . [Aig) # Falgoo) and Algoo + /)~ A(f) = Ei(go0)]
> Pron, [Ailg) # Ea(goo)]-(1-2¢).

Here we used Lemma 3.5.1 in the last step. Now we note that E,(go o) = E, (g). Hence the first
term in the above product is just

Pr »_ [Ai(g) # E.(g)] = Dist(A;, E,,) .

g*_fll

This concludes the proof. |

3.5.4 Atomic circuit test

For sake of elegancy, we present also a Circuit Test, denoted CircTest,(A; f). The test consists of
checking whether A(h + f) = A(f) and it outputs 0 if equality holds and 1 otherwise. Assuming
that A is close to some evaluation operator E,, the atomic circuit test (above) uses self-correction
[BLR] to test that a given function h has value 0 at a. As explained above, this test is not needed
since all our proof systems will use a (h,0)-folding (of A) and thus will impose h(a) = 0. The
analysis lower bounds the rejection probability, as a function of the distance of A from linear, given

that h(a) = 1.

Lemma 3.5.9 Let A: 7; — ¥ and let « € ¥'. Let h € F; and = = Dist(A, E,). If h(a) = 1 then
1 — CircPass,(A) > 1 — 2z, where

CircPass,(A) = Prfﬁfl [ CircTest,(A; f)=0]

Proof: Follows directly from Lemma 3.5.1. 1

3.6 Minimizing the number of queries

The problem we consider here is to minimize the values of ¢ (and ¢.,) for which we can construct
PCPs for NP using ¢ queries in the worst case (and ¢,, on the average) to achieve a soundness
error of 1/2. We allow only logarithmic randomness. In other words we want results of the form:

NP = PCP; /5[ coins = log; query = ¢ ; query,, = ¢a. ] . (3.3)



mrBellare, Goldreich, Sudan 43

Due to q qav
[ALMSS] some constant | some constant
[BGLR] 36 29
[FeKi] 32 24
This paper 19 16

Figure 3.3: Worst case (q) and average (¢.,) number of queries needed to get 1/2 soundness with
logarithmic randomness. le. results of the form NP C PCPy 15[ coins = log ; query = ¢; query,, =

Qav |-

Later in this paper we will return to this question by looking at lower bounds.

PrEVIOUS WORK. It was shown by [ALMSS] that there are constants ¢, ¢,, for which (3.3) is
achieved. Reductions in the values of these numbers obtained since then are depicted in Figure 3.3.

The interest of [BGLR] in these numbers was to improve non-approximability factors for Max
Clique. But we now know that free-bits are a better measure towards this end [FeKi, BeSu]. Yet
we remain interested in query bits for their own sake. Indeed, the number of bits queried remains
a most natural measure, and it is an intruiging question as to how many bits of a proof you need
to look at to detect an error with a given probability. Furthermore it remains a good way to get a
first rough estimate on non-approximability factors in general.

We exploit the idea of [BGLR] of re-using proof bits across different tests. As we will see in the
next subsection, an alternative approach seems more adequate for deriving non-approximability
results for problems such as Max-3-SAT.

SOURCES OF OUR IMPROVEMENTS. The principal part of our improvement comes from the use of
the new long code based inner verifier, the atomic tests and their analysis in Section 3.5, and the
new idea of folding.

3.6.1 The PCP inner verifier

Our theorem is based on the construction of the (/,/;)-canonical inner verifier Vpcpinner depicted
in Figure 3.4. In addition to its standard inputs h,o it takes parameters Ny, No, N3. It repeats
the atomic linearity test N; times, the atomic respect of monomial basis test N, times and the
atomic projection test N3 times. Note that the tests are executed on the function A, gy (11 to
which the verifier has an effective oracle access given his access to A; this eliminates the need
to check that h assumes the value 0 (on the relevant input) and simplifies the RMB test (as
explained above). Also notice how the values of Ay ¢y 71y 0n fi,..., f, are used in many different
tests. By inspection it is clear that the total number of accesses to the oracles for A and A; is
max{2N,3N,, N3} + N; + Ny + 2N; (whereas the free-bit complexity is max{2N;,3N,, N3} + N3).
We now examine the goodness of Vecpinner-

Recall the definitions of the functions I'y,(z) (from Lemma 3.5.3) and I'rmp(z) = 3/8 — 7Tz /4 +
52°/2 — a® (from Lemma 3.5.7). Define T (2) = min, <, <1/2{Tin(2)}.

lin



mrBellare, Goldreich, Sudan 44

Lemma 3.6.1 (soundness of Vpcpinner): For any 61,8, > 0 and any [, 1, Ny, Ny and N3, the (I,1)-
canonical inner verifier Voepinner is (p, 61, 82)-good, where

. su N1 N2 N3
po= minmax ([1-Tir (@)™ . [1-Tavn(a)]™ . [1/2 40+ 8] ) .
Notice that our analysis uses each of the three tests to justify one of the three expressions being
maximized. This explains why re-using the same probes in different tests does not harm us. The
minimization over a represents a degree of freedom in the analysis which is broken into cases
(according to whether the distance of the first oracle from being linear is above a or not).

Proof: Let a € [0,1/2—§,] be arbitrary. We split the analysis into several cases based on the value
of v = Dist(A(mOj)’@l),LIN). We differentiate between whether z is above or below the “pivot”
value a.

Case 1: ¢ > «
1)) < 1—=Ty,(2) <1-T3F(e). Since the Ny linearity

lin

Lemma 3.5.3 implies that LINPASS( A, oy,
]

L
tests are independent, ACC[ Vigni (0, R)] < [1 = T3P ()M,

The PCP inner verifier. This (/,/;)-canonical inner verifier is given functions h € F
and o: 3! — Y1, and has access to oracles for A: F; — ¥ and A;: 7}, — X. In addition it

takes three integer parameters N;, Ny and Nsj.

Let m = max{2N,3N,, N3}.
Pick functions fi,..., fn — Fi.

For+=1to N; do

LinTest (A 0),(7,1); foi=15 f2:)-
EndFor

Forit=1to N5 do

MBTest( A 0),(1,1); fai—25 fai-1, f3i)-
EndFor

For ¢ =1 to N5 do
Pick g & F,.
ProjTest, (A 0,1,1) 413 fi, 9)-
EndFor

Accept iff all the above tests accept.

Remark: access to Ay 0),(1,1)( f) is implemented by accessing either A(f), A(f+h), A(f+1)
or A(f+h+1).

Figure 3.4: The PCP inner verifier Vpcpinner



mrBellare, Goldreich, Sudan 45

Case 2: 2 < a

Let B: F; — ¥ be a linear function such that Dist(A(hyo)y(Iyl),B) < a. The proof splits into two
subcases.

Case 2.1: B does not respect the monomial basis

In this case Lemma 3.5.7 implies that MBPASS( A 0),(7,1)) < 1=Trus(z). Since I'gyp is decreasing
in the range [0,1/2] we have MBPASS(A(s0)(1,1)) < 1 — Trup(a). Thus ACC[Vigph, (o h)] <
[1 — FRNIB(O{)]N2.

Case 2.2: B respects the monomial basis

By Proposition 3.3.2, B is an evaluation operator. So there exists a € ! such that B = E,. So
Dist( A 0),(1,1)s ££a) = . Let a; = o(a). The proof splits into two further sub-cases.

def

Case 2.2.1: d = Dist(Ay, E,, ) > 1/2 — 6,

By Lemma 3.5.8 we have PROIPASS,(A1,0),1,1), A1) <1 —d- (1 - 2z), which is bounded above by
1/24 65+ 2 — 26,2 < 1/24 a + 8. Thus, ACC[ Vital (0, h)] < [1/2 4 a + 6,]M-.

Case 2.2.2: Else (d < 1/2 —6,) —

In this case, we have 2 = Dist(A, 01,1y, Fa) < 1/2 — & and Dist(Ay, E,,) < 1/2 — 8. Thus
the functions Ag, gy (1,1) and A; satisfy the properties required in conditions (2.1) and (2.2) of
Definition 3.4.3.

The above analysis is valid for any a and in particular for one minimizing max([1 — T} ()], [1 —

Trup(@)]V2,[1/2 + a + 6,]¢). Recall that p is defined as the minimum value. Thus, we conclude
that the only case which allows ACC[ Vgt ..(0,h)] > p is case (2.2.2) which also satisfies condi-
tions (2.1) and (2.2) of Definition 3.4.3. Thus, Vpcpinner satisfies condition (2) of Definition 3.4.3.
Clearly, Vpcpinner also satisfies condition (1) of Definition 3.4.3, and thus the lemma follows. |

3.6.2 The new proof system

We show that a verifier need examine only 19 bits of the proof, and less than 16 on the average, to
detect error with probability 1/2. Our numbers are rounded up to the near multiple of a hundredth;
see the proof for more exactness.

Theorem 3.6.2 : NP = PCPy ;5[ coins = log ; query = 19; query,, = 15.58].
Furthermore, the free-bit complexity of the proof system is 11.

Proof: We consider a canonical (I,l;)-inner verifier Vi, which probabilistically chooses the pa-
rameters Ny, Ny and N3 for Vpepinner as follows?:

— With probability p; > 0 chooses N; = 3 and with probability 1 — p; chooses N; = 2.
—  With probability ps > 0 chooses N, = 3 and with probability 1 — p, chooses N, = 2.
— With probability p3 > 0 chooses N3 = 2 and with probability 1 — p3 chooses N3 = 1.

Define the functions

hi(o,pr) = po-[L=TRP ()P + (1 —p) - [1 = TP ()]

2The choice of these parameters is justified by the rest of the analysis and it can be seen that setting these
parameters differently will not improve the result.




mrBellare, Goldreich, Sudan 46

hoa,ps) = po-[1— FRMB(Q)]S +(1—py)-[1—- FRMB(Oé)]2
ha(a,ps, 82) = pa-[1/2+a+ & +(1—ps)-[1/2+a+ 8] .

The parameters p;, ps, p3 will be chosen so that there exist values §; > 0, @ € [0,1/2— §;], 65 > 0
and v > 0 for which:

hy(a,py) 1/2 -~
ho(a,ps) < 1/2—-17
hs(a,ps,02) < 1/2—17.

IN

A

This will imply, by Lemma 3.6.1 that Viyer is (p, 61, 62)-good for p = 1/2 — v < 1/2. To figure out
how to choose pi, ps, ps let us look at the number of bits queried by Vip,... This is the same as
the number queried by Vpcpinner, namely max{2N,3N,, N3} + N; + N, + 2N3 except that now Ny,
N, and N3 are random variables. In the worst case Ny = N, = 3 and N3 = 2 making the query
complexity of Vipner equal 19. The expected number of bits probed by Vipner is (64 3pa2) +(2+p1) +
(24 p2)+2(1 4 p3) = 124+ p; + 4ps + 2ps. Thus our task is to choose py, ps, ps so that this value is
minimal, subject to having max(h;(a,p;), ha(a, ps), ha(e, ps, 65)) strictly less than 1/2.

To do this, begin by imagining that we could set v = 6; = §, = 0. Next, we set p; = 1. By inspection
of I} we guess that a good choice of a lies in the range [0,1/4]. Thus we replace T'}\"(a) in hy
by 3a — 6a%. Set a to be the smaller root of the quadratic equation 1 — 3z + 622 = /1/2, so that
hi(a,p1) = 1/2. A calculation shows that a is approximately 0.08231948733 — thereby validiting
our guess that @ € [0,1/4]. From this point on, a is fixed (to this values), and we consider the
(linear) maps py — ha(a,pz) and ps — hs(e, ps,0). As both maps are linear, we easily solve for
values po, ps satisfying hs(a,ps) = hs(a,ps,0) = 1/2. Calculations show p, =~ 0.47476014 and

p3 = 0.3384520, yielding an expected number of bits 12 + p; + 4ps + 2p3 = 15.57594456.

However we must slightly adjust the above so that ~,4d;,d, are positive. This can be done by
increasing p, and ps slightly.

To complete the proof we now choose an appropriate outer verifier. Let € = 1676262. Lemma 3.4.2
provides us with [ and [; such that an e-good (I,!;)-canonical outer verifier V., with randomness
O(logn) exists. Let V' = (Viuter, Vinner) be the composition of Viyyper and Vipper according to the
definitions in Section 3.4. This verifier has randomness O(logn). Apply Theorem 3.4.5 to see that
V has completeness parameter 1 and soundness parameter p+¢€/(166762) = p+~v = 1/2. The query
complexity of V is the same as that of Vi, above. |

3.7 The MAX SNP verifier

The PCP verifier of Section 3.6 got a significant advantage by reusing the probed bits for different
tests. When deriving non-approximability results for problems like Max-3-SAT, Max-2-SAT and
Max Cut, this does not seem to be the best strategy. In this section we describe an alternative
strategy which amounts to a verifier that performs the tests mutually exclusively. This verifier will
be the basis for the non-approximability results regarding the above-mentioned problems (presented
in Section 3.8 and Section 3.9). Figure 3.5 describes the corresponding inner verifier.

The inner verifier takes parameters [,[; and also additional parameters p;, p» and ps such that
p1 + ps + p3 = 1. It performs just one test: with probability p; the linearity test; with probability



mrBellare, Goldreich, Sudan 47

po the respect of monomial basis test; and with probability ps the projection test. Formally, this is
achieved by picking p at random and making cases based on its value. (For simplicity p is depicted
as being chosen as a random real number between 0 and 1. Of course we cannot quite do this. But
we will see later that the values of p;, ps, ps in our final verifiers are appropriate constants. So in
fact an appropriate choice of p can be made using O(1) randomness, which is what we will implicitly
assume). To improve the results, we perform the tests on a folding of A over both (h,0) and (1,1)
(i.e.,on A(h70)7(171)). We stress that A¢p o) (1,1)is a virtual oracle which in implemented by the verifier
which accesses the actual oracle A (on points determined by the definition of folding). We now
examine the goodness of Vanpinner- Recall the definitions of I'y,(z) and Tryp(2) = g— “lzm—l— 2302 —z3,

Informally, the following lemma considers all the possible strategies of a “dishonest” prover and
indicates the probability (denoted 1 — p) with which the verifier detects an error (when run against
such strategies). The three cases correspond to the events that

(1) the function A(h,0),(1,1) may be very far from being linear;

(2) the function An0y,(1,1) is x-close to linear, for some z < % — 61, but does not respect the
monomial basis; and

(38) the function A, gy, (1,1 is z-close to linear but the encoding of 6(E~"(A,0y,1,1y)) is not (% —b)-
close to the function A;.

The Max-SNP inner verifier. Given functions & € F; and o: X — X%, the verifier has
access to oracles for A: 7y — ¥ and A;: 7, — X. In addition it takes three [0, 1] valued
parameters py, p, and ps such that p; + ps + p3 = 1.

Pick p & [0, 1].

Case: p < p; :
Pick fi, f» & Fu.
LinTest (A 0),(1,1; f1, f2)-

Case: p1 <p<pi+ps:
Pick f17f27f3 i fl'
MBTest(As,0),1,1); 15 [, [3)-

Case: py+py <p:
Pick f & F and ¢ & F,.
ProjTestU(A(h,o),(I,1)7Al; [:9)

Remark: access to Ay 0),(1,1)( f) is implemented by accessing either A(f), A(f+h), A(f+1)
or A(f+h+ 1).

Figure 3.5: The Max-SNP inner verifier Vsxpinner



mrBellare, Goldreich, Sudan 48

Lemma 3.7.1 (soundness of Vosxpinner): Suppose 61,8, > 0, with §; < % and [,l; € Z*. Suppose
P1, P2, p3 € [0,1] satisfy py + p2 + ps = 1. Then the (I,l;)-canonical inner verifier Voxpinner 1S

(p, 61,02)-good, where 1 — p is the minimum of the following three quantities—
(1) P (% - 51)

(2) ming<ijoos, [p1-Tin(2) + pa - Trus(2) ]

(3) minagsos, [pr - Tinle) + ps - (3 = 8)(1 - 20) .

Proof: The proof is similar to that of Lemma 3.6.1. The analysis is broken up into cases as in the
proof of Lemma 3.6.1, except that instead of “pivoting” on an arbitrary o € [0,1/2—6,] we pivot on
the boundary (i.e., 2 — §;). We use the hypothesis that % -6, > B Letz = Dist( A 0),(1,1), LIN).

? 2 128"

Case 1: z > %—61
Lemma 3.5.3 implies that 1 — LINPASS(A(h 0 (11)) > Tin(2) > 2 > 5 — 6;. (The second inequality

follows from the fact that I'yi,(2) = @ for « € [45/128,1/2].) Since Vsxpinner performs the atomic
linearity test with probability p; we have 1 — ACC[ Vil (0, h)] > p1 - (1/2 = 61).

Case2:m§%—61

Lemma 3.5.3 implies that 1 — LINPASS(A(4,0),1,1)) > Lin(2) and so the probability that Vsxpinner
performs the linearity test and rejects is at least p; - I'in(2). Now let B be a linear function such

that Dist( A 0),(1,1), B) < 2. We consider the following sub-cases.

Case 2.1: B does not respect the monomial basis

In this case Lemma 3.5.7 implies that 1 — MBPASS(A(j 0),(1,1)) > Trms(). So the probability that
Venpinner performs the atomic respect of monomial basis test and rejects is at least p,-I'rmp(z). Since
the events that the verifier performs a linearity test or a respect of monomial basis test are mutually
exclusive we can add the probabilities of rejection and thus in this case 1 — ACC[ Vixpiner(0, B)] >
p1 - Tin(2) + p2 - Trus(2).

Case 2.2: B respects the monomial basis

By Proposition 3.3.2, B is an evaluation operator. So there exists ¢ € ! such that B = E,. So
Dist( A 0),(1,1)s ££a) = . Let a; = o(a). The proof splits into two further sub-cases.

def

Case 2.2.1: d = Dist(A,, E,,) > % — &

By Lemma 3.5.8 we have 1 — PROIPASS, (A, 01,1y, A1) > d-(1—22) > (1/2—65)-(1 —22). So the
probability that Vsnpinner performs the projection test and rejects is at least ps - (1/24 8,)(1 — 2z).
Thus 1 — ACC[ Vinpinee(a,7)] > p1 - Tin(2) + ps - (1/2 — 65)(1 — 22) (adding probabilities as in
case (2.1)).

Case 2.2.2: Else—

In this case, we have 2 = Dist( A 0),(1,1), £q) < 1/2 — 6; and Dist(A,, F,,) < 1/2 — é,. Thus the
functions A, 01,1y and A, satisfy conditions (2.1) and (2.2) in Definition 3.4.3.

Similarly to the proof of Lemma 3.6.1, we infer that the lower bound on 1 — p is as claimed and
the lemma follows. |

The upper bound on the soundness error of Vexpinner, provided by Lemma 3.7.1, is somewhat
complicated to grasp. In the next claim we simplify this expression (for the soundness error)



mrBellare, Goldreich, Sudan 49

under the assumption that % -p1+ FRMB(%) - Py = % “Py = % - p3. This choice represents our
guess, which is actually proven correct in Claim 3.15.1, that the best strategy for an adversary
(trying to maximize the above expression for the soundness error) is either to pick A so that
Dist( A 0),(1,1), LIN) = 45/128 or to pick A that is linear and does not respect the monomial basis,
or to pick A = E, (i.e., linear and respects the monomial basis) but to pick A; which is not close
to E,(4). Under these strategies it is optimal to set the probabilities p;, p, and ps so that Eq. (3.4)
holds.

Claim 3.7.2 Let 61,8, > 0 and py, ps, p3 € [0, 1] satisfy p; + p» + p3 = 1 and

45 1

3
128 p1 4+ Trmp(45/128) - py = 3 ‘P2 = 3 ‘D3 (3.4)
Then
16297 16384 12288 55)
= — = an = — .
Pr= 14969 * P2 T 14969 P3 = 11969

and the minimum of the three expressions in Lemma 3.7.1 is strictly greater than &> — 6, — 6.

Proof: A straightforward computation shows that Eq. (3.5) indeed solves the conditions imposed
on the p;’s. Our main task is to lower bound each of the following expressions (while the p;’s are

fixed as in Eq. (3.5)):

e 1
T o (— —(51)'1)1

2
T o a:glf}i;lal [Tin(z) - p1 + T'rmp(2) - pa |
Ty % min [Tun(2)-pr+ (2 — 6)(1— 22) - ps]
e<1/2—6; = 2
We first define
h(z) o Lin(z) - p1 4+ Trus(2) - po
and observe that
3 45
h(0)= 32 = 1o P+ Trun(45/128) - po = h(45/128)

(where the second equality is due to the hypothesis regarding the p;’s).
Also note that Ty = min z<1/2-5, [ h(2)].

Fact 1: (% —61)-p1 > (1—26;)-h(0).
Consequently, 77 > (1 —26;) - (1 — 26,) - h(0).

Proof: By Eq. (3.5) we have 1 -p; > 2.p, which in turn equals A(0). Thus, T} = (1—26,)-(p1/2) >
(1 —26;)(1—26,)h(0). O

Fact 2: for every z € [0,1/2], (1/2—65)-(1 —2z)-ps > (1 —263) - T'rmp(z) - po.
Consequently, T5 > (1 — 26;)(1 — 265) min z<1/9-5, [ (z) ].

Proof: Within the [0, 1/2] interval, the function %ﬂ =32+ % is maximized at = 0. Thus,
for all 2 € [0,1/2],
FRMB(JU)

3
1_9,; P2 < T'rmp(0) - psy = g'p2 =-'D3



mrBellare, Goldreich, Sudan 50

(with the last equality due to Eq. (3.4)). We get

Tin(z) -pr 4+ (1/2=62)(1 = 22) - ps > (1 —261) - (1 —263) - (Diin(z) - p1 + T'rmp(@) - p2)
and the fact follows. O
Fact 3: for every x € [0,1/2], h(z) > h(0).

Proof: We break the analysis into three cases corresponding to the three (differentiable) segments
of the function I'y,.

Case (1): x <5/16. In this case I'j,(z) = 32 — 627 and thus

3 7 5
h(z) = (3x—6x2)-p1-|—(§——a:-|—§w2

4 —wS)'P2

3 7 5
= §M+I@h—zm]$+[—@M+§myﬁ—Pﬁ3

6144 20219 56822 , 16389 ,
44969 ' 44969 44969 44969
6144

> —— = h
— 44969 (0)

(The third equality uses the values of p; and p, as set above, whereas the inequality is verified by
finding the minimum of the cubic function in the [0,5/16] interval.)

Case (2): 5/16 < z < 45/128. In this case I';,(z) = 45/128 (for every ) whereas I'ryp(2) decreases
as z grows. Thus,

45
h(z) = @'P1+FRMB($)'P2

45

> 7
- 128

-p1 + Trus(45/128) - p, = h(45/128)

Case (3): 45/128 < 2 < 1/2. In this case T';,(2) = 2.

3 7
hMz) = = pl—l—(g—zaj—l—ﬁmz—af’) D3
_ 3 D1 L) d o 3]
= D [8+<p2 1 —|—2x z
> S us/10s)
44969

(The inequality is verified by finding the minimum of the cubic function in the [45/128,1/2] inter-
val.)

Using h(45/128) = h(0) for the last two cases, the fact follows. O
Combining the above three facts, we are done. Specifically, for each i =1,2,3
T, > (1—26;)-(1—26,)-h(0)

D8

> (126~ 28) -

and the claim follows. |1



mrBellare, Goldreich, Sudan 51

We are now ready to state the main result of this section. It is a simple verifier for NP which
achieves soundness error of about 86% while performing one of two very simple tests.

Proposition 3.7.3 (The MaxSNP Verifier): For any 7 > 0 and for any language L € NP, there
exists a verifier Vonp for L such that
o Vsnp uses logarithmic randomness and is perfectly complete;

6144
44969

e Vsnp has soundness error 1 — + v (i.e., soundness error 0.8634 can be achieved); and

e on access to an oracle 7, the verifier Vgnp performs one of the following actions:

(1) Parity check: Vsxp makes three queries ¢, ¢s and ¢s, and rejects if 7(q,) ® 7(¢2) # (g3

).
(2) RMB check: Vsyp makes four queries ¢i,¢2,¢3 and ¢4, and rejects if 7(q1) - 7(q2) #
(qs) ® 7(¢a)-

Furthermore, the probability (over its coin tosses) that Vsxp performs a parity check is ¢ def

iiggg ~ 0.6356 and the probability that Vsxp performs a RMB check is 1 — g.

Proof: Assume, without loss of generality, that v < 57/128 and set §; = §; = 7/3 (observing that
61 > 19/128 which is needed for invoking Lemma 3.7.1). Next, set ¢ = 1 -(166763) = #;’16 > 0.
Now, let | and I; be integers such that the outer verifier, V., guaranteed by Lemma 3.4.2 is
(I,11)-canonical and e-good for I Consider the (I,1;)-cannonical inner verifier Voxpinner, working
with parameters p;, ps and ps as in Eq. (3.5). Let Vsnp be the verifier obtained by composing Voyter

with ‘/SNPinner .

We start by analyzing the soundness error of Vgyp. By Lemma 3.7.1 and Claim 3.7.2, we know
that the inner verifier Vonpinner is (p, 61, 62)-good, for

1
p < 1——-ps+6 +6

2
_ o, 61 2
- 14969 " 37

Invoking Theorem 3.4.5, we upper bound the soundness error of Vsnp by 1 — 214 4 2.4 4 5

which by the setting of € yields the claimed bound.

It is left to observe that the projection test, performed by Vsnpinner, amounts to a Parity Check on
answers taken from two different oracles (which can actually be viewed as one oracle). It is clear

that Vsnp uses logarithmic randomness, has perfect completeness, and performs the Parity Checks
28585

with probability p; + ps = 232352 = ¢ and an RMB check with probability p, =1 —¢. |

A tedious remark: The probability that verifier Vgnp, of the above proposition, makes two identical
queries is negligible. Specifically, it can be made smaller than 4 (mentioned in the proposition).
Thus, we can ignore this case® in the next two sections and assume, without loss of generality, that
all queries are distinct.

In the following sections we use the verifier of Proposition 3.7.3 to obtain hardness results for various
variants of Max Sat as well as for Max CUT. The hardness results are obtained by constructing an
instance of the given problem which represent the verifiers computation on input z. The primary
aspect of the reduction is the construction of gadgets which reflect the result of the verifier’s

? Formally, suppose that when it occurs the verifier perfoms some standard check on fixed different queries. This
modification increases the soundness error by at most 4 which tends to zero anyhow.



mrBellare, Goldreich, Sudan 52

computation (i.e., accept/reject) after performing one of the two types of tests i.e., parity check or
RMB check. We define a performance measure of a gadget and then relate the final hardness result
achieved to the performance measure obtained by the gadgets used. Given that the performance
of the various gadgets might be different for the different tests, one might suspect that it might
have been a better idea to first construct the gadgets and then to optimize the soundness of Vsxp
keeping in mind the relative performance measures of the two kinds of gadgets being employed.
Surprisingly enough it turns out (see Claim 3.15.2) that the optimization is not a function of the
performance of the gadgets and indeed the choice of parameters p;,p, and p3 is optimal for the
following reductions.

SOURCES OF OUR IMPROVEMENTS. The explicit statment of a generic verifier for deriving Max
SNP hardness results is a novelity of our paper. Thus, a quantative comparison to previous works
is not readily available. Certainly, we improve over these works thanks to the use of the new long
code based inner verifier, the atomic tests and their analysis in Section 3.5, the new idea of folding
and the improved analysis of linearity testing due to [BCHKS]. It may be instructive to quote the
results obtainable without this latter improvement. Using the prior analysis of linearity testing, due
to [BGLR], we would have obtained soundness error of s = 1— m +7=1-2+7 < 0.8910
(with parity check performed with probability ¢ = 0.71). Recall that we have obtained s < 0.8634
(alas with ¢ = 0.63).

3.8 Max-3-SAT and Max-2-SAT

In this section we mainly deal with DNF formulae, however the last subsection deals formulae
consisting of a conjunction of partity (rather than or) clauses.

3.8.1 Definitions

A formula is a set of clauses (i.e., or-clauses) over some set of literals. We consider various classes
of formulae. In particular, 3-SAT formulae (at most three literals in each clause), E3-SAT formulae
(exactly three different literals in each clause) and 2-SAT formulae (at most two literals in each
clause). We use the generic notation X-SAT to stand for some unspecified class; thus the above
correspond to X € {3, E3,2}.

Let ¢ be a formula. We let || denote the number of clauses in ¢. We let MaxSAT(y) denote
the maximum number of clauses in S that are simultaneously satisfiable. (That is, the maximum,
over all assignments to the variables, of the number of clauses satisfied). We also let MaxSAT(¢) =
MaxSAT(¢)/|¢| denote the maximum fraction of simultaneously satisfiable clauses. Max-X-SAT is
the problem, given a X-SAT instance ¢, of finding MaxSAT ().

An approximation algorithm A for Max-X-SAT achieves a ratio, or factor, of a € [1,00] if

(1/a) - MaxSAT(¢) < A(p) < MaxSAT () for all X-SAT instances .

Remark. As this definition indicates, we adopt the convention that the approximation factor is a
number at least 1. Sometimes Max-SNP approximation is discussed in terms of factors at most 1
(e.g. [GoWi2, FeGo]) but obviously the two are equivalent via an inversion of the factor.

We are interested in promise versions of Max-X-SAT which exhibit a gap in the MaxSAT(-)
value between yes and no instances.

Definition 3.8.1 (MaxSAT promise problems): For any 0 < s < ¢ < 1 we let the promise problem
Gap-X-SAT, , be the pair (A, B), where—



mrBellare, Goldreich, Sudan 53

Due to Assuming | Factor Technique

[ALMSS] P £ NP some constant | NP C PCP; ;/5[log, O(1)]; Reduction of this to
Max-3-SAT.

[BGLR] P + NP 94/93 Framework; better analyses; uses proof systems of
[LaSh, FeLo].

[BGLR] P # NP 113/112 New four-prover proof systems.

[FeKi] P # NP 94/93 New two-prover proof systems.

[BeSu] P # NP 66/65 Canonicity and some optimizations.

[BeSu] P £ NP 73/72 Canonicity and some optimizations.

This paper P # NP 38/37 Long code and new proof systems.

Figure 3.6: Non-approximability results for Max-3-SAT indicating the factor shown hard and the
assumption under which this was done.

(1) A is the set of all X-SAT instances ¢ satisfying MaxSAT(y) > ¢, and
(2) B is the set of all X-SAT instances ¢ satisfying MaxSAT (¢) < s.
The gap of this problem is defined to be ¢/s.

Our goal is to find such promise problems having gap as large as possible while being NP-hard.
This will imply that the Max-X-SAT problem is hard to approximate within a factor equal to the
reciprocal of the gap, unless P = NP.

3.8.2 Previous work

APPROXIMATION ALGORITHMS. Max-3-SAT is the canonical Max-SNP complete problem [PaYa].
A polynomial-time algorithm due to Yannakakis [Ya] approximates it to within a factor of 4/3 <
1.334 (see Goemans and Williamson [GoWil] for an alternate algorithm). Currently the best
known algorithm for this achieves about 1.319 and is from Goemans and Williamson [GoWi2]. For
Max-E3-SAT, which is also Max-SNP complete, a very simple algorithm achieves an approximation
of 8/7 < 1.143 (where 7/8 is the expected fraction of clauses satisfied by a uniformly chosen
assignment).

Max-2-SAT is also Max-SNP complete [GJS, PaYa]. This problem is particularly interesting
because it has been the focus of recent improvements in the approximation factor attainable in
polynomial-time. Specifically, Goemans and Williamson [GoWi2] exhibited a polynomial time
algorithm achieving an approximation factor of oéﬁ ~ 1.139, and consequently Feige and Goemans
[FeGo] exhibited an algorithm achieving —= ~ 1.074.

NON-APPROXIMABILITY. Non-approximability results for Max-SNP problems begin with [ALMSS]
who proved that there exists a constant ¢ > 0 such that Gap-3-SAT,, , is NP-hard. They did
this by providing a reduction from a given NP language I to the promise problem in question,
constructed by encoding as a 3-SAT instance the computation of a PCPy 15[log, O(1)] verifier for
an NP-complete language, the variables in the instance corresponding to bits in the proof string.
The basic paradigm of their reduction has been maintained in later improvements.



mrBellare, Goldreich, Sudan 54

Figure 3.6 depicts the progress. Improvements (in the constant value of the non-approximability
factor) begin with [BGLR]. They used Hadamard code based inner verifiers following [ALMSS].
They also introduced a framework for better analysis, and improved some previous analyses; we
exploit in particular their better analyses of linearity testing (cf. Section 3.5) and of Frievalds’s
matrix multiplication test (cf. Lemma 3.5.4). The improvement of Feige and Kilian [FeKi] was
obtained via new proof systems; that of [BeSu| by use of the canonicity property of constant prover
proofs and some optimizations. (See Section 3.4 for a discussion of the role of constant-prover
proofs in this context).

Garey, Johnson and Stockmeyer [GJS] had provided, as early as 1976, a reduction of Max-3-SAT
to Max-2-SAT which showed that if the former is in-approximable within (k + 1)/k then the lat-
ter is in-approximable within (7k + 1)/(7k). With the best previous non-approximability fac-
tor for Max-3-SAT (namely 66/65) we would only get a 456/455 factor non-approximability for
Max-2-SAT. In fact, even using our new Max-3-SAT result we would only get 273/272.

3.8.3 New Results

A consequence of the following theorem is that, assuming P # NP there is no polynomial time
algorithm to approximate: (1) Max-3-SAT within a factor of 1.027; (2) Max-E3-SAT within a
factor of 1.027; (3) Max-2-SAT within a factor of 1.010.

Theorem 3.8.2 (MaxSAT non-approximability results): The following promise problems are NP-
hard -

(1) Gap-3-SAT,, with ¢ =1 and s = 37/38.

(2) Gap-E3-SAT, | with ¢ = 1 and s = 37/38.

(3) Gap-2-SAT,, for some 0 < s < ¢ < 1 satisfying ¢ > 0.9 and ¢/s = 94/93.

Actually, items (1) and (2) hold for any s > 1— 2222 whereas item (3) holds as long as £ < 1+ 2235
Item (1) is implied by item (2) so we will prove only the latter. The value of ¢ for item (3) can be

determined from our proof.

SOURCES OF OUR IMPROVEMENTS. The principal part of our improvement for Max-3-SAT comes
from the use of the Max SNP verifier of the previous section. The latter verifier benefits from the
use of the new long code based inner verifiers and the atomic tests and their analysis in Section 3.5.
We also gain by using the new idea of folding and the improved analysis, due to [BCHKS], of
the linearity test. Our Max-2-SAT result is based on the above as well as a new reduction which
directly encodes the computation of the verifier in 2-SAT instances. Finally, for both Max-3-SAT
and Max-2-SAT, an important feature of the optimization is explicit 3-SAT and 2-SAT expressions
for the different tests which use as few clauses as possible. The expressions used for Max-3-SAT
are in fact of E3-SAT form thus yielding the result for Max-E3-SAT.

3.8.4 Gadgets and the Hardness of MaxSAT

We need to implement two types of checks: the Parity Check (checking that a+b = ¢ for @, b and ¢
obtained from the oracle) and the RMB-Check (checking a-b = ¢+ d). Accordingly a Parity Check
(PC) gadget PC(a,b,c,xq,29,...,2,) is a set of clauses over three distinguished variables a, b, ¢ and
n auxiliary variables zq,...,z,. It is an («, 3)-PC gadget if the following is true: If a + b = ¢ then
MaxSAT(PC(a,b,c,z1,25,...,2,)) = a; else it is at most & — . Similarly a Respect-Monomial-
Basis Check (RMBC) gadget RMBC(a,b, ¢, d,z1,...,z,) is a set of clauses over four distinguished
variables a, b, ¢, d and n auxiliary variables z,...,2,. It is an (a, 3)-RMBC gadget if the following



mrBellare, Goldreich, Sudan 55

is true: If a-b = c+ d then MaxSAT(RMBC(a,b,c,d,zy,25,...,2,)) = a; else it is at most a — f.
We stress that in both cases the maximum number of clauses which are simultaneously satisfied is
at most a. A gadget is said to be a X-SAT gadget if, as a formula, it is a X-SAT formula.

The following lemma describes how a gadget of the above form can be used to obtain the
hardness of MaxSAT.

Lemma 3.8.3 (MaxSAT implementation of a verifier): Let V be a verifier for L of logarithmic
randomness, with perfect completeness and soundness s, such that V performs either a single
Parity Check (with probability ¢) or a single RMB check (with probability 1 — ¢). Furthermore,
suppose that in either case, the verifier never makes two identical queries. If there exists an (ay, §)-
Parity-Check X-SAT gadget containing m; clauses and an (as, )-RMBC X-SAT gadget containing

a1gtaz(l—g) 1 aigtoz(l—g)—(1—-s5)p
i tma(icg) and s’ = gt (=) " In

my clauses then I reduces to Gap-X-5AT,, , for ¢’ =

(1-s)p
argtaz(l-¢)—(1-s)8"

particular g—i >1+

Remark: In the above lemma, we have assumed that both the PC and RMBC gadgets have the
same second parameter 5. This assumption is not really a restriction since we can transform a pair
of a (ay, 01)-PC gadget and (as, 52)-RMBC gadget into a pair of a (a1 3,, 5152)-PC gadget and a
(a1, B132)-RMBC gadget, thereby achieving this feature. (Actually, what really matters are the
fractions a;/f3.)

Proof: Let PC(a,b, ¢, z4,...,z,,) denote the Parity Check gadget and let RMBC(a, b, ¢,d, z1,...,2,,)
denote the RMBC gadget. We encode V’s computation on input = by a CNF formula ¢,. Cor-
responding to every bit w[g] of the proof (oracle) accessed by the verifier V' we create a variable
y[g]. In addition we create some auxiliary variables y,x[R, ] for each random string R used by the
verifier V' and ¢ going from 1 to max(ny, ns). For each such R we will construct a formula ¢r which
encodes the computation of the verifier when its coins are R. The union of all these formulae will
be our ¢,.

On random string R if the verifier performs a parity check on bits 7[q], 7[¢2] and 7[gz], then
g consists of the clauses PC(y[q1], y[q2], y[gs], Yaux[R, 1], - - -, Yaux[R, m1]). On the other hand if
the verifier performs a RMB check on bits 7[q;], 7[¢s], T[g3], T[q4], then g consists of the clauses
RJWBC(y[(hL y[(hL y[q3]7 y[Q4]7 yAux[R7 1]7 ) yAux[R7 nZ])

Let N denote the number of possible random strings used by V. Observe that the number of clauses
in ¢, equals m; - ¢N 4+ my - (1 — ¢)N. We now analyze the value of MaxSAT(¢,).

If © € L then there exists an oracle 7 such that V7™(x) always accepts. Consider the assignment
ylql = 7lq] (i-e., ylq] is true iff 7[¢g] = 1). Then for every R, there exists an assignment to the
variables yaux[R,%]’s such that the number of clauses of ¢p that are satisfied by this assignment is
oy if R corresponds to a Parity Check and a, if R corresponds to a RMB-check. Since ¢N of the
gadgets are PC-gadgets and (1 — ¢)N of the gadgets are RMBC-gadgets, we have MaxSAT (¢, ) >
gNa; + (1 — g)Nas, and the expression for ¢’ follows.

Now consider the case when z ¢ L. We claim that if there exists an assignment which satisfies
gNa;+(1-¢)Nas—(1—s)Nj clauses of ¢, then there exists an oracle 7 such that V™(z) accepts
with probability at least s. Since we know this can not happen we conclude that MaxSAT(¢,) <
gNay + (1 —¢)Nas — (1 — s)NjG = §'|p,| and the expression for s’ follows.

To prove the claim, we convert any assignment to the variables y’s into an oracle m in the nat-
ural way, i.e., m[q] = 1 iff ylg] is true. Now by the property of the gadgets if a PC gadget
PC(y[q1], y[g2], y[gs], yaux[ R, 1], . ..) has more than a; — § clauses satisfied then 7[¢| & 7[¢2] = 7[gs].
In turn this implies that the verifier V accepts 7 on random string R. A similar argument can be



mrBellare, Goldreich, Sudan 56

made about the random strings R which correspond to RMB checks. We also use the property
that a PC (resp., RMB) gadget cannot have more than «a; (resp., as) satisfied clauses, even if the
claim it checks does hold. Thus, if an assignment satisfies ¢N - (ay — )+ (1 —¢)N - (a2 = 3) + sNj
clauses, then there must exists sN random strings R on which V accepts. This proves the claim
and the lemma follows. |

Figure 3.7 describes gadgets which will be used for our Max-E3-SAT construction: notice they are
ezact-3-SAT gadgets. We have a (4,1)-PC gadget PC; consisting of 4 clauses and a (7,1)-RMB
gadget RMBCj; consisting of 7 clauses in which all the clauses have exactly three variables. The
first has no auxiliary variables and the second has one, named e. The PCs(a, b, ¢) gadget is merely
the canonical 3CNF of the expression a+b+c¢ = 0. The first three clauses in the RMBCj(a, b, ¢, d, €)
gadget are obtained by writing the canonical 3CNF for ((aAb) = ¢) and (e = (¢ # d)), respectively.
The other four clauses are equivalent to ((a = 0)V (b = 0)) A (c = d). Figure 3.8 similarly describes
2-SAT gadgets for our Max-2-SAT construction. We have a (11,1)-PC gadget PC, consisting of
12 clauses, and a (16, 1)-RMB gadget RMBC, consisting of 18 clauses. The first has four auxiliary
variables and the second has five. The auxiliary variable z,, in the PC, gadget is supposed to
be the indicator of the event ((¢ = ) A (b = 7)). Thus, a + b = ¢ allows to satisfy 11 clauses
by appropriately setting the indicator variables (e.g., if @ = b = ¢ = 0 then setting zoo = 1 and
the other w,,’s to 0 satisfies all clauses except the last one). The RMBC, gadget is composed of
a PCy(c,d,e) gadget and an expression for e = a - b. The latter is developed by first writing the
condition ((€V a)A (€Vb)A(@VbVe)). The 3-literal clause is then replaced by 4 clauses taking
advantage on the presence of the clauses (¢ V a) and (e V b).

Lemma 3.8.4 (SAT gadgets): The following gadgets exist
— E3-SAT gadgets: a (4,1)-PC gadget of 4 clauses and a (7,1)-RMB gadget of 7 clauses.
—  2-SAT gadgets: a (11,1)-PC gadget of 12 clauses and a (16,1)-RMB gadget of 18 clauses.

Remark: aratio of 4 between the number of clauses and the second parameter (i.e., #) is minimal for
both E3-SAT gadgets. More generally, we claim that for E3-SAT, an (a, §)-gadget with m clauses
for a test which holds with probability 1/2 (for a random assignment to the distinguished variables)
must satisfy m > 43. Note that both the Parity test and the RMB test satisfy the condition of the
claim. The claim is proven by considering the expected number of clauses satisfied by a random
assignment to all variables of a gadget. We may assume, without loss of generality, that no clause is
a tautology and thus no clause may contain different literals of the same variable. Thus, each clause
contains three literals belonging to three different variables and is satisfied with probability 7/8. Tt

The Max-E3-SAT Gadgets.

PCs(a,b,c) =
{(avbve),(avbVe), (@vbVve), (@avbve)}

RMBC;(a,b,c,d,e) =
{(evaVvbd),(cvdVe),(evVdVe),(aVeVd),(avevd),(bVevd),(bvevd)}

Figure 3.7: The Max-E3-SAT Gadgets



mrBellare, Goldreich, Sudan 57

follows that the expected number of unsatisfied clauses under a random assignment which does not
satisfy the test is at most m/4. Therefore there exists an assignment to the distinguished variables
which does not satisfy the test and yet the auxiliary variables can be set to satisfy at least 2 of
the clauses of the gadget. Thus, 3 < m/4 and if one wants to derive results for Gap-E3-SAT, ,, then
a > 40 follows. Many questions arise. In particular, can one construct a (45, 5)-RMB gadget for
E3-SAT (or even for 3-SAT)? This would yield a hardness factor of ~ 22 for E3-SAT (or 3-SAT).
Furthermore, can one get below this a/3 ratio for 3-SAT (or even for E3-SAT when giving away
the requirement that a equals the number of clauses). What about 2-SAT? In general, it will be
interesting to find the best possible gadgets (in terms of lowest a/f ratio) for both tests and all
formula classes and to prove that these gadgets are really the best possible.

Proof of Lemma 3.8.4: We use the gadgets presented in Figure 3.7 and Figure 3.8. The claim
regarding E3-SAT follows from the motivating discussion above. Specifically, note that a Ab = c¢+d
is equivalent to the conjunction of the formulae ((a A b) = (¢ # d)) and (=(a A b) = (¢ = d)).
The first formula is equivalent to ((a A b) = e) A (e = (¢ # d)); whereas the second formula is
equivalent to ((¢ = 0) V (b= 0)) A (¢ = d). Thus, the E2-SAT gadgets are satisfiable if and only if
the corresponding condition (i.e., parity or RMB) holds and the first part of the lemma follows.

We now turn to the 2-SAT gadgets in Figure 3.8, starting with the PC-gadget PCsy(a, b, ¢, o0, Zo1,
T10,%11). We first claim that if @ + b = ¢ then we can satisfy 11 clauses. This is done by setting
each z,, to 1 if and only if both @ = ¢ and b = 7. Clearly, this assignment satisfy the three clauses
in which the variable z., appears. Out of the other 9 clauses, 6 are satisfied by the 0-assignment
to the other 3 auxiliary variables and two are satisfied by the variable ¢ = ¢ + 7. We next claim
that no assignment for which e + b = ¢ can satisfy all 12 clauses. Let a = o,b =7 and ¢ = o+ 7 be
an arbitrary partial assignment and consider the three clauses in which the variable z+ appears.
To satisfy any of the first two clauses we must have z75 = 0 but this cannot satisfy the third clause
unless ¢ # o+ 7, in contradiction to our hypothesis. Finally, we show that no assignment for which

The MAX 2SAT Gadgets.

PCz(a,b,c,moo,mm,mm,_mn) =
(@m0 v @), (Fas V b). (200 V ),
(517_01\/ a)? ($_01\/ b)7 (3301 \ E)a
(T1o V@), (T Vb), (210 VE),
($_11\/ a)? (m_ll\/ b)7 ($11 \ C)}

RMBCy(a,b,c,d, e, zq0, 201, Z10, 211) =
{(Zoo V©), (oo V d); (200 V €),
(Zor V ¢),(Tor V d), (01 V E),
(56_10\/ E)v (m_lov d)v ($10 v E)v
(Tir V), (T Vd),(z1 Ve), ~
(v a),(2V b), (aV b), (e v @), (e VD), (2)).

Figure 3.8: The Max-2-SAT Gadgets



mrBellare, Goldreich, Sudan 58

a + ¢ # ¢ can satisfy more than 10 clauses. Let @ = ¢, b = 7 and ¢ = 1 + ¢ + 7 be an arbitrary
partial assignment and consider the three clauses in which the variable z,7 appears. To satisfy
the first clause we must have x,7 = 0 but this cannot satisfy the third clause unless ¢ = ¢ + 7, in
contradiction to our hypothesis. Applying the same analysis to the clauses in which the variable
x=, appears, the claim follows.

Finally, we consider the RMB-gadget RMBy(a,b, ¢, d, €, z00, Zo1, %10, 211). This gadget is the con-
junction of a PCy(¢,d, €, zq0, To1, 10, 211) gadget and an expression for e = @ - b which is written
as

MULT(a,b,e) = (eVa)A (V) A(aVb)A(eVa)A(eVDh)A ()

Using the analysis of the PC-gadget it remains to show that MaxSAT(MULT(a,b,e))=5ifa-b=e
and MaxSAT(MULT (a,b,e)) < 4 otherwise. We proceed by a case analysis

— Suppose a = b= e = 0. Then all clauses, except the third clause, are satisfied.

— Suppose ¢ = 1 and b = ¢ = 0. Then all clauses, except the fourth clause, are satisfied.
(Similarly for b=1 and a = e = 0)

— Suppose a = b =e = 1. Then all clauses, except the last clause, are satisfied.

— Suppose a-b = 0 and e = 1. Then at least one of the first two clauses is not satisfied.
Furthermore, the last clause is unsatisfied as well.

— Suppose a-b =1 and e = 0. Then the fourth and fifth clauses are unsatisfied.

The first three cases cover a-b = e, whereas the other two cover a-b # e. The lemma follows. |

Proof of Theorem 3.8.2: The theorem follows by applying Lemma 3.8.3 to the verifier of
Proposition 3.7.3 and the gadgets of Lemma 3.8.4. Details follows.

Recall that by the remark following the proof of Proposition 3.7.3, we may assume that the verifier
does not make two identical queries. Applying Lemma 3.8.3 to the verifier of Proposition 3.7.3 we
obtain a reduction of any language in NP to Gap-X-SAT, ,
function of the gadget parameters, the probability parameter ¢ and the soundness s of the verifier
of Proposition 3.7.3. Specifically, we observe that for E3-SAT we have ¢/ = 1 (since a; = m; for
i =1,2), whereas for 2-SAT we have ¢/ < 1 (since a; < m; for i = 1,2). In both cases, 3 = 1 and
the expression for ¢//s’ is given by

for values of ¢’ and s’ determined as a

14 L=s (3.6)
gor + (1= q)as — (1 - s) .

where s and ¢ are determined by Proposition 3.7.3; that is (for every 7 > 0)
6144

= 1 - — .
° 24969 7 (3.7)
28585
= Ta96 (39)

Substituting Eq. (3.7) and (3.8) in Eq. (3.6), and letting v — 0, we get

6144
2858501 + 16384, — 6144°

C/
— = 14
5/

The bounds for E3-SAT and 2-SAT now follow by using the a;’s values of Lemma 3.8.4. 1



mrBellare, Goldreich, Sudan 59

Remark. It may be instructive to quote the results obtainable without using the latest analysis of
linearity testing due to [BCHKS]. Using the prior analysis of linearity testing, due to [BGLR], we
would have used the values s = 0.8910 and ¢ = 0.71 which would have yielded a 45/44 hardness
factor for E3-SAT and 115/114 for 2-SAT.

3.8.5 Maximum Satifiable Linear Constraints

Analogously to the MaxSAT problems considered above, we consider parity/linear clauses rather
than disjunctive clauses. In other words, we are given a symstem of linear equations over GF(2),
and need to determine the maximum number of equations which may be simultaneously satisfied.
It was shown by Petrank [Pet] that the maximization problem does not have a polynomial-time
approximation scheme (by using a reduction from Max-3-SAT). Here we provide a stronger bound
via a direct reduction from the MaxSNP verifier. Before continuing, we remark that the problem of
Maximizing the number of satisfiable equations should not be confused with the “complementary”
problem of minimizing the number of violated constraints, investigated by Arora et. al. [ABSS].

Theorem 3.8.5 Let GapParity, , be defined analogously to the above. Then, for some ¢ > 3/4 and
¢ = 1.13, GapParity, , id NP-hard.

Proof: The theorem follows by constructing appropriate gardgets. A PC-gadget is straigtforward
here and so we have a (1,1)-PC gadget, which also yields a (2,2)-PC gadget. We conclude by
presenting a (3,2)-RMB gadget consisting of 4 equations. Specifically, for @ - b = ¢ + d we present
the equations a+c+d=0,b4+c+d=0,a+b+c+d=1and c+ d=0. We now show that
these 4 equations are indeed a (3,2)-gadget for ab = ¢ + d. First, if ab =1 = ¢+ d then the first 3
equations are satisfied. If, on the other hand, ab = 0 = ¢+ d then the last equation as well as 2 out
of the first 3 equations are satisfied. Next, if ab = 1 # ¢+ d then only the last equation is satisfied.
Finally, if ab = 0 # ¢ + d then the last equation is violated as well as 2 out of the first 3 equations.
|

3.9 Max CUT

3.9.1 Definitions

A cutin a graph G = (V, E) is a partition of the vertex set into sets § and 5. Given an assignment
of weights w : E — R*, the weight of a cut (9,5) is the sum of the weights of the edges with one
endpoint in S and the other in §. We let MaxCUT(G, w) denote the maximum weight of any cut
in G for a weight assignment w. Let MaxCUT(G, w) denote the quantity MaxCUT(G, w)/ >, w(e).
Max CUT is the problem whose instances are the pairs (G, w), where G is a graph and w a weight
assignment on it, and one has to find MaxCUT(G, w). An approximation algorithm A for Max CUT
achieves a ratio of a € [1,00) if MaxCUT(G,w)/a < A(G,w) < MaxCUT(G, w) for all instances

(G,w). As usual, we capture the approximation problem by a promise problem —

Definition 3.9.1 (MaxCUT promise problem): For any 0 < s < ¢ < 1, we let the promise problem
Gap-Cut, , be the pair (A, B), where:

(1) A is the set of MAX CUT instances satisfying MaxCUT(G,w) > e.

(2) B is the set of MAX CUT instances satisfying MaxCUT(G, w) < s.

The gap of this problem is defined to be ¢/s.



mrBellare, Goldreich, Sudan 60

3.9.2 Previous work

In 1976, Sahni and Gonzales [SaGo] gave a simple 2-approximation algorithm for this problem.
Recently, in a breakthrough result, Goemans and Williamson [GoWi2] gave a new algorithm which
achieves a ratio of o.é?s = 1.139 for this problem. On the other hand, [PaYa] give an approximation
preserving reduction from Max-3-SAT to MAX CUT. Combined with [ALMSS] this shows that
there exists a constant @ > 1 such that approximating MAX CUT within a factor of a is NP-hard.
No explicit bounds were given since and even using the best known hardness results for MAX
3SAT, one suspects that the bound for MAX CUT would not be very large, since the reduction
uses constructions of constant degree expanders etc.

3.9.3 New Result

We get the first explicit lower bounds on the constant upto which approximating the MAX CUT
problem is NP-hard. We show in the following theorem that the MAX CUT problem is NP-hard
to approximate to within a factor of 1.012. The following theorem presents a non-approximability
result for a weighted graph. We stress that it holds even when the weights are given in unary.

. is NP-hard for some ¢, s sat-

Theorem 3.9.2 (MaxCUT non-approximability result): Gap-Cut,
isfying ¢ > 0.6 and ¢/s > 82/81.

Actually, the theorem holds for any ¢/s < 1+ 122237. A (much) weaker result can be presented for

simple graphs without weights or parallel edges — we do not present that case.

3.9.4 Gadgets and the hardness of Max CUT

Gadgets will be used to express the verifier’s computation in terms of cuts in graphs. A parity check
gadget PC-CUT(a,b,c,T;zy,...,2,) is a weighted graph on n 4 4 vertices. Of these three vertices
a,b,c correspond to oracle queries made by the verifier. The vertex T will be a special vertex
mapping cuts to truth values so that a vertex corresponding to an oracle query is considered set to
1 if it resides in the T-side of the cut (i.e., a is considered set to 1 by a cut (5, ) iff either a,7 € S or
a,T € S). The gadget is an (a, 3)-PC gadget if MaxCUT(PC-CUT(a, b, ¢, T; 1, ...,7,)) is exactly
a when restricted to cuts which induce a+b = ¢ (i.e., either 0 or 2 of the vertices {a, b, ¢} lie on the
same side of the cut as T'), and is at most a— 3 when restricted to cuts for which a+b # ¢. Similarly
a weighted graph RMBC-CUT(a,b,¢,d,T;a1,...,2,) is an («, 3)-RMBC gadget if it satisfies the
property that MaxCUT(RMBC-CUT(a,b,c,d,T;z4,...,2,)) is exactly a when restricted to cuts
satisfying aAb = c+d and is at most a— 3 otherwise. The following lemma (similar to Lemma 3.8.3)
shows how to use the above forms of gadgets to derive a reduction from NP to Gap-Cut.

Lemma 3.9.3 (MaxCUT implementation of a verifier): Let V be a verifier for L of logarithmic
randomness, with perfect completeness and soundness s, such that V performs either a single Parity
Check (with probability ¢) or a single RMB check (with probability 1 — ¢). Furthermore, suppose
that in either case, the verifier never makes two identical queries. If there exists an (ay,3)-PC
gadget consisting of edges of total weight w; and an (a,, 5)-RMBC gadget consisting of edges of
total weight w, then L reduces to Gap-Cut, ,, for ¢’ = cagtes(l=9) oy o — cagteallog)=Uos)d

(1-2)8 wigtwa(1-q) wigtwa(1-q)
H ! ! 1—s
particular ¢//s' > 1+ popEwY Caps iy

Proof: Let PC-CUT(a,b,c,T,x,...,2,,) denote the Parity Check gadget and RMBC-CUT(a, b,
¢,d, T xy,...,x,,) denote the RMBC gadget.

We create a graph G, and weight function w, which encodes the actions of the verifier V on input
x. The vertices of GG, are as follows:



mrBellare, Goldreich, Sudan 61

(1) For every bit 7[g] of the proof queried by the verifier V, the graph G, has a vertex v,.

2 For every random string R tossed by the verifier V', we create vertices VR for 7 going from 1
g ” X2l g g
to max{nl, ’IZQ}.

(3) There will be one special vertex T.

The edges of GG, are defined by the various gadgets. We stress that the same edge may appear in
different gadgets (and its weight in these gadgets may be different). The graph G, is defined by
taking all these edges and thus it is a graph (or multi-graph) with parallel edges and weights. The
natural conversion of G, into a graph with no parallel edges replaces the parallel edges between two
vertices with a single edge whose weight is the sum of the weights of the original edges. Alternatively,
since the weights are small (actually they are alwaysin {i/2 :1<:<10}), we can transform G,
into a unweighted graph with parallel edges.

Suppose that on random string R the verifier V queries the oracle for bits 7[q], 7[¢q.] and 7[gs],
and then does a parity check on these three bits. Then corresponding to this random string we add
the weighted edges of the graph G to the graph G, where G = PC-CUT(vr(4,1, Vn(ga]s Vn[gs]s 1
VR 1., VRN, ). Alternatively, if the verifier V performs a respect of monomial basis test on the bits
Tlq1], 7[qo], T[¢s] and 7[qs], then we add the weighted edges of the graph Gg = RMBC-CUT (vq,,,

Unlgz2]s Urlqal> vW[44]7T; UR15: -+ vR,nz)'

Let N denote the number of possible random strings used by V. Observe that the total weight of
the edges of G, is wigN + ws(1 — ¢)N. We now analyze the value of MaxCUT(G,,).

If 2 € L then there exists an oracle 7 such that V™(z) always accepts. We define a cut (.9,5) in
G, in the following way: We place T' € S and for every ¢ we place v, € S iff 7[¢] = 1. Then for
each R, there exists an placement of the vertices vg; so that the size of the cut induced in G is
ay if R corresponds to V' performing a Parity Check and ay if R corresponds to V' performing an
RMB check. The weight of the so obtained cut is ay¢N + as(1 — ¢)N.

Now consider z ¢ L. We claim that if there exists a cut (5,5) such that the weight of the
cut is greater than ¢Na; + (1 — ¢)Nas — (1 — s)N3, then there exists an oracle 7, such that
V7™ (x) accepts with probability at least s. Since we know this can not happen we conclude that
MaxCUT(G,) < ¢Nay + (1 — ¢)Nas — (1 — s)N3. To prove the claim, we convert any cut in G,
into an oracle 7 where 7¢] = 1iff T" and v, lie on the same side of the cut. Now by the property
of the gadgets if a graph Gr = PC-CUT(y[q1], y[¢:], ylgal, T; x4, - .., 2,,) contributes more than a
weight of ay — § to the cut, then V accepts = on random string R. (Similarly if the graph Gg is
an RMBC-gadget and contributes more than a; — 3 to the cut then V' accepts 7 on random string
R.) Recall that no gadget can contribute more than the corresponding a to any cut. Thus if the
total weight of the cut is more than (ay — 8)gN 4 (o — 8)(1 — ¢)N + sN - 3, then V accepts on at
least sN random strings. This proves the claim and the lemma follows. |

We now turn to the construction of cut-gadgets. Our first gadget, denoted PC-CUT(a, b, ¢, T; AUX),
is a complete graph defined on five vertices {a,b,c, T, Aux}. The weight function, w, assign the
edge {u, v} weight w,w,, where w, = w, = w, = wp = 1 and wpyx = 2. The following claim shows
how PC-CUT(a,b,c, T; Aux) functions as a parity check gadget.

Claim 3.9.4 (MaxCUT PC-gadget): PC-CUT(a,b,c,T; Aux) is a (9, 1)-parity check gadget con-
sisting of edges of total weight 14.

Proof: Recall that the edges in the graph are of two types: (1) edges to Aux having weight 2;
and (2) other edges having weight 1. Thus, the total weight of the edgesis 4-2+6-1 = 14. The



mrBellare, Goldreich, Sudan 62

weight function is decomposed as a product of vertices “weights” and so we can express the weight
of a cut (9,5) by the corresponding product (3¢5 wu) - (3, c5w,). It turns out that the weight
of a cut is maximized when the weight of the vertices on both sides are equal and specifically equal
g = 3. Thus, the maximum cut has weight 3> = 9. Furthermore, a max-cut must have AuX and
exactly one of the other vertices on one side. On the other hand, all other cuts (i.e., in which the
vertex weights are not split evenly) have weight at most 8. Using the above characterization of a

max-cut we conclude that the max-cut may have one of the two forms:

(1) AuUX resides in the same side with 7: since a,b and ¢ are on the other side, the induced
assignment is @ = b = ¢ = 0 which satisfies the parity condition.

(2) AUX resides in the same side with z € {a,b, c}: this induces 2 = 0 and an assignment of 1 to
the other two variables and thus the parity condition is satisfied again.

Thus a max-cut corresponds to an assignment which satisfies the parity condition and each such
assignment (can be extended to) corresponds to a max-cut. The claim follows. 1

The second gadget, denoted RMBC-CUT(a,b,c,d,T; AuX), is a complete graph on six vertices
{a,b,c,d,T,Aux}. Again, we define edge-weights as product of weight of vertices; specifically,
w({u,v}) = w,w, /2, where w, = w, = wy = 1, w, = wy = 2 and wpyx = 4. The following
claim, which can be verified case by case, shows exactly how good this gadget is in “verifying” that

aANb=c+d.

Claim 3.9.5 (MaxCUT RMB-gadget): RMBC-CUT(a,b,c,d,T; AuX) is a (15,1)-RMBC gadget
consisting of edges of total weight 23.5.

Proof: Clearly, the total edge weight is 3-24+2-44+6-143- % +1-2 = 23.5 and the total weight
of vertices equals 11. Employing the strategy of the previous proof, we characterize max-cuts as
having vertex weight 5 on one of their sides. Thus, max-cuts have weight %% = 15. Any other cut
has weight at most 477 = 14. Furthermore, a max-cut falls into one of the following categories,
where S denotes the side of the cut containing AuX:

(1) S ={Aux,T} : in this case the induced assignment is ¢ = b = ¢ = d = 0 which satisfies the
RMB condition.

(2) S = {AuX,a} : in this case the induced assignment is « = 0 and b = ¢ = d = 1, satisfying
aAb=0=c+d. (Similarly, for S = {Aux,b}).

(3) S = {Aux,c} : in this case the induced assignment is ¢ = 0 and @ = b = d = 1, satisfying
aANb=1=c+d. (Similarly, for S = {Aux,d}).

(4) S = {AuX,a,b} : in this case the induced assignment is « = b = 0 and ¢ = d = 1, satisfying
aANb=0=c+d.

(5) S ={Aux,a,T} : in this case the induced assignment is @ = 1 and b = ¢ = d = 0, satisfying
aANb=0=c+d. (Similarly, for S = {Aux,b,T}).

(The first two cases cover ) s w, = 5 and the others 3 .o w, = 6.) Note that all assignments
satisfying the RMB condition are covered above (i.e., in total 8 cases are considered corresponding
to the 8 assignments satisfying the RMB condition). The claim follows. 1

Proof of Theorem 3.9.2: The theorem follows by combining Proposition 3.7.3, Lemma 3.9.3,
Claim 3.9.4 and Claim 3.9.5. Details follows.



mrBellare, Goldreich, Sudan 63

As in the proof of Theorem 3.8.2, when applying Lemma 3.9.3 to the verifier in Proposition 3.7.3,

we obtain the same expression for the gap, ¢'/s’, for which NP <¥ Gap-Cut,, ,,; namely,
!
1
<y (1-s)8
s’ ¢ a1+ (1—¢)ay—(1-s)8
. 6144
B 28585a; + 16384, — 6144
Substituting a; = 9 and a, = 15, the above simplifies to 1 + 23 > 22 and the bound on j—j

follows. 1

3.10 Free bits and vertex cover

It is known that approximating the minimum vertex cover of a graph to within a 1 + € factor is
hard, for some € > 0 [PaYa, ALMSS]. However, we do not know of any previous attempt to provide
a lower bound for €. Our initial attempt uses VC-gadgets that implement the various tests in
VsNPinner, analogously to the way it was done in the previous sections for the Max SAT versions and
Max Cut. This yields a lower bound of ¢ > é > 0.018 However, a stronger result is obtained via
free-bit complexity. Specifically, we apply the FGLSS-reduction to a proof system (for NP) in which
the free-bit complexity is the lowest one possible: which, by the results of Section 5.1, is 2 free-bits.
Consequently, the clique size, in case the original input is in the language, is at least one fourth
(1/4) of the size of the graph which means that translating clique-approximation factors to VC-
approximation factors yields only a loss of one third. Since the FGLSS-transformation translates
the completeness/soundness ratio to the gap-factor for approximating clique, our first goal is to
construct for NP a proof system which uses two free-bits and has soundness error as low as possible.
Recall that the proof system of subsection 3.6 uses 11 free-bits and achieves soundness error less
than 1/2. The reader may observe that, following this approach, it is not worthwhile to use the
proof system of subsection 3.6 or any proof systems which achieves a soundness error of 1/2 at the
cost of 5 free-bits or more.

3.10.1 Minimizing the error achievable with two free bits

The pcp proof system of Proposition 3.7.3 had free-bit complexity 3. To reduce the free-bit com-
plexity, we rearrange the tests in the corresponding inner verifier Vosxpinner (cf., Figure 3.5) in a
slightly different way. In particular, we split the Respect of Monomial Basis test into two parts: a
“Product Test” and a “Self-Correction Test” (see Figure 3.9). The resulting inner verifier, denoted
Vainner, 18 depicted in Figure 3.10. It works with functions/oracles A that are folded twice — once
across (h,0) and once across (1,1), where (1,1)-folding means imposing (f + 1)(a) = f(a) + 1 for
all f’s and the encoded string a. For the case of such functions A, it is possible to improve on
the analysis of the respect of monomial basis tests. The following function captures the detection
probability of the Monomial-Basis Self-Correction Test.

Def: Let g(z,y) = (1—-22)-[2 -z + z2_2 — ).

We first need a technical lemma.

Lemma 3.10.1 (analysis of the Monomial-Basis Self-Correction Test): Let A, A: F; — ¥ with A
satisfying A(f 4+ 1) = A(f)+ 1 for all f and A linear but not respecting the monomial basis. Let



mrBellare, Goldreich, Sudan 64

More Atomic Tests. Here A: 7; — ¥ and A;: F;, — Y are the objects being tested.
The tests also take additional inputs or parameters: below f, fi, fs, fs € Fi; g € F"; and
o: X — ¥h,

MB-ProdTest(A4; fi, fo) (Monomial-Basis Product Test)
If A(f1)-A(f2) = A(f1- f2) then output 0, else output 1.

MB-SeCoTest(A; fi, f2, f3) (Monomial-Basis Self Correction Test)
If A(fi-f2)=A(f1- fa+ f3) — A(fs) then output 0, else output 1.

The Passing Probabilities. These are the probabilities we are interested in:

MB-ProbpPass(4) = Pr MB-ProdTest(A4; fi, f-) = 0]

f1,f2£7'-z [

MB-SECoPass(4) = [ MB-SeCoTest(A; fi, f5, f3) = 0]

T R
f1.f2,fs=Fa

Figure 3.9: More atomic tests and their passing probabilities.

z = Dist(A, A) and y = 1 — MB-PropPass(A). Then

2
1 — MB-SeECoPass(A4) > <% -z + % — y) (1-2z).

Proof: The proof resembles the proof of Lemma 3.5.7. We may assume, without loss of generality,
that A #Z 0 (since otherwise 2 = 1/2 and the lemma holds vacuasly). We use Lemma 3.5.1 to see
that

p [A(fif2) # A(fifo + f3) — A(fs)]

T R
fi.f2,fa=Fa

> P x (ALY # AU ) and AL f2) = Afifo + f5) = A(Ss)

- f1.f2.f

> Pr o n [AULR) # AUS)] (1 - 22)

Now lower bound the first term of the last line by
Pro o np [AULL) = AU - AL) = A(f) - AlS) # A(ff2)]
(A1) - AlL) # AL
g [AULE) # AR - AULR) or ACR) - AULR) # ACR) - A(L)]

> P

T R
- Fi,f2=F1

— Pr
fi,f

> Prflny’i}-l {fi(fl) . /I(fz) # /I(flf2)]



mrBellare, Goldreich, Sudan 65

B Prflyfz‘i}-z [A(f1f2) 75 A(fl) . A(f2)] N Prfl,fgﬁ}'l [A(fl) ) A(fz) 7£ ‘Zi(fl) ' ‘Zi(fQ)]
> %—y—(w—w2/2).

In the last step we used Lemma 3.5.5 to bound the first term, the definition of y for the second
term, and the special case in Lemma 3.5.6 for bounding the third term. The lemma follows. 1

The following lemma is analogous to Lemma 3.7.1. Loosely speaking, it considers three possible
strategies of a “dishonest” prover and indicates the probability with which the verifier detects an
error. (The reader may notice that here we do not try to push §; to zero but rather set £ —§; = &
and use only the first segment of the I'j;, bound. It turns out that one does not gain anything from
the alternative more-general analysis — see Claim 3.15.3)

Lemma 3.10.2 (soundness of Vaippe,): Let 63 > 0, 6; = 5/16 and [,1; € Z*+. Suppose py,ps, ps €
[0,1] satisfy p; +pa+ p3 = 1. Then the (I,1;)-canonical inner verifier Voinner is (p, 61, 82)-good, where
1 — p is the minimum of the following three quantities—

(1) miny<; [pr - max(y,45/128)]

(2) ming<s/i6,y<i [p1 - max(y, 3z — 62%) + ps - g(z,y)]

(3) min,<a/16,y<1 [ p1 - max(y, 3z — 62%) + ps - (1/2 — 65)(1 — 22) ].

=3

The two free-bit inner verifier. Given functions A € F; and o: X' — X", the verifier
has access to oracles for A: ; — ¥ and A;: F;, — X. In addition it takes three [0,1]
valued parameters p;, p; and p3 such that p; + ps + ps = 1.

Pick p & [0,1].

Case: p<p;:
Pick f1, f, < Fu.

LinTest( A 0),(1,1); f1, f2)-
MB-ProdTest(A(hyo),(m); Jis [o).

Case: pr <p<pi+ps:
Pick f17f27f3 i fl'
MB-SeCoTest(A(h70)7(1,1); Jis Jo, [3)-

Case: py+ps <p:
Pick f & Fiand g & 7.
ProjTest, (A 0),1,1) 413 [, 9)-

Remark: access to Ay 0)(7,1y(f) is implemented by accessing either A(f) or A(f + h) or
A(f+ 1) or A(f+h+1).

Figure 3.10: The two free-bit inner verifier Vo er



mrBellare, Goldreich, Sudan 66

Proof: The analysis is broken up into several cases as in the proof of Lemma 3.7.1. Here, we “pivot”
on 3/16 (which equals %—61). Let 2 = Dist(Ap,0),(1,1), LIN) and y = 1 - MB-PRODPASS( A 0y,1,1))-

Case 1: © > 3/16

Lemma 3.5.3 implies that 1 — LINPASS(Aj 0),(7,1)) > Thin(2) > 45/128 (the last inequality is due

to the fact that, within the interval [0,5/16], the function f(z) L' 32 — 622 is minimized at both
3/16 and 5/16, and f(5/16) = 45/128). Since Vainner performs both the atomic linearity test and
the (MB-) Product Test with probability p;, we have 1 — ACC[ V522 (0, )] > py - max(45/128, ).

2inner
Case 2: x < 3/16 (< 1/4)

Lemma 3.5.3 implies that 1 — LINPASS( A4 0),(1,1)) > Tin(2) = 32 — 62°. It follows that the prob-
ability that Vo performs both the linearity test and the product test and rejects is at least
p1 - max(3z — 62%,y). Now let B be the (unique) linear function such that Dist(Ap 0),(1,1s B) < 4.
We consider the following sub-cases.

Case 2.1: B does not respect the monomial basis

In this case Lemma 3.10.1 implies that 1 — MB-SECOPASS(A(; 0y,1,1)) > g(z,y). So the probability
that Vopuner performs the Respect of Monomial Basis Self-Correction test and rejects is at least
pa - g(z,y). Since the events that the verifier performs the tests from the case p < p; and the RMB
Self-Correction test are mutually exclusive we can add the probabilities of rejection and thus in
this case

1= ACC[ VAR (0,h)] > pr - max(y, 30 — 62°) + ps - g(3, 1)

2inner

Case 2.2: B respects the monomial basis
By Proposition 3.3.2, B is an evaluation operator. So there exists a € ! such that B = E,. So
Dist( A 0),(1,1), o) = . Let a; = o(a). The proof splits into two further sub-cases.

def

Case 2.2.1: d = Dist(Ay, E,,) > 1/2 = 6,

By Lemma 3.5.8 we have 1 — PROIPASS, (A, 01,1y, A1) > d-(1-22) > (1/2—65)-(1—22). So the
probability that Vy,.. performs the projection test and rejects is at least ps - (1/2 — é2)(1 — 22).
Thus, adding probabilities as in case (2.1),

1 —ACC[ Vi (o, k)] > py - max(y, 3z — 62%) + ps - (1/2 — 8,)(1 — 2z)

2inner

Case 2.2.2: Else—

In this case, we have z = Dist( A 0),1,1), Fa) < 3/16 = 1/2 — 6; and Dist(A;, F,,) < 1/2 = 6.
Thus the functions A, 0y1,1) and A, satisfy conditions (2.1) and (2.2) in Definition 3.4.3.

Similarly to the proof of Lemma 3.7.1, we infer that the lower bound on 1 — p is as claimed and
the lemma follows. |

Again, we simplify the soundness bound of the lemma by using a (provably optimal) choice of the
probabilities p;’s (for the inner verifier Ve, ).

Claim 3.10.3 Suppose p; = 0.447, p, = 0.321, p3 = 0.232 and 8, = 10~*. Then:
(1) min, < [max(y,45/128)- p;] > 0.157
(2) min,<a/16,y<1 [ max(y, 3z — 62%) - p1 4+ g(z,y) - p2] > 0.115536



mrBellare, Goldreich, Sudan 67

(3) min,<s/16,y<1 [ max(y, 3z — 62%)p; + (1/2 — 65)(1 — 2z) - ps ] > 0.1159.

Proof: Clearly p; - min < [max(y,45/128)] = 2= . p; > 0.157, proving (1).

We now prove (3). First note that min,<s/16 <1 [max(y, 3z —62?)p; ] > min <316 [ (32 —622) - py |.
Thus the quantity we want to lower bound is min ,<5/15[ (32 — 62%) - p1 + (1/2 — 62)(1 — 2z) - p3 |.
Using the fact that p; < p; and 8, > 0, we have, for any z < 1/3

(3z = 62%) - pr+ (1/2 = 8:)(1 = 22) - ps = (1/2=62) - ps+ [3p1 — 2ps - (1/2 = &;)]z — 6psa”
> (1/2 = 65)ps + [3p1 — 2p1/2]z — 6py2”
= (1/2 - 6)ps + 2ap, - (1 — 32)
> (1/2=62)ps

Now, using &, = 107*, we lower bound the expression in Part (3) by & — ps - p3 > 0.1159.

We now prove Part (2). Let f(z,y) = max(y, 3z — 62%) - p1 + g(z,y) - p.. We consider two cases.

Case 1 y < 3z — 627, In this case
J(w,y) = (3w = 62")p1 + gz, y)p2 = (3/8 = + 27 /2)(1 = 22)p> + (3w — 62”)p1 — y(1 — 22)py

This function is decreasing with y and so minimized at y = 3z — 62%. Thus we are reduced to
minimizing h(z) € f(z,3z — 622) over z € [0,3/16].
Case 2 y > 3z — 622, In this case

f(zy) = yp1 + 9(z,y)p2 = (3/8 — x + 2?/2)(1 — 2z)ps + [p1 — p2(1 — 22)]y

Since p; > p, this function increases with y and so minimized at y = 3z — 62%. Thus we are again
reduced to minimizing the same function h(z) = f(z, 32 — 62?).

We now express h(z) = —az+bx? +cx+d where a = 13py, b = —6p; 4+ 2p, > 0, ¢ = 3p; —L2p, > 0
and d = 2p,. The derivative is h'(z) = —3aa” + 2bz + ¢. For the specified values of p, p, the roots
are z; ~ 0.0568251 and z, ~ 0.258296. Thus in the range of = € [0,3/16], the function h is
minimized at the point z; ~ 0.0568251 and one can verify that h(z;) > 0.115536. |

Composing the above inner verifier with an adequate outer verifier, we get

Theorem 3.10.4 NP C FPCP, ([log, 2] for s = 0.884464.

3.10.2 Hardness of vertex cover

PRELIMINARIES. A vertex cover of a graph G = (V, E)is a set V! C V such that V' N {u,v} # 0
for every {u,v} € E. We let MinVC(G) denote the size of a smallest vertex cover in G, and we
let MinVC(G) = MinVC(G)/|V]. Min-VC is the problem whose instances are graphs G' and one
has to find MinVC(G). An approximation algorithm A for Min-VC achieves a ratio, or factor, of
a € [1,00) if MinVC(G) < A(G) < a - MinVC(G) for all graphs G. (Here we have adopted the
convention by which for minimization problems the approximation factor is at least 1.) Again, we
capture the approximation problem by a promise problem, but this time the parameter ¢ referring
to yes-instances is lower from the parameter s for no-instances.



mrBellare, Goldreich, Sudan 68

Definition 3.10.5 For any 0 < ¢ < s < 1 we let the promise problem Gap-VC, , be the pair
(A, B), where —

(1) A is the set of all graphs G satisfying MinVC(G)
(2) B is the set of all graphs G satisfying MinVC(G)
The gap of this problem is defined to be s/c.

< ¢, and
> s

KNOWN UPPER AND LOWER BOUNDS. There is a simple polynomial time algorithm to approxi-
mate Min-VC in unweighted graphs within a factor of 2, using maximal matching (F. Gavril, see
[GJ2]). For weighted graphs, Bar-Yehuda and Even [BaEv1] and Hochbaum [Hoc], gave algorithms
achieving the same approximation factor. The best known algorithm today achieves a factor only
slightly better, namely 2 — (loglog |V|)/(2log|V|) [BaEv, MoSp]. Evidence to the hardness of ap-
proximating Min-VC was given by Bar-Yehuda and Moran who showed that, for every k£ > 2 and
e>0,al+ % — € approximator for (finding) a minimum vertex cover would yield an algorithm for
coloring (k + 1)-colorable graphs using only logarithmically many colors [BaMo].

Min-VC- B, the version of Min-VC in which one restricts attention to graphs of degree bounded
by B, is Max-SNP complete for suitably large B [PaYa]. In particular they provide a reduction
from Max-3-SAT. Combined with [ALMSS] this implies the existence of a constant § > 0 such
that approximating Min-VC within a factor of 14 § is hard unless P = NP. No explicit value of
6 has been stated until now. Indeed, the value that could be derived, even using the best existing
in-approximability results for Max-3-SAT, will be very small, because of the cost of the reduction
of [PaYa], which first reduces Max-3-SAT to its bounded version using expanders, and then reduces

this to Min-VC-B.

FrEE BITs TO VC. Rather than reduce from Max-3-SAT, we will first use Theorem 3.10.4 to get
gaps in Clique size. Then we apply the standard reduction.

Proposition 3.10.6 FPCP, [log, f] <¥ Gap-VC for¢ =1-2" ¢ and z—: =14+ 7.

Proof: The FGLSS reduction says that FPCP, ([log, f] <¥ Gap-Clique,, ,,» where ¢/ = 2=/ . ¢ and

s =277 . 5. (See Section 3.13 for definition of Gap-Clique.) Now we will 7apply the standard Karp
reduction (of MaxClique to Min VC) which maps a graph G to its complement G — note that
MinVC(G) = 1 — MaxClique(G). Thus Gap-Clique <y Gap-VC,_ .., . Finally,

cl st

C”,S”

1—5“_1—32‘f c— S

[ s = Y

This completes the proof. |

Our RESULTS. We obtain the first explicit and reasonable constant factor in-approximability
result for Min-VC. A consequence of the following theorem is that, assuming P # NP there is no
polynomial time algorithm to approximate Min-VC within a factor of 27/26.

Theorem 3.10.7 Gap-VC,_
Moreover ¢ = 3/4.

is NP-complete for some ¢, s satisfying s/c > 1.038512 > 27/26.

k]

Proof: Follows immediately from Proposition 3.10.6 and Theorem 3.10.4. Namely, for s = 0.884464,
NP C FPCP, ,[log,2] <¥ Gap-VC fore/! =1-2"2=23and i—: =1+ 212__51 =1+ 1;5. |

cls! 4




mrBellare, Goldreich, Sudan 69

We remark that a special case of Proposition 3.10.6 in which the statment is restricted to f = 0
would have suffices for proving the above theorem. The reason being that we could have applied
Proposition 5.2.8 to Theorem 3.10.4 and obtain NP C FPCP; 4 ,4[log, 0], for s = 0.884464, which

by the special case of Proposition 3.10.6 is reducible to Gap-VC, , with ¢ = 1 — i = % and
z—: =1+ % = 1+ 15* (as above). Interestingly, the special case of Proposition 3.10.6 can
be “reversed”: namely, Gap-VC,, , is reducible to FPCP, ,[log,0] with ¢ = 1 —¢’, s = 1 — s’ and
t = ti: (which reverses z—; = =2 = 1+ £2). The key fact in proving this “reverse reduction” is
Corollary 4.1.5 which asserts that Gap-Clique, , < FPCP, [log,0]. However, we do not know if

it is possible to “reverse” the other step in the alternative proof; namely, whether FPCP, ;[log, 0]
is reducible to FPCP,, 4[log, 2] (our reverse transformation is weaker — see Proposition 5.2.6).

3.10.3 On using the MaxSNP verifier to establish Min VC hardness

Although our current VC-gadgets yield a hardness result which is inferior to what has been pre-
sented above, it may be the case that improved results can be obtained by a better implementation
of the MaxSNP verifier. Asin Sections 3.8 and 3.9, we first define problem-specific gadgets and es-
tablish a reduction of pcp systems to the promised problem at hand. The gadgets will be graphs with
distinguished vertices corresponding to the two literals of each variable appearing in the test/check.
Edge-covers will induce truth assignments in the standard manner (i.e., a literal is set to 1 iff the
corresponding vertex is in the cover). (Edge-covers which contain none or both literals of the same
variable are defined to set the variable to a special symbol L which does not satisfy any equal-
ity.) Specifically, a Parity Check gadget PC-VC(a, b, ¢, @, b¢; x4, ...,2,) is a graph on 6 + n vertices
where a, b, ¢ correspond to oracle queries made by the verifier. The gadget is an (a, §)-PC gadget if
MinVC(PC-VC(a,b,c,@,b,¢ 1, ...,2,)) is exactly @ when restricted to covers which induce a+b = ¢
(i.e., either 0 or 2 of the vertices {a,b, c} are in the cover), and is at least a + 5 when restricted to
covers for which a + b # ¢. Similarly a graph RMBC-VC(a,b,¢,d,@,b,¢,d; 1, ...,z,) is an (a, §)-
RMBC gadget if it satisfies the property that MinVC(RMBC-VC(a,b,¢c,d,@,b,e,d;z,,...,2,)) is
exactly a when restricted to covers satisfying a A b = ¢ + d and is at least a + 3 otherwise. We
stress that edge-covers of minimal size must contain exactly of the two vertices corresponding to
the distinguished pair of literals. The following lemma (similar to Lemmas 3.8.3 and 3.9.3) shows
how to use the above forms of gadgets to derive a reduction from NP to Gap-VC.

Lemma 3.10.8 (MinVC implementation of a verifier): Let V be a verifier for L of logarithmic
randomness, with perfect completeness and soundness s, such that V performs either a single Parity
Check (with probability ¢) or a single RMB check (with probability 1 — ¢). Furthermore, suppose
that in either case, the verifier never makes two identical queries. If there exists an (a;, 5)-PC gadget
consisting of n; vertices and an (as, 3)-RMBC gadget consisting of n, vertices then L reduces to

1 c1gtaa(l-q) 1 o1gtoa(l1-g)+(1-s)8 : 1]t (1-s)p
Gap-Cut,, ,, for ¢ = =0 and ' = =20l ==, In particular s [ >1+ Tt oD

Proof: The reduction is analogous to the other two reductions presented above. Namely, for each
possible random string R we introduce a graph G'x which is a copy of the corresponding gadget.
All vertices and edges in these copies are distinct. In addition, for each variable v (corresponding
to an oracle location) we join by edges all occurrences of v and . Namely, if v is a query under
both random strings R and R’, then we join by an edge the vertex labeled v in G and the vertex

labeled 7 in Gg.

Letting N denote the number of possible random strings, we observe that the number of vertices
in the resulting graph is ny -¢N +ny - (1 —¢)N. Also, if # € L then the resulting graph has an edge
cover with oy -¢N + ay- (1 —¢)N vertices (i.e., just use the cover corresponding to the oracle which



mrBellare, Goldreich, Sudan 70

always makes the prover accept). On the other hand, we claim that if z ¢ L then the resulting
graph, denoted G, does not have a cover of size smaller than a;¢N 4 ay(1 — ¢)N + (1 — s)Np.
Once the claim is proven the bound on s’ follows.

Fixing an arbitrary edge-cover of G, we first define an oracle, 7, by setting 7(v) = 1 if all copies
of v are in the cover and 7(v) = 0 otherwise. Using the edges joining all occurances of v and 7, we
conclude that in the latter case all copies of ¥ are in the cover. Now, each copy of the PC-gadget
(resp., RMB-gadget) having a; (resp., as) vertices in the cover corresponds to a random string
which makes the verifier accept the oracle 7. Using the soundness of the verifier, we conclude that
at least (1 — s)N of the gadgets correspond to random strings on which the verifier rejects 7 and
the claim follows. |

Hardness results for MinVC can be derived by combining Proposition 3.7.3 and Lemma 3.10.8.
Namely, the existence of a (a;,1)-PC gadget with n; vertices and a (as,1)-RMB gadget with n,

vertices implies NP-hardness of Gap-VC,, ,, with
c 6144
el 1 3.9
s " 285850, + 163840, (3:9)
28585 16384a
¢ = nt 2 (3.10)

28585171 + 16384n,

We know how to construct a (6,1)-PC gadget with 10 vertices and a (9,1)-RMB gadget with 14

vertices. This yields a gap of 1 + 3(;;326 > % In order to beat the current hardness gap of 1.0385

(established by the reduction from 2 free-bit pcp) one would need to construct gadgets with a;’s (of

weighted average) below 3.6 (i.e., 28582, 4 18884, < 3.55). So it seems that this approach (i.e., of

using the MaxSNP verifier to establish MinVC hardness) offers little hope for significant progress.

3.11 Minimizing the error achievable with three query bits

For sake of elegancy, we also try to minimize the error achievable by proof systems for NP which
use only three queries. (It is well known that two queries do not suffice, unless NP C BPP.)
The verifiers used in Sections 3.7 and 3.10 have query complexity 4. Here we reduce the query
complexity to 3 by letting the inner verifier performs the 4 tests (of Vaipner) mutually exclusively.
The resulting inner verifier, denoted Vainne:, is described in Figure 3.11. For its analysis, we use the

function g(z,y) % (1 - 2z)- 2-z+ “;—2 — y] again.

Lemma 3.11.1 (soundness of Viinne): Let 61,8, > 0 so that §; < 19/128 and [,[; € Z+. Suppose
D1, P2, P3, Pa € [0, 1] satisfy pi+pa+ps+ps = 1. Then the (I,1;)-canonical inner verifier of Figure 3.11
is (p, 61, 62)-good, where 1 — p is the minimum of the following three quantities—

(p
() (3-8)p
(2) ming<ijoms, y<t [Tin(2) -1 +y-p2+9(z,y)  p3]
(3) minzcijo_s, [Tin(2z) - pr 4+ (1/2 = 65)(1 = 22) - pa |.

Proof: Analogous to the proofs of Lemmas 3.7.1 and 3.10.2 (the “pivot” here is 1/2 — 6;). |

Observe that the above expressions are analogous to those in Lemma 3.7.1 except that the expression
in (2) equals
min [Tin(z) p1+y-p2+ (True(z) — (1 - 22)y) - ps ]

z<1/2-6,,y<1



mrBellare, Goldreich, Sudan 71

rather than

min [Din(z) - p1 + Trus(z) - (P2 + p3) ]

z<1/2=6;,y<1

To simplify the bound of t};e lemma we consider setting p;, ps,ps and py so that 14258 -pr +

FRMB(45/128) P3s =3 -p2 = s - p3 = 5 ‘- Pa.

Claim 3.11.2 Let 6,8, > 0 and py, ps, p3 € [0, 1] satisfy p; + ps + p3 = 1 and

45 3 3 1
il Trars (45/128 2 =D p == 3.11
198 -p1 + rvp(45/128) - p =3 P2 3 P3 5 P4 ( )
Then
16297 16384 16384 12288 4096 (3.12)
= — = — = —— an — .
Pr= 61353 0 P2 T 61353 P T 61353 P4 = 61353 = 20451

and the minimum of the three expressions in Lemma 3.11.1 is strictly greater than &' — 6, — 6,.

Proof: A straightforward computation shows that Eq. (3.12) indeed solves the conditions imposed
on the p;’s. Our main task is to lower bound each of the following expressions (while the p;’s are

The three query inner verifier. Given functions h € F; and o: &' — X", the verifier
has access to oracles for A: F; — ¥ and A;: F;, — X. In addition it takes four [0, 1] valued
parameters p;, ps, p3 and ps such that p; + ps + p3 + ps = 1.

Pick p & [0, 1].

Case: p < p;:
Pick fi, f» & Fu.
LinTest( A 0); f1, f2)-

Case: py < p<pi+ps:
Pick fi, f» & Fu.
MB-ProdTest( A 0); f1, f2)-

Case: py +po <p<pi+pr+ps:

Pick fi, fo, fs < Fi.
MB-SeCoTest( Ay 0y; f1, f2, f3)-

Case: py +po+ps<p:
Pick f & 7 and g & F,.
ProjTest, (A0, A1 [, 9)-

Remark: access to A 0)(f) is implemented by accessing either A(f)or A(f+h)or A(f+1)
or A(f+h+ 1).

Figure 3.11: The three query inner verifier Vajuper



mrBellare, Goldreich, Sudan 72

fixed as in Eq. (3.12)):

i 1
T = (5 —81)
= xsl/gn—i?hyg [Tin(2) - p1r+y - (P2 — ps) + (Frms(2) + 22y) - ps |
Ty % min [Tun(2)-pr 4 (= — 6)(1 = 22) - pa]
3 = s s, lin Y41 2 2 P4

Using p, = ps, observe that T5 is minimized at y = 0 and is thus simplified to ming<1/o_s, [ A(z) ],
where h(x) et Tin(2) - p1 + Truvp(2) - p2 (as in the proof of Claim 3.7.2). The reader can easily
verify that the three facts in the proof of Claim 3.7.2 still hold and so we get T; > h(0) — §; — 65
for i = 1,2,3. Using h(0) = 2 - p, = £ - py, the claim follows. |

We are now ready to state the main result of this section. It is a 3-query verifier for NP which
achieves soundness error less than 90%.

Theorem 3.11.3 For any 7 > 0, NP C PCP, ,[log,3] for s = 2232 4 4 In particular, NP C
PCP170A8999[10g,3].

Proof: We compose the above inner verifier with an adequate outer verifier (see Lemma 3.4.2) and
invoking Theorem 3.4.5, Lemma 3.11.1 and Claim 3.11.2, we obtain the claimed soundness bound
of 1— 2088 4 o

20451

3.12 The iterated tests

The iterated tests will be used in our two free-bits proof system. We will be running each of
the atomic tests many times, but, to keep the free-bit count low, these will not be independent
repetitions. Rather, following [BeSu], we will run about 29(™) copies of each test in a way which is
pairwise, or “almost” pairwise independent, to lower the error probability to O(27™). This will be
done using 2m free-bits. Specifically, we will select uniformly m functions in F; (and m functions
in 7;,) and invoke the atomic tests with functions resulting from all possible linear combinations
of the selected functions.

3.12.1 Linearity and randomness

We begin with some observations relating probabilistic to linear independence. Note that £,
is a sub-vector-space of F,,, and in particular a vector space over Y in its own right. So we

can discuss the linear independence of functions in L£,,. We say that L= (Ly,...,Ly) € Lk
is linearly independent if L,,...,L; are linearly independent. Furthermore we say that L, =

(Li1y...,L1y) and Ly = (Lsq,...,Lay) are mutually linearly independent if the 2k functions
Lii,Loq,..., L1y, Loy are linearly independent.

Lemma 3.12.1 For I = (Ly,...,L;) € Lk let Jp: Fm — FF be defined by Jz(f) = (L1 o
[ Lo f), for [ = (fiyeos fm).  Fix L and consider the probability space defined by having
fis..ey fn be uniformly and independently distributed over F;. Regard the J;’s as random variables
over the above probability space.

(1) If [ is linearly independent then J 7 is uniformly distributed in FF.



mrBellare, Goldreich, Sudan 73

(2) If El, L, are mutually linearly independent then J; and .J; are independently distributed.

The analysis of the Iterated Projection test (see Figure 3.12) can be done relatively straightfor-
wardly, given the above, because the invoked projection test uses a single linear combination rather
than several such combinations (as in the other iterated tests). Thus we begin with the iterated
projection tests. The analysis of the other iterated tests, where the atomic tests are invoked on
two/three linear combinations, require slightly more care. The corresponding lemmas could have
been proven using the notion of “weak pairwise independence” introduced in [BeSu]. However, we
present here an alternative approach.

3.12.2 Iterated projection test

The iterated projection lest described in Figure 3.12 takes as input a vector f € F™ and also a
linear function L € £,,. Note that f = Lo fis in F;. The test is just the atomic projection test on
this input. The following lemma says that if the passing probability ProiPass’y(), representing
2™ invocations of the atomic projection test, is even slightly significant and if A is close to F,, then

Ay is close to the encoding of the projection of a.

Lemma 3.12.2 There is a constant ¢z such that the following is true. Let o: %! — X" be a func-
tion. Let a € ' be such that Dist(FE,, A) < 1/4, and let a; = o(a) € X", If PROIPASST (A, A;) >
¢3 - 27" then Dist(E,,, A;) <0.1.

Proof: The proof is similar to that of [BeSu, Lemma 3.5]. Let ¢, = Dist(A,, F,,) and assume it is
at least 0.1. We show that there is a constant ¢z such that PrRoJPAss) (A) < ¢3-27™.

Let N = |£;,| =27 — 1. For L € L}, let Xp: F" x F[ — X be defined by
XL(f_; 7) ! ProjTest] (A, A;; .3, L) = ProjTest, (A, A;; Lo f, Lo g) -

Regard it as a random variable over the uniform distribution on 7" x F". Let X =37, .. Xy.
It suffices to show that Pr[X =0] < O(1/N).

Lemma 3.12.1 implies that {X;}.cz. are pairwise independent, identically distributed random
variables. Let L € £ and let p = E[X]. Again using Lemma 3.12.1 we have
p = Pr.z R [ProjTestU(A,Al; Lof, Log)= 1]

fe=Fm ‘Z]'<—.7-_Z"1‘

= PI‘R

F=F ;gEle [

ProjTest, (A, A f,9)=1].

But by Lemma 3.5.8, p is at least €;(1 — 2¢) > 0.05, since € e Dist(F,, A) < 1/4. We can conclude
by applying Chebyshev’s inequality. Namely,

Np < 20

Pr| X =0] < Pr[|X—Np|l>Np| <L —
I'I: ]— r[l p|— p] — (]Vp)2 — JV

as desired. |



mrBellare, Goldreich, Sudan 74

3.12.3 Technical claim

For analyzing the other two tests we will use the following simple claim.

Claim 3.12.3 Let £ > 1 and N = 2™. Then LF contains a subset S of cardmahty =% such that
every L # L, € S are mutually linearly independent.

Proof: Let [ € LF be linearly independent. Then, the probability that L chosen uniformly in £,
is linearly independent of Lis1-— % Thus, the probability that a uniformly chosen I'e LE s
mutually linearly independent of Lis greater than 1 — >, EE s 1 — % Now, consider a
graph with vertex set £* and edges connecting pairs of mutually linearly independent sequences
(i.e. I_:1 and I, are connected if and only they are mutually linearly independent). This gr chh has
N* Vertlces and every vertex which is hnearly independent has degree greater than (1 — —) NE,
Clearly this graph has a clique of size ﬁ (e.g., consider a greedy algorithm which pick a vertex
of maximal degree among all vertices connected to the previously selected vertices). Noting that a
clique corresponds to a set of mutually linear independent sequences, we are done. |

3.12.4 TIterated linearity test

The iterated linearily test described in Figure 3.12 takes as input a vector f € F* and also linear
functions L., L, € £,,. Note that f; = L, o f and f, = Lyo f are in F;. The test is just the
atomic linearity test on these inputs. The following lemma says that if the passing probability is
even slightly significant, then A is almost linear.

Lemma 3.12.4 Thereis a constant ¢; such that if LINPAss™(A) > ¢;-27 then Dist(A, Lin) < 0.1.

Proof: Assume that ¢ & Dist(A, LiN) > 0.1. We show that there is a constant ¢; such that
LINPass™(A) < ¢; -27™. Let N =2™. For L = (L1, Ly) € L2, let X;z: F/* — X be defined by

X7 (f) X LinTest™ (4; fiLi, L) = LinTest(A; L, o [, Lyo f) .

Regard it as a random variable over the uniform distribution on F™. Let § C L2 be a set as
guaranteed by Claim 3.12.3 and X = ) 7 o X;. It suffices to show that Pr[ X =0] < O(1/N).
(Thus our analysis of LINPAss™(A) is based only on a small fraction of all possible invocations
of the iterated linear test; yet, this small fraction corresponds to a sufficiently large number of
invocations.)

Using Lemma 3.12.1, it follows that the random variables {X}; s are pairwise independent and
that for every I € §

—

p < Pr PR {XL—(f) = 1] = Pr,  &_ [LinTest(A4; fi, f») =1].

f1,fa=F1

By Lemma 3.5.3, p > Tyi,(¢) and so p > 3¢ — 6¢® if € < 1/4 and p > 45/128 otherwise. In either
case, we get p > 0.2. Now by Chebyshev’s inequality we have

Pr[X = 0] < Pr[|X = N'p| > N'p] < O(1/N)

where N’ % |§| = 2™ /16. The lemma follows. |



mrBellare, Goldreich, Sudan 75

The Iterated Tests. Here A: F; — ¥ and A;: F;, — X are the objects being tested. The
tests also take additional inputs or parameters: below f € F"; G € F"; L, Ly, Lo, Ls € Ly
and o: X' — Y. The tests are specified in terms of the atomic tests of Figure 3.2.

LinTest™(A; f, L1, L,) = LinTest(A; Ly o f, Ly o f).
MBTest™(A; f, L1, Ly, L3) = MBTest(A; Ly o f, Lyo f, Lz o f).
ProjTest) (A, A;; f.q, L) =ProjTest,(A, Ay; Lo f, Lo J)-

The Passing Probabilities. These are the probabilities we are interested in:
LINPass™(4) = Pros . [V L1, Lo € L,y LinTest™(A; [, Ly, Ly) = 0]

MBPass™(4) = Pr.x_, [V Ly, Lo, Ls € Ly - MBTest™ (4; [, Ly, Lo, Ls) = 0|

m
ProiPass;'(4, A1) = Pl’f&rm;;if;;‘[

VLeL,: ProjTest, (A, A;; f,fi,L) = 0]

Figure 3.12: The iterated tests and their passing probabilities.

3.12.5 Iterated RMB test

The iterated respect of monomial basis test in Figure 3.12 takes an input fand also three linear
functions Ly, Ly, Ly € L,,. For simplicity of exposition, we assume that A is folded over (1,1).
(This assumption is justified by our usage of the test — see next subsection.) If the probabil-
ity MBPass™(A) is significant, we can conclude that the linear function close to A respects the
monomial basis.

Lemma 3.12.5 There is a constant ¢, such that the following is true. Let A: F; — 3 so that
A(f+1)=A(f)+ 1, for every f € F. Let € < 0.1 so that A is e-close to a linear function A and
suppose that MBPass™(A) > ¢y -27™. Then A respects the monomial basis.

Proof: Assume that A is linear but does not respect the monomial basis. We will show that there
is a constant ¢, such that MBPAss™(A) < ¢y - 277,

Let N =27, For I = (Ly, Ly, Ls) € L3, let X;: F* — ¥ be defined by
X () MBTest™(A; f, Ly, Lo, Ls) = MBTest(A;Lio f, Lyof, Lyo f).

Regard it as a random variable over the uniform distribution on F". Again, let S C £ be a set
as guaranteed by Claim 3.12.3 and X = )"y ¢ X;. It suffices to show that Pr[ X = 0] < O(1/N).



mrBellare, Goldreich, Sudan 76

Using Lemma 3.12.1, it follows that the random variables {X}; s are pairwise independent and
that for every I € §

def

P=Prin,, [XL‘(f) = 1] = Pr . n, [MBTest(4; i, [, f3) = 1] .

By Lemma 3.5.7, p > 3/8 — Te/4 + 5¢%/2 — €*. Using € < 0.1, it follows that p > 0.2. Using
Chebyshev’s inequality we are done. |

Remark. For general A’s (which are not folded over (1,1)) a similar result can be proven by
augmenting the iterated RMB test so that on input A, f and L = (Ly, Lo, L3) it also checks if

3.12.6 Putting some things together

The last two lemmas above allow us to conclude that if A o) 1,1) passes the first two tests with
any significant probability then A, ¢y (1,1) is close to some evaluation operator F, so that h(a) = 0.
Thus, again, there is no need for a “circuit test”.

Corollary 3.12.6 There is a constant ¢ such that the following is true. Let A: F; — 3, and
suppose LINPASS™ (A 0),(1,1)) > ¢-277 and MBPASs™ (A 0y,1,1)) > ¢-27™. Then there is a string
a € X' such that Dist(E,, A 0),1,1)) < 0.1 and h(a) = 0.

Proof: Let ¢ be the larger of the constants from Lemmas 3.12.4 and 3.12.5. By the first lemma
there is a linear A such that Dist(A(mo)’(I,l),/I) < 0.1. Now the second lemma implies that A
respects the monomial basis (using the fact that A, 0)11)(f+1) = A oy1,1)(f)+1 forall f’s). So
Proposition 3.3.2 says A is an evaluation function. Finally, by Proposition 3.3.3, we have h(a) = 0.

3.13 Amortized free bits, Max Clique, and Coloring

3.13.1 Definitions

A clique in a graph G = (V, F) is a subset S of the vertices such that any pair of vertices in 5 is
connected by an edge. We let MaxClique(G') = max{|S| : S is a clique in G} denote the maximum
clique size, and we let MaxClique(G') = MaxClique(G)/N be the ratio of the Max Clique size to the
number of nodes N = ||| in the graph. Max Clique is the problem whose instance is a graph G
and one has to find MaxClique(G). An approximation algorithm A for Max Clique achieves a ratio
of a € [1,00) if MaxClique(G)/a < A(G) < MaxClique(G) for all graphs . Here a is a function of
the number N of nodes in G.

The chromatic number of GG is the smallest number of colors with which the nodes of G' can
be colored so that no two adjacent vertices have the same color. It is denoted ChromNum(G),
and as usual ChromNum(G) = ChromNum(G)/N. Coloring is the problem, given G, of find-
ing ChromNum(G'). An approximation algorithm A for coloring achieves a ratio of a € [1,00)
if ChromNum(G) < A(G) < a - ChromNum(G) for all graphs G.

Promise problems Gap-Clique, , and Gap-ChromNum, ; corresponding to the approximation are
defined analogously to our previous definitions for other problems. Here ¢, s are functions of N
such that 0 < s(N) < ¢(N) < 1.



mrBellare, Goldreich, Sudan 77

3.13.2 Sources of our improvements

We adopt the basic framework of the construction of proof systems with low free-bit complexity
as presented in [BeSu]. Our improvement comes from the use of the new long code instead of the
Hadamard code as a basis for the construction of inner verifiers. This allows us to save one bit
in the amortized free-bit complexity. The reason being that the long code contains explicitly all
functions of the encoded string whereas the Hadamard code contains only linear combinations of the
bits of the string. Typically, we need to check that the verifier accepts a string and this condition
is unlikely to be expressed by a linear combination of the bits of the string. Thus, one needs to
keep also the linear combinations of all two-bit products and using these extra combinations (via
self-correcting) increases the amortized free-bit by one. Instead, as seen above, the long code allows
us to directly handle any function. The fact that we take linear combinations of these functions
should not confuse the reader; these are linear combinations of random functions rather than being
linear combinations of random linear functions (as in [BeSu]).

3.13.3 Construction and results

Our construction of a proof systems with amortized free-bit complexity of two bits is obtained by
composing the (/,/;)-canonical outer verifier of Lemma 3.4.2 with a (/,/;)-canonical inner verifier,
denoted Vipee.in, Which is depicted in Figure 3.13. The inner verifier Vieein consists of invoking
the three iterated tests of Figure 3.12. In addition, Vjcein also applies the linearity test to the
oracle A;. This is not done in order to improve the rejection probability of Viieein (in case the
oracles A and A, are far from being fine), but rather in order to decrease the number of accepting
configurations (and consequently the free-bit complexity). We also remark that Viee iy invokes the
iterated tests while providing them with access to a double folding of A (i.e., A(h70)7(11)) rather
than to A itself. This eliminates the need for checking that A encodes a string which evaluates to
zero under h and simplifies the iterated RMB test (see remark at the end of subsection 3.12.5).
However, unlike in previous subsections, these simplifications do not buy us anything significant

The free inner verifier. Given functions 2 € F; and o: X' — X' the verifier has access
to oracles for A: F; — X and A;: F;, — Y. It also takes an integer parameter m.

. 7 R - R
Random choices: [« F"; § ]—"IT

VI, Ly€ Ly : LinTest™ (A 0 1.1); f> L1y La)

V Ly, Loy, Ls€ Ly, : MBTest™(Aw o) 1.1y; [ L1y Lo, Ls)
VL e L, : ProjTest, (A 0),1,1), A1; f,g’,L)
VIi,L,e L, : LinTest™ (Ay; §, L1, Lo)

Remark: access to Ay 0),(1,1)( f) is implemented by accessing either A(f), A(f+h), A(f+1)
or A(f+h+ 1).

Figure 3.13: The free inner verifier Vieein



mrBellare, Goldreich, Sudan 78

(here), since the additional testing could have been done without any additional cost in free-bits.

Lemma 3.13.1 There exists a constant ¢ such that the following is true. Let [,l;,m be integers.
Then the (I,1;)-canonical inner verifier Viyee_in with parameter m is (p, 81, 8,)-good, where p = ¢-277
and §; = 0.4, for s = 1, 2.

Proof: Here the analysis can be less careful than in analogous statements such as in Lemmas 3.6.1
and 3.7.1. Using Corollary 3.12.6, with respect to the oracle A o) (1,1), we conclude that if A¢, o) (1,1)
passed both the iterated Linearity and RMB Tests with probability at least ¢-2=™ then there exists a
string @ € ' such that Dist( E,, Apoyny) <01 = %—61 < 1/4and h(a) = 0. Using Lemma 3.12.2,
we conclude that if (A 0) 1,1y, A1) passed the iterated Projection Test, with probability at least
c3-27™, then Dist(F,(qy, 41) < 0.1 = %—62. Setting p = /27, where ¢’ = max{c, ¢z}, we conclude
that Vieein satisfies condition (2) of Definition 3.4.3. Clearly, Viee.in also satisfies condition (1)
and the lemma follows. |

Proposition 3.13.2 Let [,l;, m be integers. Then the (/,[;)-canonical inner verifier Ve in with
parameter m uses 2m free-bits.

Proof: We consider only accepting computations of Vicein. We start by observing that all oracle
values obtained from A, during the iterated Linearity Test (on A gy (1,1)), are determined by the
values of A in locations fi, fi, ..., f.., where each f! is either f; or f; + h. Likewise, all oracle
values obtained from A, during the iterated RMB Test, are determined by the values of A in these
locations f{, f5,..., f1,. Finally, all oracle values obtained from A, during the iterated Projection

Test, are determined by the values of A; in locations L o § (for all L’s) and the values of A in the
locations f], f5, ..., f]..

Now we use the fact that Vieein applies an iterated Linearity Test to the oracle A;. It follows that
all oracle values obtained from A;, in accepting computations of Vieein, are determined by the
values of A; in locations g1, ga, ..., Gm-

We conclude that, in accepting computations of Vieein, all values obtained from the oracles are

determined by 2m bits (i.e., A(f]),..., A(f") and A1(g1),..., A1(gm)). 1

Composing the canonical outer verifier of Lemma 3.4.2 and the canonical inner verifier Vieein, we
get the following

Theorem 3.13.3 There is a constant ¢ such that the following is true. Let I € NP and m an
integer. Then L € PCP, ;[ coins = log ; free = 2m | with s = ¢- 27",

Proof: Given an NP language L and an integer m, we use Lemma 3.4.2 to constract a 27"-good
outer verifier, denoted Vs, for L. Recall that this outer verifier uses logarithmic randomness
(actually the randomness depends linearily on m which is a constant). Next, compose Vyter with
the inner verifier Vireeoin, Where Vieoin uses m as its integer parameter. The composed verifier has
free-bit complexity 2m (as inherited from Vieein by Proposition 3.13.2). By Theorem 3.4.5 the
soundness error of the composed verifier is at most (¢ 4+ 1) - 2™, where ¢ -2~™ is the soundness
error of Vieein (due to Lemma 3.13.1). The theorem follows. |

By selecting m to be sufficiently large (i.e., m = (24 €)log, ¢/¢, where ¢ is the constant above), we
get

Theorem 3.13.4 For any € > 0 it is the case that NP C FPCPJlog, 2 + €].



mrBellare, Goldreich, Sudan 79

Using the FGLSS-transformation, we get

Theorem 3.13.5 For any ¢ > 0
(1) NP <% Gap-Clique,, for s(N) = N and ¢(N)= N'/3,
(2) NP <% Gap-Clique,, for s(N) = N and ¢(N)= N'/*.

Proof: For Part (1) we use Corollary 5.2.3 (below), with » = O(logn) and k = . We get that NP
is randomly reducible to a pcp system with randomness r + k 4+ O(1), free-bit complexity (2 + €)k
and error probability 27%. The FGLSS-graph corresponding to the resulting pcp system has size
N = 20r+k+00))++k and a gap in clique size of factor 2%, which can be rewritten as N1/(1+2+2¢),
The clique size in case of input not in the language is 2" which can be rewritten as N¢. Substituting
€ for €/2, the claim of Part (1) follows. For Part (2) we use Corollary 5.2.5, and get a pcp system
for NP with randomness r + (2 + €)k, free-bit complexity (2+ €)k and error probability 27*. Using
the FGLSS-construction on this system, the claim of Part (2) follows. |

Combining the above with a recent reduction of Furer [Fu], which in turn improved the reductions

of [LuYa, KLS, BeSu], we get

Theorem 3.13.6 For any ¢ > 0
(1) NP <% Gap-ChromNum,, for s(N)/¢(N)= N'/5~<
(2) Gap-ChromNum, is NP-complete for s(N)/c(N)= N'/7=<

3.13.4 Previous work

Max CriQue. Prior to 1991, no non-approximability results on Max Clique were known. In
1991 the connection to proofs was made by Feige et. al. [FGLSS]. The FGLSS reduction says
that PCP; .[coins = 7 ; query = ¢] Karp reduces to Gap-Clique, , via a reduction running in time
poly(27*7), and with the gap ¢/s being a function of (r, ¢ and) the error e. In applying it one works
with PCP classes containing NP. One obtains a result saying Max Clique has no polynomial time
approximation algorithm achieving a certain factor, under an assumption about the deterministic
time complexity of NP (the time complexity depends on r,¢ and the factor on these, but, most
importantly, on the error e). In particular, these authors were able to “scale-down” the proof system
of [BFL] to indicate strong non-approximability factors of 2!°° Y for some ¢ > 0, assuming NP is
not in quasi-polynomial deterministic time. They also initiated work on improving the factors and
assumptions via better proof systems. The best result in their paper is indicated in Figure 3.14.

Arora and Safra [ArSa] reduced the randomness complexity of a PCP verifier for NP to loga-
rithmic — they showed NP = PCPy ;5[ coins = log ; query = y/log N]. They also observed that
random bits can be recycled for error-reduction via the standard techniques [AKS, CW, ImZu]. The
consequence was the first NP-hardness result for Max Clique approximation. The corresponding
factor was 2V1og N,

Arora et. al. showed that NP = PCP, ;5[ coins = log ; query = O(1)], which implied that there
exists an € > 0 for which approximating Max Clique within N¢ was NP-complete. The number of
queries was unspecified, but indicated to be ~ 10%, so € ~# 10~*. Later work has focused on reducing
the constant value of € in the exponent.?

In later work a slightly tighter form of the FGLSS reduction due to [BeSc, Zu] has been used.
It says that PCPy /5[ coins = 7 ; query,, = ¢.,] reduces, via a randomized Karp reduction, to

* The value € = 10™* means that the size N of the graph must be at least 2'°°° which is more than the number

of particles in the universe, before the factor N exceeds 2!

bl



mrBellare, Goldreich, Sudan 80

Due to Factor Assumption
[FGLSS] 2108 N for any e > 0 | NP ¢ P
ArSa Vi N P # NP

[

[ALMSS] N for some € > 0 P # NP
[BGLR] N1/25 NP ¢ coRP
BGLR N1/30 NP +# coRP
[

FeKi N1/15 NP # coRP
[

BeSu N1/4 NP ¢ coRP
[

BeSu N1/6 P # NP

[

This paper N1/4 P #£NP
This paper N3 NP # coRP

Figure 3.14: Some Milestones in the project of proving non-approximability of the Clique number:
Approximation Factor (in terms of the graph size N ) which is infeasible to achieve under an
indicated Assumption. In stating results from [BGLR] on, we ignore N¢ terms in which ¢ > 0 can
be arbitrary small.

Gap-Clique, , for some ¢, s satisfying ¢(N)/s(N) = NY(+6v) and with the running time of the
reduction being poly(2"). (We assume ¢,, = O(1) for simplicity.) (We omit factors of N¢ where
€ > 0 can be arbitrarily small, here and in the following.) Thus the hardness factor was tied to
the (average) number of queries required to get soundness error 1/2. Meanwhile the assumption
involved the probabilistic, rather than deterministic time complexity of NP— it would be NP ¢ coRP
if r = polylog(n) and NP # coRP if r = log(n).

New proof systems of [BGLR] were able to obtain significantly smaller query complexity: they
showed NP C PCP, ;5[ coins = polylog ; query = 24] and NP C PCP, ;[ coins = log; query = 29].
This leads to their hardness results shown in Figure 3.14. However, significantly reducing the
(average) number of bits queried seemed hard.

However, as observed by Feige and Kilian, the performance of the FGLSS reduction actually
depends on the free-bit complexity which may be significantly smaller than the query complexity
[FeKi]. Namely, the factor in the above mentioned reduction is N'/(*+7) where f is the free-bit
complexity. They observed that the proof system of [BGLR] has free-bit complexity 14, yielding a
N'/15 hardness of approximation factor.

The notion of amortized free-bits was introduced in [BeSu]. They observed that the performance
of the reduction depended in fact on this quantity, and that the factor was N'/(+7) where f is the
amortized free bit complexity. They then showed that NP C FPCP[polylog, 3]. This lead to a N'/*
hardness factor assuming NP # coRP.

CHROMATIC NUMBER. The first hardness result for the chromatic number is due to Garey and
Johnson [GJ1]. They showed that if P # NP then there is no polynomial time algorithm that can
achieve a factor less than 2. This remained the best result until the connection to proofs, and the
above mentioned results, emerged.

Now hardness results for the chromatic number are obtained via reduction from Max Clique. A



mrBellare, Goldreich, Sudan 81

N¢ factor hardness for Max Clique translates into a N? factor hardness for the Chromatic number®,
with ¢ a function of e. To discuss the quality of reductions, let us, following [BeSu], define an (a, b)-
reduction to be one that achieves § = a—b-i(b/e) = b+(;—b)e'

The first reduction, namely that of Lund and Yannakakis [LuYa], was a (1,5)-reduction. Via
the Max Clique hardness results of [ArSa, ALMSS] this implies the chromatic number is hard to

approximate within N for some § > 0. But, again, § is very, very small. Improvements to § are a
function both of improvements to € and the values a, b for which (a, b)-reductions are available.

A subsequent reduction of Khanna, Linial and Safra [KLS] is simpler but in fact slightly less
efficient, being a (6,5)-reduction. However a more efficient reduction is given by [BeSu]- they
present a (1,3)-reduction. Qur N'/3 hardness for Clique would yield, via this, a N'/7 hardness for
the chromatic number. But more recently an even more efficient reduction has become available,
namely that of Furer [Fu]. Tt is a (1,2)-reduction, and thereby we get our N'/5 hardness.

RANDOMIZED AND DE-RANDOMIZED ERROR REDUCTION. As mentioned above, randomized and de-
randomized error reduction techniques play an important role in obtaining the best Clique hardness
results via the FGLSS method. Typically, one first reduces the error so that its logarithm relates
to the query (or free-bit) complexity and so that the initial randomness cost can be ignored (as
long as it were logarithmic). (Otherwise, one would have needed to construct proof systems which
minimize also this parameter; i.e., the constant factor in the logarithmic randomness complexity.)

The randomized error reduction method originates in the work of Berman and Schnitger [BeSc]
were it is applied to the Clique Gap promise problem. An alternative description is given by
Zuckerman [Zu]. Another alternative description, carried out in the proof system, is presented in
Section 5.2.

The de-randomized error reduction method consists of applying general, de-randomized, error-
reduction techniques to the proof system setting. The best method knows as the “Expander Walk”
technique is due to Ajtai, Komlos and Szemeredi [AKS] (see also [CW, ImZu]). It is easy to see that

this applies in the pcp context. (The usage of these methods in the pcp context begins with [ArSa].)

def log, d

It turns out that the (constant) parameters of the expander, specifically the ratio p = Toe where

d is the degree of the expander and A is the second eigenvalue (of its adjacency matrix), play an
important role here. In particular, p—1 determines how much we lose with respect to the randomized
error reduction (e.g., NP € FPCP[log, f] translates to a hardness factor of N7 under NP Z BPP
and to a hardness factor of N##7 under NP # P). Thus the Ramanujan Expander of Lubotzky,
Phillips and Sarnak [LPS] play an important role yielding p = 2 (cf. Proposition 5.2.4), which is
the best possible.

3.14 The coding theory bound

We provide here the coding theory bound used in the proof of Lemma 3.4.4. Tt is a slight extension
of bounds in [MaSl, Ch. 17] which consider only vectors of weight exactly w rather than at most
w. For sake of completeness, we include a proof of this bound. In discussing binary vectors, the
weight is the number of ones in the vector and the distance between two vectors is the number of
places in which they disagree.

®Actually all the reductions presented here, make assumptions regarding the structure of the graph and hence do
not directly yield the hardness results stated here. However, as a consequence of some results from this paper, we are
able to remove the assumptions made by the earlier papers and hence present those results in a simpler form. See
Section 4.1.3 for details.



mrBellare, Goldreich, Sudan 82

Lemma 3.14.1 Let B = B(n,d,w) be the maximum number of binary vectors of length n, each
with weight at most w, and any two being distance at least d apart. Then B < (1—-28)/(4a*—20),
provided a? > (3/2, where a = (1/2) — (w/n) and 8 = (1/2) — (d/n).

Proof: Consider an arbitrary sequence, vy, ..., vy, of n-vectors which are at mutual distance at
least n/2. Let us denote by v;; the 5™ entry in the i vector, by w; the weight of the i"* vector,
and by w the average value of the w;’s. Define

n

M M
def
S = E E E vi,k’vj,k

i=1 j=1k=1

Then, on one hand

M n n
_ 2
S o= D3 v+ D0 D v

i=1 k=1 1<i#j <M k=1
w; +w; —d
S R
i 1<iZj <M

= Mw+ M(M-1)-(w-(d/2))
where the inequality follows from observing that, for ¢ # 7,

I.UZ-|-UJJ = 2|{kvz,k:7)],k:1}|+ |{k:vi,k# ?J]'7k}|

> 2 E@i,kvj,k +d

k=1

On the other hand S = Y_7_, |{¢ : v;, = 1}|?. This allows to lower bound S by the minimum of
>, x% subject to 3°, #, = Mw. The minimum is obtained when all z,’s are equal and yields

N 2
§>n. <LMUJ>
n
Confronting the two bounds, we get
M -w?
O <M ow— (M —-1)(d/2)
n
which yields (%2 —w+ 4)M < £. Letting @ = (1/2) — (w/n) and using @ > o > (3/2, we get
1-2
e 122
a’ — 243

and the lemma follows by observing that the bound maximizes when a« = @. |

3.15 On the optimality of some choices in our analysis

In this section we demonstrate the optimality of several of the choices made in the analysis in
previous sections.

CHOICE OF THE PROBABILITY PARAMETERS FOR Vsnpinner We start by proving that the choice
of probabilities for Vsxpinner (i-€., requiring the p;’s to satisfy Eq. (3.4) is optimal for minimizing
the soundness upper bound provided by Lemma 3.7.1. Actually, we show that no matter how one

selects these probabilities, the expression given in Lemma 3.7.1 is at least 1 — 464194649.




mrBellare, Goldreich, Sudan 83

Claim 3.15.1 For any choice of the parameters py, po, ps > 0 so that p; + ps + p3 = 1 one of the
following three expressions, % “p1, Ming<iya [P1-Din(2) + p2 - True(2) ] and min <1/ [p1-Tin(2) +
Ps - %(1 — 2z)], is at most 24

Furthermore, the minimum of the above expressions is bounded

24969
above by
.45 3 1
111111(@ -p1 4+ Trmps(45/128) - po, 3 ‘P2, 5 “ps)

Proof: We consider three cases according to which of the expressions in Eq. (3.4) is smallest. In
other words, let p} be the solution to Eq. (3.4) as given by Eq. (3.5). We consider the following
cases:

Case 1: 2% -p; + Tryp(45/128) - py < 22 - pt + Trup(45/128) - p5. In this case, we upper bound the

128 128
second expression, min <5 [p1 - Tiin(2) 4+ po - Trvs(2) |, by its value at @ = 45/128, which equals
45 45 6144
-2 4y Trus(45/12 2t Trup(45/128) = ————
P 198 + ps - Prup(45/128) < pj 198 + p5 - Trvp(45/128) 11969

Case 2: p; < p5. In this case, we upper bound the second expression by its value at 2 = 0, which
equals
3 3 6144

o - T 0) = p, = pt.l = &
P2 - Trvs(0) P23 < P 3 14969
Case 3: ps < p4. In this case, we upper bound the third expression, min <12 [ p1 - Tin(2) + ps -

(1 —2z)], by its value at z = 0, which equals p; - 1+ < p3/2 = 6144/44969. The claim follows. |

We remark that the setting of z represents plausible existence of oracles for which the proof of
Lemma 3.7.1 provides the soundness bounds appearing in the claim. Specifically, Case (1) corre-
sponds to having a first oracle, A, which is 45/128-away from being linear (and may be at distance
1/2 from the long code). Case (2) corresponds to having A linear but not respecting the monomial
basis (and thus at distance 1/2 from the code). Finally, Case (3) corresponds to having A = E,
(i.e., a codeword for a) and A, be at distance 1/2 from E,,.

EVALUATING Vsxpinner INDEPENDENTLY OF THE GADGETS Lemmas 3.8.3 and 3.9.3 (as well as
Lemma 3.10.8) provide hardness results for factor m
being used whereas a; and @, depend on the gadgets. Specifically, s is the soundness error for a
verifier (based on Vsxpinner) Which performs a parity check with probability ¢ and an RMB check
with probability 1 — ¢. Our approach was to select the probabilities for Vsnpinner S0 to minimize

s and this in turn determines ¢ = 1 — p,. A natural question is whether it is not better to allow

where s and ¢ depend on the verifier

greater error, s, so to obtain a smaller value for 1 —¢. This is natural since «; is likely to be smaller
than a, (since the parity check is obtained as a special case of the RMB check when setting the
first bit to 1).

Claim 3.15.2 Let ay < s, p1,p2,ps > 0 s.t. p1 + pa+ ps = 1 and let s(py, p2, p3) be the soundness
upper bound provided by Lemma 3.7.1 (i.e., the minimum of the expressions in Claim 3.15.1).

Then % is maximized at p;’s satisfying Eq. (3.4).

Proof: Using Claim 3.15.1, we get

e 1= 5(p1,pa,]
factor(py, po, pa) = a1+<c§fl_’p§f‘°.’)p2

3
g P2

a; + (ag —ay) - pe




mrBellare, Goldreich, Sudan 84

3/8
(@1/pa) + (s — ay)

On the other hand, by Claim 3.7.2,

1 — s(pi, p5, p3)
a; + (ay — ay) - ph

factor(py, p3,p5) =
3D
a; + (ay — ay) - ph
3/8
(%/]03) + (a2 - 031)

where the p}’s are the solution to the p;’s under p; + ps + ps = 1 and Eq. (3.4). The claim follows
by noting that for p» < pj we have factor(pi, ps, ps) < factor(pi, ps,ps). (There is no need to
consider p, > pj since in this case, by Claim 3.15.1, 1 — s(p1,p2,p3) < 1 — s(pi, p5, ps) whereas
ar + (s —ag) -ps > a1 + (s —ay)-pi.) |

ANALYSIS OF Vajnner We need to justify two choices. Firstly, our choice to use 3/16 as a “pivot”
(rather than 1/2—46,) and secondly the setting of the p;’s. Both choices are justified by the following

Claim 3.15.3 Let g(z,y) ! (1-2z)-2-z+ “;—2 —y] and §; = 8, = 10~*. For any choice of the
parameters pi, ps, p3 > 0 so that p; + ps + p3 = 1 one of the following three expressions,

(1) miny< [pr- max(y, 3 — &)

(2) minzslﬂ—él,ysl [pl ' maX(yv Flin(x)) +p2- g(xv y)]

(3) min,<i/oms,, y<1 [P - max(y, Tin(2)) + ps - (1/2 = 65)(1 — 22) ].

is smaller than 0.116.

Proof: As in the proof of Claim 3.15.1, we only consider the expressions in (2) and (3). Here we
consider only two cases.

Case 1: p3 < 0.232. In this case we upper bound (3) by its value at z = y = 0, which is bounded
above by p3/2 < 0.116.

Case 2: p; + p, < 0.768. In this case we upper bound (2) by its values on the curve y = I';, ().
Actaully, we consider only & < 3/16 thus upper bound (2) by min,<3/15[ h(2)], where h is as in
the proof of Claim 3.10.3; namely,

3 2
h(m):p1-(3x—6x2)—|—p2-(1—2x)(§—x+%—(33@—6362)): —az® + ba” +cx + d
where ¢ = 13py, b = —6p; + 22—9;02 >0,c=3p — 14—9;02 > 0 and d = gpQ. The proof is completed
by computer optimizations of the function h, for all admissible values of p; and p, within steps of

0.001. (Actually, this is the way we came up with our choice of the p;’s.) |

The reader may note that the function g becomes negative for some choices of z and y (e.g., for
all 3/26 < x < 3/16 and y = 3z — 62?). Indeed, it would make more sense to redefine g as zero in
case its value is negative (and indeed Lemma 3.10.2 can be proven also under this definition of g).
However, we have verified that Claim 3.15.3 also remains valid for this new definition of g.



CHAPTER 4

Proofs and approximation: Potential
and limitations

We have seen in the last chapter that non-approximability results are getting steadily stronger,
particularly for Max Clique. How far can they go? This chapter is about answering this kind of
question.

The first Section describes our “reverse connection” indicating the necessity of proof checking
techniques to the derivation of non-approximability results for Max Clique, and pointing to amor-
tized free bits as the crucial parameter. The second Section focuses on lower bounds on amortized
free bits which will indicate that our two free bit result of the last section is tight in the light of
current techniques. The two together indicate that one needs new techniques to prove better than
a N'/3 hardness for Max Clique.

4.1 The reverse connection and its consequences

Feige et al. [FGLSS] describe a procedure which takes a verifier V', and an input 2 and constructs
a graph, which we denote Gy (), whose vertices correspond to possible accepting transcripts in Vs
computation and edges corresponding to consistent/non-conflicting computations. They then show
the following connection between the maximum (over all possible oracles) acceptance probability
of the verifier and the clique size in the graph. Recall that ACC[V (2)] = max, Prg [V™(2; R) = 0]
is the maximum accepting probability. Also recall that MaxClique(G) is the maximum clique size.

Theorem 4.1.1 ([FGLSS]) If, on input z, a verifier V' tosses r coins then the following relationship
holds:

_ MaxClique(Gy (z)) _

ACC[V(z)] -~

In this section we essentially show an inverse of their construction.

4.1.1 The Clique-Gap Verifier

We stress that by the term graph we mean an undirected simple graph (i.e., no self-loops or parallel

edges).

85



mrBellare, Goldreich, Sudan 86

Theorem 4.1.2 (Clique verifier of ordinary graphs): There exists a verifier, denoted W, of log-
arithmic randomness-complexity, logarithmic query-length and zero free-bit complexity, that, on
input an N-node graph G, satisfies

Acc[W(G)]:%q”e(G).

Furthermore, Gw (G) is isomorphic to G’ where the isomorphism is easily computable. Lastly, given
a proof/oracle m we can construct in polynomial-time a clique of size pN in G, where p is the
probability that W accepts G with oracle access to 7.

Proof: On input a graph G on N nodes, the verifier W works with proofs of length (];7) - |E(G)].
The proof 7 is indexed by the edges in G (i.e., non-edges in ). For clarity of the proof we assume
that the binary value w({u,v})is either u or ». This is merely a matter of encoding (i.e., consider a
1-1 mapping of the standard set of binary values, {0, 1}, to the set {u,v}). On input G and access

to oracle 7, the verifier W acts as follows:

— Picks uniformly a vertex u in the vertex set of G.
— For every {u,v} € E(G), the verifier W queries the oracle at {u, v} and rejects if 7({u,v}) # u.

— If the verifier did not reject by now (i.e., all queries were answered by u), it accepts.

Properties of W. Clearly, W tosses log, N coins. Also, once W picks a vertex u, the only pattern
it may accepts is (u,u,...,u). Thus the free-bit complexity of W is 0. To analyze the probability
that W accepts the input G, when given the best oracle access, we first prove the following:

Claim. The graphs Gw (G) and G are isomorphic.

Proof. The proof is straightforward. One needs first to choose an encoding of accepting transcripts
of the computation of W on input G. We choose to use the “full transcript” in which the random
coins as well as the entire sequence of queries and answers is specified. Thus, a generic accepting
transcript has the form

To < (u, ({u, v}, u), .o, ({1, v}, 0))

where u is the random vertex selected by the verifier and {vy,...,v;} the set of non-neighbors of u.
We stress that T, is the only accepting transcript in which the verifier has selected the vertex wu.
Also, for each vertex u, the transcript T, is accepting. Thus, we may consider the 1-1 mapping, ¢,
that maps T, to u. We claim that ¢ is an isomorphism between Gy (G) and G.

Suppose that T, and T, are adjacent in Gg(W). Then, by definition of the FGLSS graph, these
transcripts are consistent. It follows that the same query can not appear in both (accepting)
transcripts (otherwise it would have been given conflicting answers). By definition of W we conclude
that (u,v) is not a non-edge; namely, (¢(T,),#(T,)) = (u,v) € E(G). Suppose, on the other hand,
that (u,v) € E(G). It follows that the query {u,v} does not appear in either T, or T,. Since no
other query may appear in both transcript, we conclude that the transcripts are consistent and
thus T, and T, are adjacent in Gg(W). O

By Theorem 4.1.1 it now follows that the probability that W accepts on input G, given the best
oracle, is MaxClique(Gw (G'))/N which by the above equals MaxClique(G)/N. Furthermore, given a
proof m which makes W accept G with probability p, the accepting random strings of W constitute
a clique of size pN in Gw(G). These accepting random strings can be found in polynomial-time
and they encode vertices of G' (which form a clique in G). 1



mrBellare, Goldreich, Sudan 87

We now generalize the above construction to get verifiers which indicate the existence of large
cliques in layered graphs. An (L, M, N)-layered graph is an N-vertex graph in which the vertices
are arranged in I layers so that there are no edges between vertices in the same layer and there are
at most M vertices in each layer. We use a convention by which, whenever a layered graph is given
to some algorithm, a partition into layers is given along with it (i.e., is implicit in the encoding of
the graph).

Theorem 4.1.3 (Clique verifier for layered graphs): There exists a verifier, denoted W, of loga-
rithmic randomness-complexity and logarithmic query-length that, on input an (L, M, N)-layered
graph G has free-bit complexity log, M, average free-bit complexity log,(N/L) and satisfies

ACC[W(G)] = MaxClique(G)/L .

Furthermore, Gy (() is isomorphic to G where the isomorphism is easily computable. Lastly, given
a proof/oracle 7 we can construct in polynomial-time a clique of size pL in G, where p is the
probability that W accepts G with oracle access to .

Proof: On input a (L, M, N)-layered graph G, the verifier W works with proofs consisting of two
parts. The first part assigns every layer (i.e., every integer i € [L]) a vertex in the layer (i.e., again
we use a redundant encoding by which the answers are vertex names rather then an index between
1 and the number of vertices in the layer). The second part assigns pairs of non-adjacent (in G)
vertices, a binary value, which again is represented as one of the two vertices. On input G and
access to oracle 7, the verifier W acts as follows:

— Picks uniformly a layer i in {1, ..., L}.
— Queries 7 at 7 obtaining as answer a vertex u. If u is not in the i layer of G then the verifier
rejects. (Otherwise, it continues as follows.)

—  For every {u,v} € E(G), the verifier W queries the oracle at {u, v} and rejects if 7({u,v}) # u.
(Actually, it is not needed to query the oracle on pairs of vertices belonging to the same layer.)

— If the verifier did not reject by now (i.e., all queries were answered by u), it accepts.

Properties of W. Here W tosses log, I coins. Once the first query of W is answered, specifying a

vertex u, the only pattern it may accept in the remaining queries is (u,u,...,u). Thus, the free-
bit complexity of W is log, M, accounting for the first query which may be answered arbitrarily
in {1,...,m}, where m < M is the number of vertices in the chosen layer. The average free-bit

complexity is log,(N/L) (as N/L is the average number of vertices in a layer of the graph G).
Again, we can prove that Gy (G) = G and the theorem follows.

Claim. The graphs Gw (G') and G are isomorphic.

Proof. Here, the accepting transcripts of W, on input GG, correspond to a choice of a layer, 7, and a
vertex in the i"" layer (since once a vertex is specified by the first answer there is only one accepting
way to answer the other queries). Thus, a generic accepting transcript has the form

Tu ™= (i, (i), (L, 01}, w), oy ({0, 00}, )

where 7 is the layer selected by the verifier, u is a vertex in the ™" layer of G and {vy, ..., vs} the set
of non-neighbors of . Again, T, is the only accepting transcript in which the verifier has selected
the vertex u, and for each vertex u, the transcript T, is accepting. Again, we consider the 1-1
mapping, ¢, that maps 7, to u, and show that it is an isomorphism between Gy (G) and G.



mrBellare, Goldreich, Sudan 88

Suppose that T, and T, are adjacent in Gg(W). Then, by definition of the FGLSS graph, these
transcripts are consistent. We first note that u and v cannot appear in the same layer of G (otherwise
the first query in the transcript would yield conflicting answers). Again, the same two-vertex query
can not appear in both (accepting) transcripts, and we conclude that (¢(7T,),H(T,)) = (u,v) €
E(G). Suppose, on the other hand, that (u,v) € F(G). Clearly, v and v belong to different layers
and as before the query (u,v) does not appear in either T, or T,. Since no other two-vertex query
may appear in both transcripts, we conclude that the transcripts are consistent and thus T, and
T, are adjacent in Gg(W). O

The theorem follows as before. |

Remark. The clique verifier W is adaptive: the answer to its first query determines (all) the other
queries. We wonder if it is possible to construct a non-adaptive clique verifier with properties as
claimed in the theorem.

4.1.2 Main Consequences

We are interested in problems exhibiting a gap in Max-Clique size between positive and negative
instances. Recall that MaxClique(G') = MaxClique(GG)/N is the fraction of nodes in a maximum
clique of N-node graph G. Also recall the Gap-Clique, , promise problem:

Definition 4.1.4 For any 0 < 5(-) < ¢(-) < 1 we let the promise problem Gap-Clique, , be the pair
(A, B), where—

(1) A is the set of all graphs G with MaxClique(G) > ¢(N ), and
(2) B is the set of all graphs G' with MaxClique(G) < s(N).
The gap of this problem is defined to be ¢/s.

As a direct consequence of Theorem 4.1.2, we get

Corollary 4.1.5 For all functions ¢,s: Z+ — [0, 1] we have Gap-Clique, , € FPCP, ,[log, 0, poly].

The above corollary transforms the gap in the promise problem into a gap in a pcp system. However,
the accepting probabilities in this pcp system are very low (also on yes-instances). Below, we use
Theorem 4.1.3 to obtain pcp systems with perfect (resp., almost-perfect) completeness for this
promise problem. We start by presenting two randomized reductions of the promise problem to a
layer version. Alternative methods are presented in Section 5.2 (cf., Theorem 5.2.6).

Proposition 4.1.6 (Layering the clique promise problem):

(1) (Obtaining a perfect layering): There exists a polynomial-time randomized transformation,
T, of graphs into layered graphs so that, on input a graph G, integers C' and L, outputs a
subgraph H = T(G,C, L) of G in L layers such that if MaxClique(G) > C' then

Pr[MaxClique(H) < L] < L -2

N/3L

Furthermore, with probability 1 — L -2~ , no layer of H contains more than 2 - % nodes.

(2) (Using logarithmic randomness): There exists a polynomial-time randomized transformation,
T, of graphs into layered graphs so that, on input a graph G, integers C' and L, outputs a
subgraph H = T(G,C, L) of G in L layers such that if MaxClique(G) > C then

- L

eC

for every € € [0,1]. Furthermore, the transformation uses logarithmically many coins. Also,

Pr[ MaxClique(H) < (1—¢)-L]

with probability 1 — %, at most el layers of H contains more than 2 - % nodes.



mrBellare, Goldreich, Sudan 89

Proof: The first transformation consists of assigning to each vertex of G a randomly chosen layer
of H. Namely, we construct the graph H which is a subgraph of G by uniformly selecting for each
vertex v a layer [(v) € [L] and copying only the edges of G which connect vertices placed in different
layers (of H). The construction can be carried out in random polynomial-time and we show that if
the original graph has a clique of size C' then with high probability the resulting graph has a clique
of size L, provided L < C'/2log, L.

Claim 1. Suppose that G has a clique of size C' denoted 5. Then, the probability that all vertices
in § were placed in less than L layers is at most L -2~ 3.

Proof. We start by bounding, for each 7, the probability that no vertex of S is placed in the "
layer. For each v € 5, we introduce the 0-1 random variable {, so that (, = 1 if » is placed in
def

the " layer (i.e., [(v) = i) and (, = 0 otherwise. Let t = C'/L. Then, E[}_, .4 (] = t. Using a
multiplicative Chernoff bound [MoRa|, we get

Pr(Voe S:l(v)#1i] = PI‘[ECU :0]

vES
< 273

Call the " layer bad if no vertex of S is placed in it. By the above, the probability that there

exists a bad layer is smaller than L - 27%/2 and the claim follows. O

It is left to bound the probability that a particular layer contains more than twice the expected
number of vertices. Using again a multiplicative Chernoff bound, this probability is at most 2=/3L
and the first part of the proposition follows.

The second transformation consists of selecting randomly a Universal, Hashing function (a.k.a.,
pairwise independent hash function) mapping the vertices of the graph G into the layer-set [L].
Namely, suppose that the function i was chosen, then we construct the graph H which is a subgraph
of G by placing a vertex v (of G) in layer h(v) of H, and copying only the edges of G which connect
vertices placed in different layers (of H). The construction can be carried out in polynomial-time
using only logarithmic randomness (for the selection of the hashing function). We show that if the
original graph has a clique of size C' then with high probability the resulting graph has a clique of
size almost L, provided L < C'.

Claim 2. Suppose that G has a clique of size C' denoted S. Then, the probability that all vertices
in S were placed in less than (1 — ¢) - L layers is at most %

Proof. Again, we bound, for each 7, the probability that no vertex of S is placed in the i*® layer.
For each v € S, we introduce the 0-1 random variable ¢, so that {, = 1if h(v) =4 and (, = 0

otherwise. Let ¢ % C/L and ¢ = >ves Cu- Then, E[(] = ¢ (which is greater than 1, otherwise the

claim holds vacuously). Using the pairwise independence of A and Chebyshev’s inequality, we get
Pr[Vv e S:h(v)#1i] = Pr{¢(=0]
Var[EvES C’U]
S e
C/L 1
2t
Call the i** layer bad if no vertex of S is placed in it. By the above, the expected number of bad
layers is smaller than L - £, so by Markov inequality the probability that more than e layers are
bad is at most 1/et. The claim follows. O

<




mrBellare, Goldreich, Sudan 90

Again, it is left to bound the probability that a particular layer contains more than M e 2N/L.
Using Chebyshev’s inequality again, this probability is at most L/N. Thus, the expected number
of layers having more than M vertices is at most L?/N and it follows that the probability that €L

layers contain more than M vertices each is at most L—ZLM = % The second part of the proposition

follows. 1

Combining Theorem 4.1.3 and Proposition 4.1.6, we obtain

Proposition 4.1.7 For any polynomial-time computable functions ¢, s,e: Z+ — [0, 1] we have

(1) (Randomized reduction to a pcp with perfect completeness):

<& FPCP, y[log, f']

k]

Gap-Clique,,
def def s(N)

where f'(N)'= logy(1/c(N))+ log,logy N + 2 and s'(N) = 2logy N - 5.
(2) (A pcp with almost-perfect completeness):

Gap-Clique, , € FPCP,_y . [log, f']

where f/(N) %< 1+ log,(1/c(N)) + 2log,(1/¢(N)) and /(N) € L. M)

T AVE ANy

Proof: For the second part, we construct a verifier for the promise problem proceeds as follows.
On input an N-vertex graph G, the verifier computes ¢ < N - ¢(N), € = €(N) and L L ec.
It invokes the second transformation of Proposition 4.1.6, obtaining a (L, N, N)-layered graph
H = T(G,C,L). (We stress that this transformation requires only logarithmically many coin
tosses.) Next, the verifier modifies H into H’ by omitting (the minimum number of) vertices so
that no layer of H' has more than 2N/ vertices. Finally, the verifier invokes the clique-verifier W

of Theorem 4.1.3 on input H'.

The free-bit complexity of the verifier constructed above is log,(2N/L) = 1+ log,(1/¢(N)) +
2log,(1/€(N)). Suppose that G is a no-instance of the promise problem. Using MaxClique( H') <
MaxClique(G) and Theorem 4.1.3, it follows that the constructed verifier accepts G with probability
at most MaxClique( H') < s(N) ]

L — €2(N)-¢(N)
problem. Then, with probability at least 1 — 2 =1 — ¢ we have MaxClique(H) > (1 —¢) - L, and
with probability at least 1 — % > 1 — € we have MaxClique( H') > MaxClique( H ) — eL. Thus, with
probability at least 1 — 2¢, we have MaxClique(H’) > (1 — 2¢) - L. It follows that the constructed
verifier, when given oracle access to an appropriate proof, accepts G with probability at least 1 —4e.

Suppose, on the other hand, that GG is a yes-instance of the promise

For the first part, we define a promise problem which refers to gaps in cliques of layered graphs.
Specifically,

Definition. For any function £ : Z+ — Z* and s : Z* — [0, 1], we define the promise problem
Gap—LGy, be the pair (A, B), where-

(1) A s the set of all (£(N), 2L | N)-layered graphs G with MaxClique(G) = {(N), and

? ,@(N) ?
(2) B is the set of all ({(N), % , N)-layered graphs G with MaxClique(G) < s(N) - £(N).

The gap of this problem is defined to be 1/s.
Using the first transformation of Proposition 4.1.6, we obtain Gap-Clique, , <} Gap—LGy,/, where

UN) = g(li\;z]]vv and s'(N) = s(lj(vjz,)N = 2log, N - ‘i((—ij)) On the other hand, Theorem 4.1.3 asserts




mrBellare, Goldreich, Sudan 91

that Gap—LG,, € FPCP, . [log, f'], where f'(N) S log,(2N/((N)). Observing that f'(N) =
2log, N

1 +log, =&~ (which equals log,(1/¢(V)) + log, log, N + 2), the proposition follows. 1

Each of the two parts of Proposition 4.1.7 shows that the well-known method of obtaining clique-
approximation results from efficient pcp systems (cf., [FGLSS, BeSc, Zu, FeKi, BeSu]) is “complete”
in the sense that if clique-approximation can be shown NP-hard then this can be done via this
method. The following is a more precise version of Theorem 1.4.1 in that the role of € > 0 is made
explicit. The restriction that f be a constant is only for notational simplicity. (The issue is that
f in one case must be measured as a function of n = |z| and in the other case as a function of

N =lGll)

Theorem 4.1.8 Let f be a constant. Then the following statements are equivalent:
(1) Forall € > 0 it is the case that NP reduces to Gap-Clique, , with gap ¢(N)/s(N)= N/ (+/+o),
(2) For all € > 0 it is the case that NP reduces to FPCPJlog, f + €.

In both items the reduction is randomized. Furthermore the equivalence holds both for Karp and
for Cook reductions.

Proof: The direction (2) = (1) follows by first amplifying the gap of the verifier for NP (cf.,
Corollary 5.2.3) and then by applying the FGLSS-reduction [FGLSS] to the amplified gap verifier.
Specifically, we first obtain NP <, FPCPy,-[(1+ €) - ¢, f - t], where {(n) = vylog,n (with the
constant 4 determined by the constant € > 0). The FGLSS-reduction now yields a graph of size
N 20+ with gap 271 (which can be written as N 7).

For the reverse direction, we will use the first part of Proposition 4.1.7 and show that the resulting
verifier has a small amortized free bit complexity. Let Gap-Clique, ;, be NP-hard for some functions
¢(N) and s(N) satisfying s(N) > 1/N and ¢(N)/s(N) > N . Thus, ¢(N) > N7 /N and
1/¢(N) < NtH+.

Let a(N) % 2log, N, f/(N) % log,(1/¢(N)) +log, a( N) and let s'(N) < a(N)- % By invoking

Proposition 4.1.7 (Part 1) we find that Gap-Clique,, <, FPCP, .[log, f'] and Gap-Clique,, <
FPCP[log, f'], for f' =

R

@, follows. It now remains to argue that for any 6§ > 0, f/ < f+e€+4.

Using the lower bounds on ¢(N) and ¢(N)/s(N), we obtain f'(N) < 1i§ie log, N + log, a(N)
1

and log(1/s'(N)) > 15 - logy N — log, (V). Selecting a sufficiently small 6" > 0 and using

log, a(N) < 8 -log, N, we get

= 1—% log N 4 log, a(N)

IN

TlﬁlogN —log, a(N)
f+e ’
Trree T8
< A
T+/+e
/
< frer a4 0)

and the theorem follows. |

An alternative statement is provided by the following theorem. Here the second item (existence of
pep systems with certain parameters) is weaker than in the previous theorem, but this allows the
(1) = (2) direction to be proven via a deterministic reduction (instead of the randomized reduction



mrBellare, Goldreich, Sudan 92

used in the analogous proof above). Interestingly, the FGLSS-reduction used to establish the other
direction is insensitive to the gap location and in particular to the fact that we no longer use proof
systems of perfect completeness. Recall that FPCP,_,y[, f] is the class of problems having a
proof system with almost-perfect completeness (i.e., ¢ = 1—o0(1)) and amortized free-bit complexity

/.

Theorem 4.1.9 Let f be a constant. Then the following statements are equivalent:
(1) Forall € > 0it is the case that NP reduces to Gap-Clique, , with gap ¢(N)/s(N) = N1/(1+7+o),
(2) For all € > 0 it is the case that NP reduces to FPCP,_,y)[log, f + €].

In both items the reduction is randomized and the equivalence holds both for Karp and for Cook re-
ductions. Furthermore, if item (1) holds with respect to deterministic reductions so does item (2). It
follows that in case item (1) holds with a deterministic Karp reduction then NP C FPCP;_,[log,

f+el

Proof: The direction (2) = (1) follows essentially as in the proof of the previous theorem. Specifi-
cally, item (2) asserts that, for some function m, NP <, FPCP, 3-m .[log, m- f], for ¢(n) = 1 —o(1)
(but we are not going to use the bound on ¢). Using Proposition 5.2.1 and Proposition 5.2.2 (Part
2), we first obtain NP <_ FPCP y-t .[(14¢€)-t, f-1], where ¢/(n) = ¢(n)!()/™() and {(n) = vlog, n
(with the constant v determined by the constant € > 0). The FGLSS-reduction now yields a graph
of size N & 201+e+1)1(n) with gap 24" as in the analogous proof above. (The gap is in a different

location but this does not matter.)

For the reverse direction, we will use the second part of Proposition 4.1.7 and show that the resulting
verifier has a small amortized free bit complexity. Let Gap-Clique,; be NP-hard for some functions
¢(N) and s(N) satisfying s(N) > 1/N and ¢(N)/s(N)> N#. As in the analogous proof above,
this implies that 1/¢(N) < N,

Let a be a slowly decreasing function s.t. a(N) = o(1) but log,(1/a(N)) = o(log N). Let f/(N) <
log,(1/c(N)) +2log,(1/a(N)) and let s'(N) < a(}\,)Q : zi(% By invoking Proposition 4.1.7 (Part 2)
we get Gap-Clique, , € FPCP,_ o’ [log, f]. Since a(N) = o(1), we conclude that Gap- Clique, ,

FPCP,_,1[log, f'] for fI =

W It now remains to argue that for any § > 0, f’ < f+e + 6

We use the lower bound on ¢(N) and C(N)/S(N), we obtain f/(N) < L+ log, N — 2log, a(N)

T+
and log,(1/s'(N)) = 2log, a(N) + log, N. Selecting a sufficiently small é' > 0 and using
log,(1/a(N)) < 8" -log, N, we get

1+f

T o< 11}-46.5 log, N 4 2log,(1/a(N))
- 1+f+6 log, N — 2log,(1/a(N))

f+e ’

+46

< 1+11‘+6 /

T+f+e
6/

< et (1424 0)

and the theorem follows. |



mrBellare, Goldreich, Sudan 93

4.1.3 More Consequences

The equivalence between clique and fpcp described above turns out be a useful tool in the study
of the hardness of the clique and chromatic number problems. Here we describe some applications.
The first application is a non-technical one which simply allows us to rephrase the many known
reductions from the Max Clique problem to the Chromatic number problem in a simpler and more
convenient way. The remaining applications use the fact that the equivalence between fpcp and
Max Clique allows us to easily shift gaps, in the Max Clique problem, from one place to another.

Loosely speaking, these applications use the fact that the complexity of the promise promblem
log, ¢(N)

w remains

Gap-Clique, ; remains unchanged when changing the parameters ¢ and s so the

c,s
c

invariant. We stress that the ratio sl(%% does not remain invariant.

Rephrasing known reductions from Max Clique to Chromatic Number Starting with
the work of Lund and Yannakakis [LuYa], there have been several works on showing the hardness
of approximating the Chromatic number, which reduce the Max Clique problem to the Chromatic
number problem. Yet none of these results could be stated cleanly in terms of a reduction from
Max Clique to Chromatic Number without loss of efficiency - i.e., the theorems could not be stated
as saying “If approximating Max Clique to within a factor of N is NP-hard, then approximating
Chromatic Number to within a factor of N*(®) is NP-hard.” The reason for the lack of such a
statement is that these reductions use the structure of the graph produced by applying an FGLSS-
reduction to a FPCP result, and are hence really reductions from FPCP to Chromatic Number
rather than reductions from Max Clique to Chromatic Number. However now we know that FPCP
and Max Clique are equivalent, so we can go back and rephrase the old statements. Thus results
of [LuYa, KLS, BeSu] can be summarised as:

For every v > 0, if approximating Max Clique to within N* is NP-hard then approxi-
mating Chromatic Number to within N*®)=7 is also NP-hard, where:

(1) A(a)=min{l, =} [LuYal.

( 6’ 5—4a
(2) h(a)=min{, 5421 [KLS].
(3) h(a)=min{}, %=1} [BeSu].
(4) h(a) = min{d, 52} [Fu].

(Our discussion of Furer’s results [Fu] reflects only the best current understanding we have of them,
since it is on-going work.) We note that it is an open problem whether one can get a reduction in
which h(a) — 1 as @ — 1. We also note that Furer’s reduction is randomized while the rest are
deterministic.

Reductions among Max Clique Problems Next we present an invariance of the Gap Clique
problem with respect to shifting of the gaps. The following result has also been independently
observed by Feige [Fei], where he uses a randomized graph product to show the result. Our
description uses the properties of fpcp and its equivalence to clique approximation.

Theorem 4.1.10 Let k, ¢, €, be real numbers such that £ > 1 and 0 < ¢ < ¢ < 1. Then the
following hold:
(1) Gap-Cliquey -, y-r, <F Gap-Cliquey_c; y-x,. (Deterministic reduction.)

(2) Gap-Cliquey—«, y-re; <3 Gap-Cliques y-c; 5. y-res-



mrBellare, Goldreich, Sudan 94

Proof: Part (1) is proved via a well-known graph theoretic trick. Let G be an instance of
Gap-Clique -, y-x., With N nodes. We take the graph-product of G with a complete graph on
m nodes, to get a graph H on M = mN nodes. (By a graph-product of two graphs G1(V1, E1)
and Gy(Va, Ey) we mean a graph with vertex set Vi X V, where veritces (uy,us) and (v, vq) are
connected iff (u;,v;) € E; for both i = 1,2.) We choose m so that if G has a clique of size N*~¢,
then H has a clique of size M=, Specifically, setting m = N%, the requirement is satisfied
(as a clique of size N'=% in G yields a clique of size m - N1~ = NEE e o g 2Ty H)
Under this choice of m we will show that if G has no cliques of size N1=*¢ then H has no cliques
of size M*=*<. This will complete the proof of part (1).

Suppose H has a clique of size M'~¢. Then, by construction, G must have a clique of size

Mi-a Ni-a
m N me
— ]\71—61—62;61'61

and the claim follows.

For part (2) we use the equivalence between FPCP and gaps in MaxClique and apply amplificitation
properties of FPCP. Let ¢(N) = N~ and s(N) = N=*. Then, using Corollary 4.1.5 (for line 1),
Proposition 5.2.1 (for line 2) and Part (2) of Proposition 5.2.2 (for line 3), we get

Gap-Cliquey—., y-x, € FPCP,[log, N,0, N?]
C  FPCP. [t log, N,0,N*] (for any integer constant ¢ > 1.)

<X FPCPy ., [log,(N?/s),0, N7

R

The choice of the integer ¢ will be determined later.

Now, we go back to the clique-gap promised problem. Applying the FGLSS-reduction to the pcp
class FPCPy .« 5 [log,(N?/s'),0, N?] we obtain an instance of Gap-Cliqueyy—c,« yy-reie on an M-

vertex graph, where M = ]Z—f = N%tkat To clarify the last assertion and the rest of the proof, we

introduce the notation Gap—Cliquea(Nm(N)(N) which makes explicit the size parameter to which

def ¢

the promise problem refers. Thus, letting v = T e have obtained

Gap-Clique y—«; y—xei (N) <3 Gap-Clique 1y ey gps—rver (M)

(with M polynomial in N). Now, part (2) follows by setting ¢ so that v =

1
—r >
24tke; — €
t= ((1-21;?2)51} will do. (Actually, we get Gap-Cliquey-c, y-xe; (N) <5 Gap-Clique 10

for €, > €;, but this can be corrected by invoking item (1).) 1

M),

M—ke;(

The following theorem, was first shown by Blum [BI], using the technique of randomized graph
products. It essentially uses the gap-shifting idea to show that a seemingly very weak approximator
to the clique (say, N'~“-approximation algorithm for some ¢ > 0), can be used to obtain a very
good approximator to the clique number in graphs which are guaranteed to have very large cliques.
In particular, using such an algorithm, if a graph has a clique of size %, then a clique of size k%
can be found in such a graph in polynomial time. As observed by Blum, this can be translated
into significantly better algorithms for approximate coloring of a three colorable graph than known

currently (see Item (1) in Corollary 4.1.12 below). Here we derive the theorem using FPCP and



mrBellare, Goldreich, Sudan 95

the gap-shifting techniques. The parameters are generalized so as to be able to conclude, say, that
even if we have a 21Oﬁ—approximation (for Max Clique), then we can obtain non-trivially good

algorithms for 3-coloring (see Item (2) in Corollary 4.1.12).

Theorem 4.1.11 Let a € [0,1], 8 € [0,1/2) and & > 1. Define ¢ : Z+ — R+ ¢ € Rt and
g:Zt — R* so that

o
6;7\7 = —_—
) loghy N
o 2
T log,k
1/(1-6)
#log, k
and log, g(N) = (&) log?/(1=9) N,
a

Then there is a randomized poly(N2+°1°829(N)) time reduction of instances of Gap-Clique, /, 1/, to
M -vertex instances of Gap—Clique%M_E(M)QM_HE(M).

Remark: Observe that g(N) = N°M). Also, for 3 = 0 we have ¢(N) = a and g(N) = k=. Thus, the
theorem states that given a %]\41_2“ approximator for clique one can one can solve Gap-Clique, /; ; /5.
in polynomial-time, where k' = k'/.

Proof: As usual we first reduce Gap-Clique to FPCP and then amplify.
Gap-Clique, 1/, €  FPCPy /,[log, N,0, N7
C  FPCP(i/py 19y [tlog, N,0, N7 (for any function ¢ : Z+ — Z+.)
<® FPCP%(l/k)¢72(1/g)t[log2N2gt,O,N2]
We now show that by setting ¢ = clog, N and using the FGLSS-reduction, the above reduces in
poly(M)-time to Gap-Cliquey -« 5p—e41 in an M vertex graph, where M = NZg(N).

In case the graph is a no-instance the size of the clique is most 2(1/g(N))*- M = 2N?2. In the case
the graph is a yes-instance then the clique size is at least %(1/k)’ - M. Thus it suffices to show that
2N? < 2MM) and 2k! < 2M M) respectively. Taking logs in both cases it suffices to show that

2log, N < €(M)log, M (4.1)
tlog, k < €(M)log, M (4.2)

We first lower bound the right hand side of both equations.

e(M)log, M alogi™® M
alog,™"(g(N)")

at' =% log,™" g(N)

v

v

log, k
a-(clog, N)'77. (Cﬁﬁlogg N)

«

= clog, N log, k

Inequality (4.1) now follows from the fact that and clog, & = 2. Inequality (4.2) follows from the
fact that ¢t = clog, N. 1



mrBellare, Goldreich, Sudan 96

The following result was derived as a corollary by Blum [Bl] and shows the application of the above
theorem to coloring graphs with low-chromatic number with relatively small number of colors. We
warn the reader that the corollary does not follow directly from the above theorem; this is because
it uses a Levin-reduction! from the search version of chromatic number to the search version of
the clique problem. However, it is possible to define search versions of all the gap problems above
appropriately and verify that all the reductions work for the search problems as well (i.e., they are
in fact Levin-reductions). Thus the following can be derived as a corollary to the above.

Corollary 4.1.12 TLet k < oc.

(1) For € > 0, given an N'~¢ approximator to the clique, one can color any k-colorable graph on
M nodes with O(k'/¢log M) colors in polynomial time.

(2) For ¢(N) = w((log N)~%/2), given an N'=<(™) approximator to the clique, one can color any
k-colorable graph on M nodes with M°")-colors in time MU M),

4.2 On the Limitations of Some Common Approaches

In this section we provide lower bounds on the free-bit complexity of two tasks which are central
to all existing (“low-complexity”) probabilistically checkable proofs. Specifically, we consider the
task of checking that a string (given by oracle access) is “close” to a valid codeword and the task of
checking that one oracle is an encoding of a projection of a string encoded by a second oracle. Here a
string is considered close to the code if its distance from some codeword is less than half the distance
of the code. Loosely speaking, we show that each of these tasks has amortized free-bit complexity
of at least one (and this is tight by the codes and tests presented in Section 3.13). Furthermore,
we show that the amortized free-bit complexity of performing both tasks (with respect to the same
given oracles) is at least {wo (and also this is tight by Section 3.13). We consider these bounds
as an indication that one will have to depart significantly from the known paradigms in order to
obtain lower (than two) amortized free-bit complexity for NP.

4.2.1 The tasks

Our definitions of the various tasks/tests are quite minimal and do not suffice for the applications.
However, as we are proving lower bounds this only makes our results stronger.

Loosely speaking, the first task consists of testing that an oracle encodes a valid codeword, or
is “close” to a valid codeword, with respect to an error-correcting code of non-trivial distance (i.e.,
distance greater than 1). The condition regarding the distance of the code is essential since the
task is easy with respect to the identity map (which is a code of distance 1). We remark that
testing “closeness” to codewords with respect to codes of large distance is essential in all known
pep constructions [BFLS, FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu].

The absolute distance between two words w,u € {0,1}", denoted A(w, w), is the number of bits
on which w and u disagree. We say that the code F : {0,1}* — {0,1}* has absolute distance d if
for every m and every z # y € {0,1}™ the absolute distance between F(z) and E(y) is at least
d(m). The absolute distance between a word w and a code E, denoted Ag(w), is defined as the
minimum absolute distance between w and a codeword of F.

Definition 4.2.1 (codeword test): Let £ : {0,1}™ — {0,1}" be a code of absolute distance d > 1.
A codeword test (with respect to F) is an oracle machine, T, such that TE(®)(R) accepts for all

! A Levin-reduction is a polynomial-time many-to-one reduction which is augmented by corresponding polynomial-
time witness transformations.



mrBellare, Goldreich, Sudan 97

a, R. The error probability of T is defined as the maximum accepting probability of T over oracles
A of absolute distance at least |d/2]| from the code F; namely,

max {Prg [T*(R) accepts] }
Ae{o,1}» S.t. Ag(A)>|d/2]

(Nothing is required with respect to non-codewords which are “close” to the code.)

We do not know if our lower bounds apply to a more relaxed definition in which the codeword test
is required to reject only strings which are at distance d or more from the code; namely, when the
error probability of T is defined as

max {Prg [T*(R) accepts] }
Ae{0,1}» S.t. Ap(4)>d
We propose the determination of the amortized free-bit complexity of such a relaxed codeword test
as an open problem. The relevance of this problem was discussed in the introduction.

The second task is defined with respect to a “projection function” 7 and a pair of codes, F;
and F,. Loosely speaking, the task consists of checking if the string F-encoded by the first oracle
is mapped by 7 to the string that is Fs-encoded by the second oracle.

Definition 4.2.2 (projection test): Let Ei: {0,1}™ — {0,1}" and E,: {0,1}* — {0,1}" be two
codes and let 7 : {0,1}™ — {0,1}* be a function. A projection test (with respect to the above)
is a two-oracle machine, T, such that TF1()F2(7())(R) accepts for all a, R. The error probability
of T is defined as the maximum accepting probability of T over oracles pairs (F;(a), Fo(b)) where
b # m(a); namely,
Ex(a),Ea(b
o s.rél.ai((a#b {PrR [T (a).B2(0) (R accepts]}

(Nothing is required with respect to non-codewords.)

Finally, we consider a test T" which combines the two tests above; namely, T takes two oracles
A and B and performs a codeword test on A and a projection test on the pair (A, B).

Definition 4.2.3 (combined test): Let F;: {0,1}” — {0,1}" be a code of absolute distance d > 1
and E: {0,1}* — {0,1}" be two codes and let 7 : {0,1}™ — {0,1}* be a function. A combined test
for (Ey, E,,m) is a two-oracle machine T such that TF1(2)E=(*(a))(R) accepts on all a, R. The error

probability of T is defined as the maximum accepting probability of 7" over oracles pairs (A, B)
where either Ag, (A) > |d/2| or A = FEi(a), B = F5(b) but m(a) # b; namely,

A,B
max {Prg [T*"(R) accepts]} .

where § = {(A, B) : (Ap,(A) > |d/2]) or (3a,bs.t. A= Ey(a) and B = Ey(b) and 7(a) # b)}.

(Nothing is required with respect to non-codeword pairs, (A, B), which are “close” to some pair

(Fi(a), Es(b)) with m(a) #b.)



mrBellare, Goldreich, Sudan 98

Conventions and Notations

The pattern of test 7" on access to oracle A (resp., oracles A and B) when using coin-sequence R
consists of (R and) the sequence of queries and answers made by 7'. Namely, this pattern, denoted
pattern,.(A; R)} (resp., pattern,; (A, B; R)}), is defined as the sequence (R, ¢, a1, ..., ¢, a;) where ¢;
is the ™" query made by T on coin-sequence R and after receiving the answers a,,...,a;_;. We
include the queries in the pattern for sake of clarity (but they can be easily reconstructed from
the coin-sequence and the answers). In case T uses two oracles, we may assume that the queries
specify to which oracle they are addressed. For simplicity, we assume in the rest of this subsection
that the test has access to one oracle, denoted A.

The set Acer(R) is defined to be the set of accepting patterns of 7' on coin-sequence R. Clearly,

Accr(R) = {pattern, (A; R) : T*(R) accepts}

Recall that T is said to have free-bit complexity f if for each possible coin-sequence R it holds
that |Accr(R)| < 2/. We say that T has average free-bit complexity f., if Eg[|Accr(R)|] < 27/,
when the expectation is taken uniformly over all possible coin-sequences. The amortized free-bit
complexity of a test is defined as e (17 where f,, is the average free-bit complexity of the test
and € is its error probability.

4,.2.2 Lower Bound for the Codeword Test

Proposition 4.2.4 For any code of absolute distance greater than 1, the Codeword Test has
amortized free-bit complexity of at least 1 — o(1).

The amortization in the above proposition is to be understood as taking place on a fixed number
of free-bits whereas the length of the oracle grows. Actually, we can allow both the oracle-length
and the free-bit count to grow, provided that the logarithm of the number of codewords grows
faster than the free-bit complexity. Alternatively, we can consider a fixed oracle length and a fix
bound on the number of free-bits. Actually, this is done in the following technical lemma from
which the above proposition follows.

Lemma 4.2.5 Let £ : {0,1}™ — {0,1}" be a code of absolute distance d > 1, and let T be
a codeword test with respect to E having average free-bit complexity f,,. Then, T has error
probability at least % — ﬁ, where F = 2/+v and M = 2™. Furthermore, T has error probability at
least 2 — 27>,

Proof: Fix an arbitrary coin-sequence R, and let F denote the cardinality of the set Accr(R).

Let @y, as be selected independently and uniformly in {0,1}™, and consider the codewords F(a,)
and E(a,). With probability - we have a; = a, and otherwise A(E(a,), E(as)) > d. From a,
and a,, we construct an oracle A(ay,as) as follows: If a; = a,, then A = F(ay). Otherwise, we
construct A(ay,as) so that it agrees with the value of the bits of both E(a;)’s whenever they are
the same and is at distance [d/2] from FE(a;). This can be done as follows: let S be the set of
positions on which E(a;) and F5(a,) disagree and let S be a subset of S of cardinality [d/2]. Then
A(ay,a5) equals E(a;) on all positions not in S’ (and equals F(a5) on the positions in 7).

We claim that, when a; # a,, the oracle A% A(ay,a,) is at distance at least |d/2] from the code
(i.e., Ag(A) > [d/2]). This can be proved as follows: Consider any a € {0,1}™ and observe that
by the triangle inequality

A(A; E(a)) > A(E(a1), E(a)) = A(E(a1), A) > d = [d)2] = [d/2]



mrBellare, Goldreich, Sudan 99

We now claim that

1
A(ay,a2)
Pra, as {T (R) accepts] > s

where the probability is taken uniformly over all possible choices of ay,a, € {0,1}”. The key
observation is that if pattern,(FE(a;); R) equals pattern,(FE(as); R), then pattern,(A(aq,a,); R) will
be equal to pattern;(E(a,); R) (since no query of T(R) falls in the set S — defined above). Thus,
since TE(@)(R) accepts, T4(@122)(R) must accept too. This suggests to lower bound the proba-
bility that T4(*1%2)(R) accepts by the probability that pattern,(E(a;); R) = pattern,(E(as); R).
Consider an enumeration, ay, ..., ap,, of the patterns in Accy(R) and denote by p; the probability
that pattern,(FE(a); R) equals the :*" pattern in this enumeration, when a is uniformly selected
in {0,1}™ (i.e., p; < pr, [pattern,(FE(a); R) = o;]). Thus, when a; and a, are picked at random,
the plobablhty that patternT(E(al) R) = patternT(E(az); R) is YI7 p?. Subject to the condition
S, p; = 1, the quantity Y17 p? is lower bounded by - Van (with an equality occurring when the p;’s
are equal)

The following observations now bound the error of T":

Pra, as [TA(‘“"“)(R) accepts and a; # az] > Pry o, {TA(‘“"“)(R) accepts] — Pry, 4, a1 = as]

1 1

>
- Fg M

All the above holds for any coin-sequence R. Now, we let R be uniformly chosen and get

1 1
Prg a, as [TA(C“"’?)(R) accepts and a; # aQ] > Eg [ ] S—

Fr M
1 1
>
- F M

The last inequality follows by Jensen’s inequality.) Thus there must exist oracles a; and a, with
y y q y
a; # ay such that

Prg [TA(‘“"”) acceptb]

But the oracle A(ay,as) above satisfies Ap(A(ay,asz)) > Ld/QJ 1mplying that the error of T' is at
least = — ﬁ

For the “furthermore” part observe that if Fr = 1 for some coin-sequence R then pattern,(E(a,); R)
= pattern, (F(as); R), for every two ay, ay € {0,1}™. It follows that, for every a; # a,, given access
to the oracle A(a;,a,) and using coin-sequence R, the test T" accepts (and is wrong in doing so).

Thus, for every a; # ao,
Prgp [TA(‘“"“)(R) accepts] > Prp[Fr =1]

and the Furthermore Claim follows by using Markov’s Inequality (i.e., Prg [Fr > 1] < Eg [Fg — 1]).
|

Proof of Proposition 4.2.4: Let T be a test for the code F : {0,1}* — {0,1}* so that E
maps m-bit strings into n(m)-bit strings. Suppose that 7" has average free-bit complexity f(m)
and error €(m), as a function of m (the length of strings encoded by the oracle). We first assume



mrBellare, Goldreich, Sudan 100

that f(m) > 1. Using Lemma 4.2.4 (and letting p(m) Lef

free-bit complexity of T as follows

2/(m)=m) e lower bound the amortized

fm) L f(m)
log,(1/e(m)) — _10g2(2f(;m) - 2%)
f(m)

J(m) —log,(1 = p(m))

f(m)
J(m) + p(m)
> 1-p(m)

(For the last inequality, we have assumed f(m) > 1.) Thus, for this case, the proposition follows
by our convention that the number of codewords (denoted 2™) grows faster than exponential in
of (m)
2m

the case in which f(m) > 1 does not hold. We consider two sub-cases. In the first sub-case, we
assume that f(m) — 0 for some subsequence of the m’s. For these m’s the Furthermore-part of

Lemma 4.2.4 guarantees that e(m) > 2 — 2/(™)_ Setting g(m) L' 2/(m) _ 1, we lower bound the

amortized free-bit complexity by

f(m) S log,(1+ g(m))
log,(1/€(m)) — —logy(1 —g(m))

g(m)
(m)

For the other sub-case, we have f(m) > t, for some constant ¢ > 0. Applying 7" for ¢ times we get

a test 7" with average free-bit complexity ¢ - f(m) > 1 and error €(m) = ¢(m)*, which maintains

the amortized free-bit complexity of T' (since _lofg(”l)(m) = —12g(:73m))' Applying the above analysis

the free-bit complexity f(m) (i.e., p(m) = — 0 with n — o0). Finally, we need to address

N

to T", the proposition follows. 1

4.2.3 Lower Bound for the Projection Test

A projection function is a function 7 : {0,1}* — {0, 1}* having the property that for every m there
exists a k so that 7 maps {0,1}™ onto {0, 1}*.

Proposition 4.2.6 For any pair of codes used in the two oracles and any projection function, the
Projection Test has amortized free-bit complexity of at least 1 — o(1).

Again, the proposition is proved by the following technical lemma. Actually, the lemma refers to
any function 7 : {0,1}™  {0,1}* and its conclusion depends on the cardinality of the range of ©

(which in case of a projection function equals 2¥). Abusing notations we let 7(.9) o {m(a):aeS}.

Lemma 4.2.7 Let E; : {0,1}" — {0,1}", E, : {0,1}* — {0,1}* and 7 : {0,1}™ — {0,1}*
be as in Definition 4.2.2, and T be a projection test with respect to them having average free-bit
complexity f,,. Then, T has error probability at least + — &, where K = |7({0,1}™)| and F' = 2/,
Furthermore, if K > 1 then T has error probability at least 2 — 27av,



mrBellare, Goldreich, Sudan 101

Proof: Fixing an arbitrary coin-sequence R, let F |[{Accr(R)}|. We consider the behavior of

the test T" when given oracle access to a pair of randomly and independently selected codewords.
Specifically, let S C {0,1}™ be a set of K strings such that for every b € 7({0,1}™) there exists an
a € S satisfying m(a) = b. We consider the behavior of T when given access to the oracles F;(a)
and FEs(7m(a')), where a and @' are independently and uniformly selected in S. With probability
+, we have 7(a) = m(a’). On the other hand we claim that, given access to such pair of random
oracles, T accepts with probability at least i Once the claim is proven, the lemma follows (as in
the proof of the previous lemma).

Consider the set of all Fr possible accepting patterns of 7" on access to oracles, Fi(a) and Fy(7(a)),
where @ € S. Each such pattern consists of a pair (a, 3), where a (resp., §) denotes the transcript
of the test’s interaction with E;(a) (resp., Fo(m(a))). Enumerating all possible Fg patterns, we
denote by p; the probability that the i*® pattern occurs, when 7T is given access to the oracle-pair
(Ei(a), Es(m(a)) where a is uniformly selected in 5. Namely,

P = Procs [pattern,(F1(a), Es(7(a)); R) = (i, 5;)]
where (a;, 3;) is the i™ accepting pattern for T(R). Clearly,
Pry wes [patterny (Eq(a), Ex(m(a)); R) = patterny (Ei(a'), Ex((a')); R) = (03, 8;)] = p; ~ (4.3)

We now claim that the probability that a pair of independently chosen random oracles (i.e.,
(E1(a), E5(b)) selected by uniformly selecting a,a’ € S and setting b = 7(a’)) leads to the i
pattern is at least p?; namely,

Prowes [patterny(Ei(a), Ex(r(a'); R) = (as, ;)] > pi (4.4)

Eq. (4.4) is proven by a cut-and-paste argument: Suppose p ! pattern,(E1(a), Fa(m(a)); R) equals
p' < pattern, (E1(a’'), Eo(7(a’)); R) and consider a computation of TF(®)-E=(r(a))(R). Proceeding
by induction, and assuming that the first ¢ queries are answered as in p, we conclude that the ¢+ 1°*
query (in our “mixed” computation) is identical to the ¢ 4+ 1°* query in p = p’. If this query is
directed to the fist oracle then it is answered by Fi(a) (as in p) and otherwise it is answered by
Ey(m(a’)) (asin p’). In both cases the answer matches the +1°" answer in p = p’. We conclude that
whenever p = p/, the computation of TF1(9).F2(7(#))( R encounters the same pattern (p). Thus, the
probability that the computation of TEl(a)’E2(”(al))(R) encounters the i pattern is lower bounded
by the expression in Eq. (4.3), and Eq. (4.4) follows. (We remark that for non-adaptive tests, the
probability that the i*® pattern is encountered equals Ef:l pipi, where p. (resp., pi) is the sum of
all p;’s satisfying o; = a; (resp., 3; = ;). Actually, the same holds for any test which selects its

queries for each oracle independently of answers obtained from the other oracle.)

Using Eq. (4.4), we get

Fr
Pr, wes [pattern,(Ei(a), Eo(m(a’)); R) € Acer(R)] > pr
i=1

1

Fr

and the main part of the lemma follows. Again, the furthermore part follows by observing for
Fr =1, pattern;(Eq(a), Es(7(a)); R) = pattern,(E;(a’), Es(7(a’)); R), for every two a,a’ € {0,1}™.
Again, this implies that, for every a; # a,, given access to the oracle-pair (F1(a), Es(7w(a’))) and
using coin-sequence R, the test 7' (wrongly) accepts. 1

>



mrBellare, Goldreich, Sudan 102

4.2.4 Lower Bound for the Combined Test

Proposition 4.2.8 For any pair of codes used in the two oracles, so that the first code has absolute
distance greater than 1, and for any projection function, the Combined Test has amortized free-bit
complexity of at least 2 — o(1).

Again, the proposition is proved by the following technical lemma. Loosely speaking, the lemma
asserts that a combined test of free-bit complexity 2f must have error probability at least é 227,
The lower bound extends to the case where 2f is a bound on the average free-bit complexity; the
error probability in this case can be lower bounded by 2 - 277 — see details below. It follows that
the amortized free-bit complexity of such a test must be at least % ~ 2 (for large f’s). The
restriction to large f’s does not really weaken the result. Suppose on the contrary that there exists
a test with amortized free-bit complexity f..,. Then, for any sufficient large ¢, we can obtain a test
with )free—bit complexity 2f Ly fam and error 2%, By the above tf% > % ~ 2 (as f is now
large).

Lemma 4.2.9 Let FE; : {0,1}™ — {0,1}" be a code of absolute distance greater than 1, F, :
{0,1}* — {0,1}", and = : {0,1}™ — {0,1}* be a projection function. Suppose that T is a
combined codeword and projection test with respect to the above having free-bit complexity 2f.

Then, T has error probability at least - — - — ==, where K = 2F, F = 2/, and M is the minimum,

8F ~ 2K  4M>
over all b € {0,1}*, of the number of a € {0,1}™ projected by 7 to b (i.e., M = minge o3+ {|{a :
m(a)=0}|}). Furthermore, if 2f < 1 and max{M, K'} > 1 then T has error probability 1.

Proof: The “furthermore” part follows immediately by any of the furthermore parts of Lemma 4.2.5
or Lemma 4.2.7 (as 2%/ must be an integer and so 2f < 1implies f = 0). The proof of the main part
of the lemma uses both strategies employed in the proofs of Lemmas 4.2.5 and 4.2.7. We consider
two cases. The first case is that for some F,(b), half of the possible (coin-sequences) R’s have at
most F' accepting patterns with respect to the coin-sequence R and second oracle B = Fs(b). In
this case we employ the strategy used in the proof of Lemma 4.2.5, restricted to oracles constructed
by combining two uniformly selected codewords Fi(a;)’s satisfying 7(a;) = b. The second case is
that for every b € {0,1}*, for half of the possible (coin-sequences) R’s, the number of accepting
patterns with respect to the coin-sequence R and second oracle B = Fy(b) is at least F. In this
case we show that many possible B’s must fit into fewer than %2 accepting patterns and we may
employ the strategy used in the proof of Lemma 4.2.7. Details follow.

In the sequel § € [0,1] is a constant to be determined later. (In the above motivating discussion
we have used § = % but a better bound follows by letting ¢ be larger.)

Case 1: there exists b € {0,1}* so that for at least (1 — §) fraction of the possible (coin-sequences)
R’s, hereafter called good, the number of accepting patterns with respect to the coin-sequence R
and second oracle (fixed to) B = Fy(b) is at most F.

Fixing this b, we consider M possible a’s satisfying 7(¢) = b. Employing the argument of

Lemma 4.2.5, we get that for each of these good R’s, a random oracle A (constructed using two

uniformly chosen a’s as above) is wrongly accepted with probability at least & — 4z. By an averag-

ing argument, it follows that there exists a pair of oracles (A, B) on which T errs with probability

at least
(1-48)- <%— ,\14) (4.5)




mrBellare, Goldreich, Sudan 103

Case 2: for every b € {0,1}*, for at least a § fraction of the possible (coin-sequences) R’s, the
number of accepting patterns with respect to the coin-sequence R and second oracle B = FEy(b) is
at least F.

Let v < 6 be a parameter to be determined later. By a counting argument, for at least a %

fraction of the possible R’s, hereafter called good, there exists a set, denoted Tlg, of at least - 2
possible b € {0, 1}* so that there are at least F' accepting patterns which are consistent with coin-
sequence R and second oracle fixed to B = Fy(b). (Namely, let g denote the fraction of good R’s.

, 6—
Then g+ (1—yg)-v > é and g > (=2 follows.)

Let S C {0,1}™ be a set of 2* strings, defined as in the proof of Lemma 4.2.7, so that 7 maps S onto
{0,1}*. Fixing a good coin-sequence R, we adapt the strategy used in the proof of Lemma 4.2.7
as follows. We consider a set Sg C 5 of |IIg| strings so that @ maps S onto Iz, and enumerate
the accepting patterns which occur when the test, using coins R, is given access to a oracle-pair
(Ei(a), Es(m(a))), where a is uniformly chosen in Sz. We first claim that there are at most ¥ such
patterns. Namely,

Claim: For any good R, |{pattern;(E;(a), Es(m(a));R):a € Sg}| < F.

Proof: By definition of Ilg, for each b € 1y, there are at least F’ accepting patterns consistent with
the coin-sequence R and the second oracle F5(b) (and out of them only one fits the first oracle E;(a)
where a € Si and 7(a) = b). By a cut-and-paste argument, if (R, a, 3) and (R, o/, 3) are accepting
patterns for second-oracle Fy(b) and if (R,a, ) is an accepting pattern for second-oracle Fo(b')
then (R, a’,3) is also an accepting pattern for second-oracle E,(b’). It follows that the accepting
patterns of two FE5(b)’s either collide or do not intersect. Thus, the number of accepting patterns
for the various (Fi(a), Eo(7w(a)))’s, where a € Sg, is at most %2 = F and the claim follows. O

Now we consider what happens if one selects independently and uniformly a,a’ € S. Following
the proof of Lemma 4.2.7, with probability &, we have 7(a) = 7(a’) (and otherwise 7(a) # 7(a’)).
On the other hand, given access to such pair of random oracles, the test accepts with probability
at least 7?2 - % (The 42 factor is due to the probability that a,a’ € Sg, whereas the % factor
corresponds to the analysis which supposes that @ and @’ are uniformly selected in Sg).

The above analysis holds for any good coin-sequence R. Using the lower bound on the fraction of
good R’s, it follows that for a % fraction of the R’s, the probability that the test errs, on coin-
sequence R when given access to a random pair of oracles (selected as above), is at least % - %
By an averaging argument, there exists a pair of oracles for which the test errs with probability

b—y (9* 1
— (L= 4.
= (5 %) (45)

It is left to select é and v so to maximize the minimum among the expressions in Equations (4.5)

and (4.6). (But why bother?) Setting § = 2 and v = £ we lower bound these expressions by

ﬁ — ﬁ and # — ﬁ, respectively, and the (c4urre11t stateinent of the) lemma follows. |

To prove a bound for the case of average free-bit complexity F?, we first apply Markov’s Inequality

and conclude that all but an e fraction of the coin-sequences have at most G? ! F; accepting

patterns (in which this fixed coin-sequence appears). (We can use any 0 <e<1.) We then consider

only those coin sequences (and apply the same argument as above to each of them). The averaging

argument at the end of the above proof then yields that there exists an oracle-pair on which T errs
1 1 1

on at least a 5 — 5= — 57 fraction of these coin-sequences. It follows that this oracle makes T err



mrBellare, Goldreich, Sudan 104

with probability at least (1 —€) - (s5 — 5= — +%7) (which equals (1 —¢) - (ﬁ — ;= — 2)). Using

] L\8G 2K "M
€ = 3, we get a lower bound of &5 — 5% — 537+



CHAPTER b

PCP: Properties and Transformations

5.1 The Complexity of PCP and FPCP

In this section we present several results regarding the complexity of languages acceptable by
probabilistically checkable proofs having, respectively, small query complexity, small amortized-
query complexity and small free-bit complexity. Thus, in the current section, notations such as
PCP, ,[r,¢] stand for classes of languages. The results can be extended to classes of promise
problems having such probabilistically checkable proofs.

5.1.1 Query complexity and amortized query complexity

In this subsection, MIP, ([r, p] denotes the class of languages accepted by a (one-round) p-prover
interactive proof system in which r is the randomness complexity, ¢ is a lower bound on the
probability of accepting yes-instances and s is an upper bound on the probability of accepting
no-instances. The corresponding class for probabilistically checkable proofs is PCP, ([r, ¢], where ¢
denotes the number of queries. In both classes only binary queries are allowed (indeed this is less
standard for MIP). The first part of the following lemma is folklore and is stated here for sake of
completeness.

Lemma 5.1.1 For all admissible functions ¢, s, r, p.

(1) MIP,  [r,p] C PCP, ([r,p].

(2) MIP,  [r,p] C MIP, o [r,p— 1].

Proof: Part (1) follows from the definition of PCP and MIP. Part (2) is shown as follows. Let V/

be an (r, p)-restricted MIP verifier. We define V' — an (r,p — 1)-restricted verifier who on input z
behaves as follows:

e V'’ tosses coins € for V.

o V' refers the first p — 1 queries of V' to the corresponding p — 1 provers obtaining answers
(bits) ay,...,a,_1, respectively.

o V' accepts if and only if there exists a, € {0, 1} such that V would accept answers a4,...,qa,
on input z and random string €.

105



mrBellare, Goldreich, Sudan 106

Suppose that provers P;,..., P, convince V to accept x with probability 6. Then, the provers
Py, ..., P,_; convince V' to accept z with probability at least § (because if V(z) accepts the tran-
script (€, a1, ..., a,) then V'(z) will accept the transcript (€, ay, ..., ap—1)). This justifies the bound on
the completeness probability of V. Suppose, on the other hand, that provers P;,..., P,_; cause V'
to accept z with probability §. Consider a uniformly selected strategy for another prover, denoted
P, (i.e., choose a random response for every question). Then, the probability that provers Py,..., P,
cause V to accept input z is at least 1 -§ (because if V'(z) accepts the transcript (¢, aq, ..., ap_)
then there exists a value a, € {0,1} so that V'(z) will accept the transcript (¢, a4, ...,a,) and with
probability one half P, answer equals this a,). This justifies the bound on the soundness probability

of V'. 1

The following proposition explores the limitations of probabilistically checkable proof systems which
use logarithmic randomness and upto three queries. Some of the qualitative assertions are well-
known; for example, when considering perfect completeness, 3 queries are the minimum needed

(and sufficient [ALMSS]) to get above P.

Proposition 5.1.2 (PCP systems with logarithmic randomness and at most 3 queries):

(1) (PCP with 1 query is weak): For all admissible functions s,¢ : Z+ — [0, 1], so that s is strictly
smaller than ¢, PCP, [log, 1] = P.

(2) (One-sided error pcp with 2 queries is weak): For all admissible functions s : Z+ — [0,1]
strictly less than 1, PCP; ([log, 2] = P.

(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < ¢ < 1
so that PCP, ,[log, 2] = NP. Furthermore, this holds for ¢ > 0.9 and s < Zc.

(4) (One-sided error pcp with 3 queries is not weak): PCP; g[log, 3] = NP.

(5) (One-sided error pcp with 3 queries is not very strong): Vs < 1, PCP, ,[log, 3] = P. Further-
more, Vs < 0.299, naPCP,  [log,3] = P, where naPCP is a restriction of PCP in which the
verifier is required to be non-adaptive.

Proof of Proposition 5.1.2, Part (1): Part (1) is obvious since an oracle 7 maximizing the
acceptance probability can be constructed by scanning all possible random pads and setting 7(q)
so that it “satisfies” the majority of random-pads for which the verifier makes query ¢. 1

Proof of Proposition 5.1.2, Part (2): The folklore proof commonly deals only with the non-
adaptive case. In general, the verifier V, demonstrating that L € PCP; [log, 2], may be adaptive.
We assume, without loss of generality, that V' always makes at least one query. Thus, after making
the first query, V' decides whether to accept, reject or make an additional query and accept only a
specific answer for it. Thus, the computation of V on input , random pad ¢ and access to a generic
oracle can be captured by two Horn clauses, each corresponding to a different answer-value for the
first query. Specifically, suppose that V' queries the oracle at location ¢ and upon receiving value
o accepts iff location j have value 7. Then, we write the Horn clause 77 — 77. (In case V always
accepts (resp., rejects) after obtaining value o from oracle location 7, we write the clause 77 — T
(resp., 77 — F).) In addition, for every i, we write the Horn clauses 70 — (-7}) and (-7)) — «;.
Thus, the computation of V', on input z and access to a generic oracle, can be captured by a
Horn formula, denoted ¢,, in which Horn clauses correspond to the various (polynomially many)
possible (random-pad,first-answer) pairs. Furthermore, ¢, can be constructed in polynomial-time
given z (and V). Using a (polynomial-time) decision procedure for satisfiability of Horn Formulae,
we are done. (Alternatively, we can use the linear-time decision procedure for 2-SAT due to Even

et. al. [EIS].) 1



mrBellare, Goldreich, Sudan 107

Proof of Proposition 5.1.2, Part (4): To see that PCP, [log, poly] C NP, for every s < 1,
consider a non-deterministic machine which tries to guess an oracle which makes the verifier (of the
above system) always accept. The other direction (of Part (4)) is shown in Theorem 3.11.3. |

Proof of Proposition 5.1.2, Part (3): To see that PCP, [log,poly] C NP, for every s <
¢, consider a non-deterministic machine which tries to guess an oracle which makes the verifier
accept with probability at least ¢. The NP C PCP, ([log, 2] result follows from the hardness of
approximating Max2SAT. Specifically, suppose that the following promise problem is NP-hard (via
Karp reductions): given a 2CNF formula decide whether there exists a truth assignment which
satisfies at least a ¢ fraction of the clauses or any truth assignment satisfies at most a s fraction
of its clauses, where 0 < s < ¢ < 1 are fixed constants. Then we can present a PCP, [log,2]
system for any L € NP. On input z, the verifier in this system, performs the reduction (of L to
the promise problem) obtaining a 2CNF formula ¢,, next it uniformly selects a clause of ¢, and
queries the oracle for the values of the variables in this clause (accepting accordingly). Using the
result in Section 3.8, we can set ¢ > 0.9 and s < % - C.

Remark: Tt may be possible to increase the ratio ¢/s by implementing the inner verifier used to
establish the NP-Hardness of Max25AT using arbitrary 2-literal clauses, rather than 2CNF clauses.
1

Proof of Proposition 5.1.2, Part (5): The result for general verifiers follows from Lemma 5.1.4
(below). The rest of the proof is devoted to the non-adaptive case. Let L € naPCP; [log, 3], and
let V' be a (non-adaptive) verifier demonstrating this fact. Without loss of generality, we may
assume that V' always makes 3 different queries. As a mental experiment we define, for every set
@ C {0,1}*, a “verifier” V who on input z acts as follows:

e V,, uniformly selects a random pad ¢ for V.

o Let ¢1,¢, and g3 be the three queries of V', on input z and randomness ¢. (The hypothesis
that V' is non-adaptive is crucial for the definition of ¢» and g¢3.)

o If all three (desired) queries are in () then Vi accepts (without making any query!).

o Otherwise (i.e., not all ¢;’s are in ()), then V; makes only the queries which lie in Q). Specif-
ically, for every j such that ¢; € @, the verifier V; makes query ¢;, obtaining an answer
denoted a;.

o Vj accepts z if and only if there exists a triple (by, by, bs) so that
e b; = a; for each ¢; € @; and

e V accepts the input 2 on randomness ¢ and oracle answers (b1, b, b3).

It is clear that for every set (), the verifier Vg uses logarithmic randomness and makes at most two
queries. At this point we don’t consider the issue of implementing V. The probability that Vg
accepts z (given access to oracle 1) is greater or equal to the probability that V accepts z (given
access to oracle 7). Thus, if V' can be led (by an appropriate oracle) to always accept the input z,
so can Vg. We now show that, for every z ¢ L, provided some condition (specified below) on @
holds, Vi, accepts o with probability strictly less than 1.

Claim. Fix any @ ¢ L and any set ). For ¢ = 0,1,2,3, let pf(Q)) denote the probability (taken over
V’s coin tosses) that V', on input z, generates ¢ queries in the set (). (Since V' is non-adaptive this



mrBellare, Goldreich, Sudan 108

is well defined.) Suppose that

=
1
—
O
S—
%
]

5 Pi(Q) > s
i=0
Then, given access to any oracle, Vi, accepts z with probability strictly less than 1.

that Vg, when given oracle access to 7, always accepts input ¢ L (i.e., accepts with probability
1). We will show that there exists a proof 7’ such that V', when given access to oracle 7', accepts
input z ¢ L with probability p*(@Q) > s, contradicting the soundness of V.

We start by considering a random oracle, denoted p, defined as follows. For every ¢ € @), we set
p(q) o 7(q). For every ¢ ¢ @, we let p(¢) be uniformly and independently distributed in {0,1}, We
now lower bound the accepting probability of V' when given access to p, using the hypothesis that
/o always accepts. Let € be a random-pad for V' and suppose that V' using random pad ¢ makes
m > 0 queries outside (). Then, using the random-pad ¢, the verifier V; accepts while refraining
from making m queries. It follows that V', using random pad ¢ and given oracle access to p, accepts
with probability at least 27, where the probability is taken over the choice of p. Since Vj, given
access to 7, always accepts z it follows that V', on access to a random p, accepts & with probability
at least S0 _ pZ_ (Q)- 5= = p*(Q). It follows that there exists an oracle 7’ so that, given access
to 7', the verifier V accepts 2 with probability at least p”(Q). Since z ¢ L we conclude, using the
soundness of V, that p”(Q) < s in contradiction to the hypothesis of the claim. O

Next we present a polynomial-time algorithm that, given z € {0, 1}*, efficiently constructs a set @)
with high p”(@Q). Note that there are only polynomially many queries to consider for membership
in @ (specifically these appearing in all possible computations of V on input z). We first consider
a randomized construction of a set (), in which each such query is included in ) with probability ¢
independently of all other queries, where ¢ is a fixed parameter. Now, the expected value of p”(Q))
equals Z?:o 23% - ¢, where ¢f is the probability that V' on input = makes ¢ queries which hit the
random set () (the probability is taken over V’s coin tosses and the random choice of @)). Clearly,
¢ = (3)¢'(1 — q)>*. Thus, the expected value of p*(Q) equals

(3

OEDIE=S (3) (=0 = 20— + 50 -0+ (1 - )

+=0

Using the method of conditional probabilities [ASE], given z, we can construct in (deterministic)
polynomial-time a set @ satisfying p*(Q) > p(q). In the construction we use the fact that, given a
partial specification of a set (), we can compute the expected value of p”(Q)) where the expectation
is taken over all random extension of Q. (Specifically, this is done by considering all random pads
for V' and considering for each such pad the number of queries which are yet unspecified. Each
such unspecified query is in @ with probability ¢.) Thus, we obtain a polynomial-time verifier V,
which uses logarithmically many coins and two queries. Furthermore, V, accepts any @ € L with
probability 1 and, provided p(q) > s, accepts @ ¢ L with probability strictly less than 1. We
conclude that if p(q) > s then, for some s’ < 1, L € PCPy y[log,2] = P (where the equality is due
to Part (2)).

To conclude the proof we need to select ¢ so to maximize p(q). Numerical experiments show that
there exists ¢ so that p(q) > 0.299 and PCP, g g9[log, 3] C PCP, [log,2] = P follows (for some
s" < 1). This completes the proof of Part (5). |

The (stronger) bound obtained in Lemma 5.1.2.5, let alone that it is restricted to the non-adaptive
case, is weaker than what can be proven for MIP proof systems (see next corollary). This contrast



mrBellare, Goldreich, Sudan 109

may perhaps provide a testing ground to separate PCP from MIP, a question raised by [BGLR].
The following corollary is obtained by combining Lemma 5.1.1 and Proposition 5.1.2.2.

Corollary 5.1.3 For s < 1/2, MIP, [coins = log, provers = 3] = P.

A general result which relates the query complexity of a probabilistically checkable proof system
and the ratio between the acceptance probabilities of yes-instances and no-instances, follows —

Lemma 5.1.4 For all admissible functions ¢, s, ¢, r,{ such that £ > 29,

PCP, ,[r,q] C RTIME <poly <n, 1 >)
’ c— 2ts

Furthermore, PCP,.  [r,q] C PSPACE, and if r and ¢ are both logarithmically bounded then
PCP,,[r,q] = P.

Proof: Let L € PCP, [r,q] and V be a verifier demonstrating this fact. Observe that for z € L, the
probability that V' accepts z, given access to a random oracle, is at least ;5. On the other hand, for
x ¢ L, the probability that V' accepts z, given access to any oracle, is at most s < 5;. Thus, we can
decide if 2 is in L by simulating the execution of V' with access to a random oracle and estimating
the acceptance probability, over V’s random choices and all possible oracles. In particular, we can

estimate this probability upto an e Lrg 55 additive term, with very high probability, by taking
poly(1/¢) samples. Alternatively, we can compute this probability in polynomial-space. Finally, in
case 7 and ¢ are both logarithmically bounded, we can (exactly) compute the probability that V'
accepts z, given access to a random oracle. To this end we loop through all possible random-pads
for V' and for each pad consider all possibilities of setting the oracle bits examined by V. Thus, for

5 < 57, we get a deterministic polynomial-time decision procedure. 1

The last assertion in the above lemma (i.e., PCP, ,[log,q] = P for £ > 27). cannot be strengthen

by omitting the (logarithmic) bound on ¢ since NP = PCP; [0, poly]. On the other hand, recalling
the definition of PCP we immediately get

be an admissible function strictly greater than 0. Then, for

Corollary 5.1.5 Let ¢ : Z+ — [0,1]
[0, 1],

every admissible function ¢ : Z+ —
PCP.[logn,1—€] =P

In particular, this holds for ¢ = 1.

Proof: L € PCP,.[log, 1 — €] implies that for some logarithmically bounded function m, we have
L € PCP, 5-n.[log, (1 — €) - m] and the corollary follows. |

The above results are focused on pcp systems with logarithmic randomness. However, proof
systems with unrestricted randomness (as considered in the next proposition) may also provide some
indication to the effect of very low query complexity. The results we obtain are somewhat analogous
to those of Proposition 5.1.2. Recall that PCPlé[poly,poly] equals NEXPT (Non-deterministic
exponential time) [BFL]. Thus, the power of pcp systems with polynomial randomness has to be
compared against NEXPT.

Proposition 5.1.6 (general PCP systems with at most 3 queries):



mrBellare, Goldreich, Sudan 110

(1) (PCP with 1 query is relatively very weak): For all admissible functions s,¢: Z* — [0, 1], so
that ¢(n) — s(n) is non-negligible*

PCP, [poly,1] C AM

where AM is the class of languages having one-round Arthur-Merlin proof systems (cf., [Bab]).

(2) (One-sided error pcp with 2 queries is relatively weak): For all admissible functions s: Z+ —
[0, 1] strictly less than 1, PCP,  [poly,2] C PSPACE.

(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < ¢ < 1
so that PCP, [poly, 2] = NEXPT.

(4) (Onme-sided error pcp with 3 queries is not weak): PCP, o 4[poly, 3] = NEXPT.

(5) (Ome-sided error pcp with 3 queries is not very strong): Vs < 1, PCPy [poly,3] = PSPACE.
Furthermore, Vs < 0.299, naPCP, ;[poly, 3] = PSPACE.

The first part of the proposition may be hard to improve since, as indicated in Proposition 5.1.7
Part (6), Graph Non-Isomorphism is in PCP 1 [poly, 1].

Proof of Proposition 5.1.6, Part (1): We first observe that a 1-query pcp system is actually a
one-round interactive proof system (cf., [GMR]). (The completeness and soundness bounds are as
in the pcp system.) Using well-known transformations we obtain the claimed result. Specifically,
we first reduce the error of the interactive proof by parallel repetition, next transform it into
an Arthur-Merlin interactive proof [GS], and finally transform it into an Arthur-Merlin interactive
proof of perfect completeness [FGMSZ]. We stress that all the transformations maintain the number
of rounds upto a constant and that the constant-round Arthur-Merlin hierarchy collapses to one-

round [Bab]. |

Proof of Proposition 5.1.6, Parts (3) and (4): For these parts we observe that the proof
systems used in the corresponding items of the proof of Proposition 5.1.2, do “scale-up”. Specifically,
it is easy to see that the outer verifier used for all proof systems in this paper does scale-up, yielding
a canonical outer verifier of randomness complexity O(log(T(n)) fo any language in Ntime(7'(n)),
provided n < T(n) < 2P°¥(), Furthermore, all inner-verifiers used in the paper operate on constant
sized oracles and so the composed verifier maintains the time and randomness complexities of the
outer verifier. In particular, the verifier used for establishing Theorem 3.11.3 can be scaled-up to
yield Part (4). The same holds for the verifier used for establishing Part (3) of Proposition 5.1.2.
(Note that although the exposition of the proof in Proposition 5.1.2 is in terms of reducing NP
to Max2SAT, what actually happens is that the verifier used to establish the NP-hardness of
Max2SAT (cf., Section 3.8) is implemented by a verifier which makes only two queries (out of a
constant number of possibilities).) 1

Proof of Proposition 5.1.6, Part (2): Following the strategy of the proof of the analogous
part in Proposition 5.1.2, we obtain a polynomial-space reduction of L € PCP, ([poly,2] to the
set of satisfiable 2-Horn formulae (i.e., Horn formulae in which each clause has at most 2 literals).
Namely, on input z, the reduction uses space poly(|z|) and produces a Horn formula ¢, (of size
exponential in |z|) so that z € L iff ¢, is satisfiable. Using a poly-logarithmic decision procedure
for satisfiability of 2-Horn formulae?, we can decide if ¢, is satisfiable using poly(|z|)-space. |

LA function f: 2T — 27 is called non-negligible if there exists a positive polynomial p so that Va : f(n) > p(l—n).
2For example, consider the following procedure. Given a 2-Horn formula, we construct a directed graph in which
the vertices are the literals of the formula and there is an directed edge from literal z to literal y if the formula



mrBellare, Goldreich, Sudan 111

Proof of Proposition 5.1.6, Part (5): The result for non-adaptive verifiers follows from Part (2)
by using the same strategy as in the analogous proof in Proposition 5.1.2. The result for general
verifiers follows by the Furthermore-part of Lemma 5.1.4 (i.e., PCP, [poly,¢] = PSPACE for
£>29). 1

5.1.2 Free-bit complexity

The class FPCP, ([r, f] is defined analogously to the class PCP. ;[r,q], except that we consider
the free-bit complexity (denoted f) instead of the query complexity (denoted ¢). The following
proposition demonstrates the limitations of probabilistically checkable proof systems with free-bit
complexity bounded by 1. We do not believe that similar limitations hold for amortized free-
bit complexity.?> The first three items refer to proof systems with logarithmic randomness. The
very first item shows that proof systems with two-sided error (non-perfect completeness) having
amortized free-bit complexity zero (and logarithmic randomness) suffice for AP. The third item
asserts that the second item cannot be strengthened neither with respect to increasing the free-
bit complexity nor with respect to referring to two-sided error. However, proof systems with
unrestricted randomness (as considered in the other items) may also provide some indication to
the effect of very low free-bit complexity. The last item can be viewed as (weak) evidence that the
result in the fourth item cannot be “drastically improved” (e.g., to yield FPCP, [poly,0] C BPP).

Proposition 5.1.7 (PCP systems with low free-bit complexity): Let s : Z* — [0,1] be an admis-
sible function strictly smaller than 1. Then,

(1) (PCP with logarithmic randomness and 0 free-bit):
There exists s < 0.885 so that NP C FPCP1 :[log,0]. Thus, NP = FPCP[log, 0].

(2) (Limitations of PCP with logarithmic randomness and 1 free-bit):
FPCP, ,[log, 1] = P. Also, FPCPy 1_(1/peiy)[coins = poly ; free = 1; pflen = poly] C BPP.
(3) (“Tightness” of Item 2): There exists s < 0.885 so that
— NP C FPCP, ,[log, 2];
— NP C FPCP, 14 [log, f] where f =log, 3 (i.e., 27 = 3);
— NP C FPCP, . [log, 1].
(General pcp with 0 free-bit): FPCP; ([poly, 0] C coNP.
(general pcp with 1 free-bit): FPCP, ([poly, 1] C PSPACE.
(Examples for pcp with 0 free-bit): Graph Non-Isomorphism, GNI, has a PCP system with

—
Ut
— ~— ~—

perfect completeness and soundness bound 1, in which the verifier makes a single query and
this query is free. Namely,

GNI € FPCPy 1[coins = poly ; free = 0; query = 1]

The same holds for QNR (“Quadratic Non-Residuosity” (cf., [GMR])) the set of integer pairs
(z,N) so that z is a non-residue modulo N.

contains the clause z — y. One can easily verify that the formula is not satisfied iff there exists a variable for which
every truth assignment yields a contradiction (i.e., “forcing paths” to contradicting values — cf., [EIS]). Thus, a
non-deterministic logspace machine can guess this variable and check that both possible truth assignments (to it)
yield contradictions. The latter checking reduces to guessing the variable for which a conflicting assignment is implied
and verifying the conflict via s-t directed connectivity. Since the latter task is in N'L, we are done. (Actually, 2SAT
is complete for coN L; see [JLL].)

*The conjecture is stated for systems with perfect completeness. For systems with two-sided error probability, we
know that they can recognize NP languages using zero free-bits — see below.



mrBellare, Goldreich, Sudan 112

Proof of Proposition 5.1.7, Part (4): Here we consider proofs with zero free-bits. TLet
L € PCP, 4[poly,0] and V be a verifier demonstrating this fact. By definition, for every possible
sequence of coin tosses for V, there exists at most one accepting configuration (of oracle answers
to the queries made by V'). Furthermore, by definition, this accepting configuration (if it exists)
can be generated in polynomial time, from the coin-sequence. Following is a non-deterministic
procedure that accepts L. It starts by guessing two sequences of coin tosses for V, generating the
corresponding accepting configurations and checking whether they are consistent. Clearly, if € L
then for all possible pairs of coin-sequences these configurations exist and are consistent (since an
oracle which always makes V' accept z does exist). On the other hand, if all pairs of coin-sequences
yield accepting and mutually consistent configurations then an oracle which always makes V' accept
x emerges. |

Proof of Proposition 5.1.7, Parts (2) and (5): Here we consider proofs with free-bit com-
plexity 1. Thus, for each possible sequence of coin tosses, there exist at most two accepting
configurations (which again can be efficiently found given the coin-sequence). We refer to these
two possible accepting configuration as to the 1-configuration and the 2-configuration of the coin-
sequence. In case a specific coin-sequence has less than two accepting configurations, we introduce
dummy configurations so that now each coin-sequence has two associated configurations. Given an
input z to such a pcp system, we consider the following 2CNF formula representing all possible
computations of the verifier with a generic oracle. For each possible sequence of coin tosses, ¢, we
introduce a pair of Boolean variables, 71 and 72, representing which of the two associated config-
urations is encountered (e.g., 71 = T means that the 1-configuration is encountered). To enforce
that a single configuration is encountered we introduce the clauses (r1V72) and ((—=71)V (=-72)). In
addition, in case the o-configuration of € is not accepting (but rather a dummy configuration) we
introduce the clause (-7Z) thus “disallowing” a computation in which it is encountered. Finally,
for each pair of coin-sequences we introduce clauses disallowing inconsistencies. Namely, suppose
that the o-configuration of ¢ is inconsistent with the 7-configuration of @, then we introduce the
clause ((—=7Z) V (=7Z)), which is logically equivalent to =(7Z A 7% ). The resulting 2CNF formula,
¢, is satisfiable if and only if there exists an oracle which causes V' to accept  with probability 1.
Thus, given 2, we need to test if ¢, is satisfiable. We consider two cases.

(1) In case V uses logarithmically many coins, the 2CNF formula ¢, can be generated from x
in polynomial-time. Using a polynomial-time decision procedure for satisfiability of 2CNF
formulae, we conclude that FPCP, [log, 1] = P. Using Proposition 5.2.2, we can randomly
reduce FPCPy 1_(1/poiy)[poly,free = 1,pflen = poly] to FPCPy i_(1/pay)[log, free = 1], and
FPCPy 1_(1/poly)[poly, free = 1, pflen = poly] C BPP follows. This establishes Part (2).

(2) In general (V may make polynomially many coin tosses), the 2CNF formula ¢, may have
exponential (in |z|) length and yet can be generated from z in polynomial-space. Using a
poly-logarithmic-space decision procedure for satisfiability of 2CNF formulae*, we can decide
if ¢, is satisfiable using poly(|z|)-space. Part (5) (i.e., FPCP, ([poly, 1] C PSPACE) follows.

Proof of Proposition 5.1.7, Parts (3) and (1): The first claim of Part 3 is justified by
Theorem 3.10.4. Applying Proposition 5.2.9 to this verifier (which indeed satisfies the condition of
this proposition), yields the second claim of Part 3. Applying Proposition 5.2.8 to the same verifier

*For example, note that 2CNF formulae can be written in Horn form and use the procedure described in the proof
of Proposition 5.1.6 Part (2).



mrBellare, Goldreich, Sudan 113

(with £ = 1 < f = 2), the third claim of Part 3 follows. Finally, applying Proposition 5.2.8 with
k= f =2, Part 1 follows. 1

Proof of Proposition 5.1.7, Part (6): We merely note that the interactive proof presented
in [GMW] for Graph Non-Isomorphism® constitute a 1-query pcp system with perfect completeness
and soundness bound % Furthermore, the query made by the verify has a unique acceptable answer
and thus the free-bit complexity of this system is zero. The same holds for the interactive proof
presented in [GMR] for Quadratic Non-Residuosity QNR, which is actually the inspiration to the
proof in [GMW]. 1

5.1.3 Query complexity versus free-bit complexity

The following proposition quantifies the intuition that not all queries are “free” (i.e., that the free-
bit complexity is lower than the query complexity). Furthermore, as a corollary we obtain that the
amortized (average) free-bit complexity is at least 1 unit less than the amortized query complexity.

Proposition 5.1.8 For admissible functions ¢, s, 7, ¢ such that r(n), ¢(n) = O(logn).
PCP, ,[r,q] C PCP, [ coins = r; free,, = ¢ — log,(1/s)]

Furthermore, for every admissible function ¢, PCP, [r, q] C FPCP, 5eq1y[r, ¢ — 1].

Proof: Let L € PCP,[r,q] and let V be the verifier demonstrating this. Fix an input z € X",
and let r = r(n),q = g(n),s = s(n) For a random string R € {0,1}", let Fi denote the number of
accepting patterns of V, i.e., F5 = |patterny (z; R)|. We first claim that if Eg [F5] > 27 - s, then
x € L. This is true since a random oracle 7 is accepted with probability Eg [Ff - 27¢] and in case
the claim does not hold we reach contradiction to the soundness condition (i.e., z ¢ L is accepted
with probability strictly larger than s).

We now construct a verifier, denoted V', witnessing I € FPCP'|[r, ¢ — log,(1/s)]. On input z, the
verifier first computes Eg [F%] (by scanning all possible R’s and generating all accepting patterns
for each of them). If Eg [Fg]) > 27 s, then V' accepts z (without querying the oracle). Otherwise
(i.e., if Eg [FE]) < 27-5), then V' simulates V and accepts if V' accepts. It follows that the average
free-bit complexity of V'’ on input z equals the corresponding quantify for V, provided the latter
is at most ¢ — log,(1/s), and equals zero otherwise. The first part of the proposition follows.

To establish the second part, for some t = #(n), we construct a verifier V" which, on input z,

proceeds as follows. First, V” computes ¢ = Eg [F£] and accepts if ¢ > 527 (just as V’). In case
q < 527, the new verifier proceeds differently: it randonly selects R as V does and computes FF.
If F§ > 277 then V" accepts and otherwise it invokes V' on input z and coins R. Clearly, this
guarantees that the free-bit complexity of V" is at most ¢ — {. To analyze the soundness of V",
note that when Eg[FE] < 527, it follows that Prg [F§ > 297%] < 2's (Markov Inequality). Thus,
the soundness error of V" is at most s + 2's and the second part follows. |

By computing the amortized average free bit complexity of the class of languages in the right hand
side of the containment above, we obtain the following consequence.

®On input a pair of graphs, Go and G4, the verifier uniformly selects i € {0,1} and generates a random isomorphic
copy of G;, denoted H. This graph H is the single query made by the verifier, which accepts if and only if the answer
equals 1.



mrBellare, Goldreich, Sudan 114

Corollary 5.1.9 For admissible functions ¢, r, ¢ with 7(n), ¢(n) = O(logn),
PCP,[r,q] CFPCP, [r,q - 1].

where FPCP. |-, f] denotes a class analogous to FPCP [+, f] in which average free-bit complexity
is measured instead of (worst-case) free-bit complexity.

The above corollary clinches the argument that the amortized query complexity is incapable of
capturing tha approximability of the clique function. Previously we had argued thus based on the
assumption that the clique number may be hard to approximate to within Nz (i.e., establishing
such a clique NP-hardness would require showing that NP C PCP[log, 1 —¢], for every € > 0, which
is impossible® as we’ve shown that PCP[log, 1 — ¢] C P). Now, we can remove this assumption
also. Suppose that, for some g (e.g., g = %), MaxClique is NP-hard to approximate to within a
N'Y(+9) factor, but it can be approximated to within a N'/(+9=9 factor in polynomial-time, for
every 6 > 0 (actually, we can handle any ¢ < 1). Furthermore, supposed that the hardness result
is demonstrated by showing that NP C PCP[log, g — €], for every € > 0. Then, using the above
corollary, we get NP C FPCP [log, g — 1 —¢], for every € > 0. and an NP-hardness result of clique
approximation” upto a N1/(1+g=1=9+) — N1/9 follows, in contradiction to our hypothesis that such
approximations could be achieved in polynomial time. To summarize, attempts to establish the
factor N'/7 for which it is NP-hard to approximate MaxClique via amortized query complexity will
always fall at least one unit away from the truth; whereas amortized free-bit complexity will yield
the right answer.

5.2 Transformations of FPCP Systems

We present several useful transformations which can be applied to pcp systems. These fall to two
categories:

(1) Transformations which amplifies the (completeness versus soundness) gap of the proof system,
while preserving (or almost preserving) its amortized free-bit complexity.

(2) Transformations which move the gap location (or, equivalently, the completeness parameter).
The gap itself is almost preserved but the moving it changes the free-bit complexity (and
thus the amortized free bit complexity is not preserved). Specifically, moving the gap ‘up’
requires increasing the free-bit complexity, whereas moving the gap ‘down’ allows to decrease
the free-bit complexity.

All these transformations are analogous to transformations which can be applied to graphs with
respect to the max-clique problem. In view of the relation between FPCP and the clique promise
problem (shown in Section 4.1), this analogy is hardly surprising.

In this section, we use a more extensive FPCP notation which refers to promise problems
(rather than to languages) and introduce an additional parameter — the proof length. Specifically,
FPCP, ([r, f,I] refers to randomness complexity r, free-bit complexity f and proof-length .

5.2.1 Gap amplification maintaining amortized free-bit complexity

We start by stating the simple fact that the ratio between the completeness and soundness bounds
(also referred to as gap) is amplified (i.e., raise to the power k) when one repeats the pcp system (%
times). Note, however, that if the original system is not perfectly complete then the completeness
bound in the resulting system gets decreased.

5The entire discussion assumes P # NP. The discussion is anyhow mute otherwise.
" Here we use the observation that the FGLSS-reduction works also for amortized average free-bit complexity.



mrBellare, Goldreich, Sudan 115

Proposition 5.2.1 (simple gap amplification): For all ¢,s: Z+ — [0,1] and &k : 2+ — Z+,

FPCP..[r, f,1] C FPCP. i[kr, kf,1].

Proof: Let (Y,N) € FPCP, [r, f,1] and let V be a verifier witnessing this with query complexity
q: Z%Y — Z*. Given k : Zt — Z*, we define a verifier V(¥) as follows: On input = € {0,1}", let

r=r(n),k==kn),f= f(n),l=1(n)and ¢ = g(n).
o V) picks k random strings %), ..., "% uniformly and independently in {0,1}".

e For i =1 to k, verifier VI*) simulates the actions of V on input z and random string &),
Verifier V) accepts if V' accepts on each of these k instances.

Clearly, V) tosses kr coins and examines the [-bit long oracle in at most kq bits, where at most
kf of these are free. For every z, if the probability that V accepts z, given access to oracle
T, is p then the probability that V(¥) accepts z, given access to 7 is exactly p*. Thus, (Y,N) €
FPCP.x sx[kr,kf, 1], and oracles can be transformed (by identity) from one pcp system to the other.

Next, we show that in some sense the randomness-complexity of a proof system need not be
higher than logarithmic in the length of the proofs/oracles employed. Specifically, we show how to
randomly reduce languages proven by the first kind of systems into languages proven by the second
kind. Thus, whenever one is interested in the computational complexity of languages proven via
pcp systems, one may assume that the system is of the second type. Recall that <X denotes a
randomized Karp reduction.

Proposition 5.2.2 (reducing randomness): There exists a constant 4 > 0 so that

(1) (for perfect completeness): For every two admissible functions s,e: Z+ — [0,1],
FPCP, ,[r, f,1] <& FPCP, . [r', f,]]

where s’ = (1 +¢€)-s and 1’ = 7 + log,(I/€?s).

(2) (for two-sided error): For every four admissible functions ¢, s, €, €, : 2+ — [0,1],
FPCPc,s[Ta f7 l] S; FPCPc’,s’[TJa f7 l]

where  =1—-(14¢)-(1—-¢c)>c—¢€, s =(14+€)-s
and 1/ = 7 + max{— logy(€}(1 — ), logy(1) — loga(€3)}.

Proof: The proof is reminiscent of Adleman’s proof that RP C P/ poly [Ad]. Suppose we are given
a pcp system for which we want to reduce the randomness complexity. The idea is that it suffices
to choose the random pad for the verifier out of a relatively small set of possibilities (instead than
from all 2" possibilities). Furthermore, most small sets (i.e., sets of size linear in /) are good for
this purpose. This suggest randomly mapping an input z for the original pcp system into an input
(z, R) for the new system, where R is a random set of m = O(l) possible random-pads for the
original system. The new verifier will select a random-pad uniformly in R, thus using only log, |R|
random coins, and run the original verifier using this random-pad. Details follow.

We start with the simpler case stated in Part (1). Let (Y, N) € FPCP, ([r, f,l] and V be a verifier
demonstrating this fact. The random reduction maps & € {0,1}" to (z, R), where R is a uniformly

chosen m-multi-subset of {0,1}" for I = I(n), r € r(n), s & s(n), ¢ € €(n) and m = 2L, (The



mrBellare, Goldreich, Sudan 116

constant 7 is chosen to make the Chernoff bound, used below, hold.) On input (z, R), the new
verifier V' uniformly selects € € R and invokes V with input z and random-pad €. Clearly, the
complexities of V' are as claimed above. Also, assuming that V' always accepts z, when given access
to an oracle 7 then, for every possible pair (z, R) to which z is mapped, V' always accepts (z, R)
when given access to the oracle 7. It remains to upper bound, for each z ¢ I and most R’s, the
probability that V' accepts (z, R) when given access to an arbitrary oracle.

Fixing any ¢ ¢ L and any oracle 7, we bound the probability that V', give access to 7, accepts
(z, R) for most R’s. A set Ris called bad for  with respect to 7 if for more than a s’ fraction of the
€ € R the verifier V accepts  when given access to 7 and random-pad ¢. Let R = (7_'(1), ,T(m)) be
a uniformly selected multi-set. For every i € [m] (a possible random choice of V'), we define a 0-1
random variable ; so that it is 1 iff V on random-pad 7% and access to oracle m accepts the input
xz. Clearly, the (;’s are mutually independent and each equals 1 with probability é < s. Using a
multiplicative Chernoff Bound (cf. [MoRa, Theorem 4.3]), the probability that a random R is bad
(for  w.r.t. m) is bounded by

ZCZ >(14¢€)-ms| < 9=A(e? ms)

Thus, by the choice of m, the probability that a random R is bad for x, with respect to any fixed
oracle, is smaller than %-2‘1. Since they are only 2 relevant oracles, the first part of the proposition
follows.

For the second part of the proposition, we repeat the same argument, except that now we need to
take care of the completeness bound in the resulting pcp system. This is done similarly to the way
we dealt with the soundness bound, except that we do not need to consider all possible oracles —
it suffices to consider the best oracle for any z € Y. When applying the multiplicative Chernoff
bound it is important to note that, since we are interested in the rejection—event, the relevant
expectation is m - (1 — ¢) (and not m - ¢). Thus, as long as m > 2(1 o at least 2 of the possible
sets R cause V' to accept ¢ € Y with probability at least 1 — (14 ¢;) (1 —¢)=c¢—(1—c)e;. The
second part of the proposition follows. 1| Combining Propositions 5.2.1 and 5.2.2, we obtain the a

randomized reduction of pcp systems which yields the effect of Proposition 5.2.1 at much lower (and
in fact minimal) cost in the randomness complexity of the resulting pcp system. This reduction
is analogous to the well-known transformation of Berman and Schnitger [BeSc]. The reduction (in
either forms), plays a central role in deriving clique approximation results via the FGLSS method:
applying the FGLSS-reduction to proof systems obtained via the second item (below), one derives

graphs of size N % 20+¢+1)1 with clique-gap 2° (which can be rewritten as N/(1+/+9)),

Corollary 5.2.3 (probabilistic gap amplification at minimal randomness cost):

(1) (Combining the two propositions): For every admissible k£ : Z+ — Z+,
FPCPy 1[r, f,1] <% FPCPys-rxni[r +1log, g+ O(1) + k, k[, 1]

where ¢ is the query complexity of the first proof system.

(2) (using amortized free-bit complexity): For every € > 0 there exists a constant ¢ so that
FPCP[IOg7 f] S; FPCP1,2—'[(1 + 6) ' t7 f : t7 l]

where t(n) = clog, n



mrBellare, Goldreich, Sudan 117

Proof: Suppose that (Y, N) € FPCPy ,5[r, f,1]. Clearly, I < 2" - ¢, where ¢g(n) = poly(n) is the
query complexity of the verifier. Then, applying Proposition 5.2.1, we get (Y, N) € FPCP qqx [k,
kf,2" -q|. Applying Part (1) of Proposition 5.2.2, we obtain (Y, N) <¥ FPCPL%;_I[T’, kf], where
= 0(1)+log,(27q/27%) = O(1) + r + k + log, q. The first part of the corollary follows.

Suppose now that a language I has a proof system as in the hypothesis of the second part. Then,
there exists a logarithmically bounded function m so that L € FPCPy 1/om[r, mf, 1], where r(n) <
a-log, n and I(n) < n” for some constants @ and 3. Invoking a similar argument (to the above), we

get L <X FPCP, ', k-mf], where r'(n) = O(1) + km + (a+ ) -log, n. Now, setting k(n) so

that k(n)-m(n) > # -log, n, the corollary follows. 1 An alternative gap amplification procedure

;[
oRm—1

which does not employ randomized reductions is presented below. This transformation increases
the randomness complexity of the pcp system more than the randomized reduction presented above
(specifically, by a factor of 2). The transformation is used to obtain in-approximability results under
the assumption P # NP (rather than under NP ¢ BPP). It is stated here only for the one-sided

€ITOT Case:

Proposition 5.2.4 (deterministic gap amplification at low randomness cost): For every €, s > 0
and every admissible function k: Z+ — Z+

FPCP,y  [r, f,{] CFPCP;, [O(r)+ (24 )k, (1 + )k f,1].

2+4(4/¢€)
7 logy(1/s) )

Actually, the constant in the O-notation is min{1

The use of random walks on expander graphs for error reduction was suggested by Ajtai, Komolos
and Szemeredi [AKS] (cf., [CW]). The use of random walks on expander graphs for gap amplifi-
cation in the context of pcp originates in [ArSa]. The value of the constant multiplier of & in the
randomness complexity of the resulting pcp system, depends on the expander graph used. Specifi-
cally, using a degree d expander graph with second eigenvalue A yields a factor of ;ﬁiz{j 5~ Thus, it
is essential to use Ramanujan graphs [LPS] in order to obtain the claimed constant 2(1 + ¢).

Proof of Proposition 5.2.4: For simplicity assume s = 1/2. The idea is to use a “pseudorandom”
sequence generated by a random walk on an expander graph in order to get error reduction at
moderate randomness cost. Specifically, we will use a Ramanujan expander graph of constant
degree d and second eigenvalue A = 2v/d (cf., [LPS]). The constant d will be determined so that
d>2'te (and d < 26+2). Tt is well-known by now, that a random walk of length # in an expander
avoids a set of density p with probability at most (p + %)’ (cf., [AKS, Kah]). Thus, as a preparation
step, we reduce the error probability of the pcp system to

A 2

- =— (5.1)
d /d

This is done using the trivial reduction of Proposition 5.2.1. We derive a proof system with error
probability p, randomness complexity

def
p_

r' - logy(1/p) = 7 - logy(Vd/2) = O(r) (5.2)
and free-bit complexity
' [ logy(1/p) = [ -logy(Vd/2) (5:3)

(In case we start with soundness error s, where s > p, the multiplier will be log,,,(1/p) instead
of log,(1/p).) Now we are ready to apply the expander walk technique. Using an expander walk



mrBellare, Goldreich, Sudan 118

of length ¢, we transform the proof system into one in which the randomness complexity is r’ +
(t — 1) - log, d, the free-bit complexity is ¢ = tf - log,(v/d/2) and the error probability is at
most (2p)' = (4/V/d)" = 27%, where k % ¢ -log,(v/d/4). Using log, d > 8 4+ 4, we can bound the
randommness complexity by

log, d

"+ilog,d = 14— 2——-
T‘}‘ Og2 T+%(10g2d)—2

< "+ (246 -k

and the free-bit complexity by

L (log. d) —
(o log,(Vj2) = LRk
< (14¢€)-kf

The proposition follows. |

Using Proposition 5.2.4, we obtain the following corollary which is used in deriving clique in-
approximability results under the P # NP assumption, via the FGLSS method: applying the
FGLSS-reduction to proof systems obtained via this corollary, one derives graphs of size N Lt
2024+t with clique-gap 2¢ (which can be rewritten as N1/(2+/+¢)),

Corollary 5.2.5 For every € > () there exists a constant ¢ so that
FPCP[log, f] CFPCP; -:[(24¢€)-t,(14+€)f-L,1]

where t(n) = clog, n.

5.2.2 Trading-off gap location and free-bit complexity

The following transformation is analogous to the randomized layering procedure for the clique
promise problem (i.e., Proposition 4.1.6). The transformation increases the acceptance probability
bounds at the expense of increasing the free-bit complexity.

Proposition 5.2.6 (increasing acceptance probabilities):

(1) (using a randomized reduction which preserves the randomness of the proof system): For all
admissible functions ¢,s: Z+ — [0,1],and r, fym: 2+ — Z+,

FPCP.  [r, f] <& FPCP. o[r, f 4 log, m]

where ¢ =1 —4(1—-¢)™ and s, = m - s.
Note that if ¢ > 1 — 27" then ¢’ = 1.

(2) (inclusion which moderately increases the randomness of the proof system): For all admissible
functions ¢, s: Z+* — [0,1],and r, fym: Z+ — Z+,

FPCP, [r, f/] C FPCP. o [r, f + log, m]

m

5 -cand s’ =m-s;

e where if m < 1/c then ' = 2-max{r,logm}, ¢ =

®(me)

¢ and otherwise (i.e., for m > 1/¢), ' = O(max{r,logm} + mc), ¢ = 1 -2~ and

s'=m-s.



mrBellare, Goldreich, Sudan 119

Proof: Suppose we are given a pcp system for which we want to increase the acceptance probability
bound in the completeness condition. The idea is to allow the new verifier to select m random-
pads for the original verifier and query the oracle as to which pad to use. A straightforward
implementation of this idea will increase the randomness complexity of the verifier too much.
Instead, we use two alternative implementations, which yield the two parts of the proposition. In
both implementations the free-bit complexity increases by log, m and the soundness bound increases
by a factor of m.

The first implementation employs a technique introduced by Lautemann (in the context of BPP)
[Lau]. Using a randomized reduction, we supply the new verifier with a sequence of m possible
“shifts” that it may effect. The new verifier selects one random-pad for the original verifier and
generates m shifts of this pad. Now, the new verifier queries the oracle as to which of these shifts
it should use as a random-pad for the original verifier. Details follow.

We first present a random reduction mapping z € {0,1}" to (z,.5), where S is a uniformly chosen

m-multi-subset of {0,1}", for r o r(n). On input (z,5), the new verifier V' uniformly selects

¢ € {0,1}" and queries the oracle on (z,¢) receiving an answer i € [m]. Intuitively, V' asks which
shift of the random-pad to use. Finally, V' invokes V with input z and random-pad € ¢ 3;, where
5; is the 7*® string in §. Clearly, the complexities of V' are as claimed above. Also, assuming that
V accepts z with probability §, we get that, for every 9, verifier V' accepts (z,9) with probability
at most m - §. On the other hand suppose that, when given access to oracle m, verifier V' accepts
xz with probability 4. Tt follows that there exists a set R of §2" random-pads for V' so that if V
uses ¢ € R (and queries oracle 7) then it accepts z. Fixing any ¢ € {0,1}", we ask what is the
probability, for a uniformly chosen S = {3; : i <m}, that there exists an ¢ € [m] so that ¢®'s; € R.
Clearly, the answer is 1 — (1 — §)™. Thus, by Markov Inequality, with probability at least %, a
uniformly chosen S = {5;} has the property that for at least 1 —4 - (1 — §)™ of the @’s (in {0,1}")
there exists an ¢ € [m] so that €@ 5; € R. Part (1) of the proposition follows.

To prove Part (2) of the proposition, we use an alternative implementation of the above idea, which
consists of letting the new verifier V' generate a “pseudorandom” sequence of possible random-pads
by itself. V' will then query the oracle as to which random-pad to use, in the simulation of V,
and complete its computation by invoking V with the specified random-pad. To generate the
“pseudorandom” sequence we use the sampling procedure of [BGG]. Specifically, for m < 1/c¢ this
merely amounts to generating a pairwise independent sequence of uniformly distributed strings in
{0,1}", which can be done using randomness max{2r, 2log, m}. Otherwise (i.e., for m > 1/¢) the
construction of [BGG] amounts to generating ©(em) such related sequences, where the sequences
are related via a random walk on a constant degree expander. Part (2) follows. |

-

The following corollary exemplifies the usage of the above proposition. In case ¢(n) = n
and r(n) = O(logn), the gap is preserved (upto a logarithmic factor) and the free-bit complexity
increases by a log, 1/c¢ additive term. Thus, the corollary provides an alternative way of deriv-
ing the reverse-FGLSS transformation (say, Proposition 4.1.7) from the simple clique verifier of
Theorem 4.1.2. Specifically, one may apply the following corollary to the simple clique verifier
of Theorem 4.1.2, instead of combining the layered-graph verifier® (of Theorem 4.1.3), and the
graph-layering process of Proposition 4.1.6.

Corollary 5.2.7 For all admissible r, f: Z+ — Z* so that Vn: r(n) > 2,

FPCP.,[r, f] <5 FPCPy =z [r, f +1log,r + log,(1/c)]

8which generalizes the simple clique verifier



mrBellare, Goldreich, Sudan 120

We conclude with another transformation which is reminiscent to an assertion made in Sec-

tion 4.1. The following transformation has an opposite effect than the previous one, reducing the
free-bit complexity at the expense of lowering the bounds on acceptance probability. The transfor-
mation can be effected provided each possible random-pad in the original pcp system has enough
free bits.
Proposition 5.2.8 (decreasing acceptance probabilities): For all admissible functions ¢,s: Z+ —
[0,1],and 7, f,k: 2t — 2% so that k < f, if L € FPCP,[r, f] then L € FPCP2L’C72L}C|:T +k, f— k]
Furthermore, the average free-bit complexity of the resulting system is max{0, f,, — k}, where f,,
is the average free-bit complexity of the original system.

Proof: Let V be a verifier satisfying the condition of the proposition. We construct a new ver-
ifier V' that on input z € {0,1}", setting r = r(n), k = k(n) and f = f(n), acts as follows.
Verifier V’ uniformly selects a random-pad ¢ € {0,1}" for V, and generates all possible accepting
configurations with respect to V(z) and random-pad ¢. In case there are less than 2% accepting
configurations we add dummy configurations to reach the 2F count. We now partition the set of
resulting configurations (which are accepting and possibly also dummy) into 2¥ parts of about the
same size (i.e., some parts may have one configuration more than others). Actually, if we only
care about average free-bit complexity then any partition of the accepting configurations into 2*
non-empty parts will do. The new verifier, V', uniformly selects 7 € [2*] thus specifying one of
these parts, denoted A;. Next, V' invokes V with random-pad € and accepts if and only if the
oracle’s answers form an accepting configuration which is in A; (i.e., resides in the selected portion
of the accepting configurations). (We stress that in case ¢ has less than 2* accepting configurations
and the selected A; does not contain any accepting configuration then V' rejects on coins (z,¢).)
Clearly, the randomness complexity of the new verifier is r + k.

To analyze the other parameters of V', we fix any = € {0,1}". For sake of simplicity, we first assume
that the number of accepting configurations of V' for any random-pad is a power of 2. Then the
number of accepting configurations of V' for any random-pad (¢,i) € {0,1}" x [2*] is 2™, where
2™ is the number of accepting configurations of V' on random-pad €. Thus, the free-bit complexity
of V'is f — k. Finally, we relate the acceptance probability of V'’ to that of V. This is done by
reformulating the execution of V/ with oracle 7 as consisting of two steps. First V' invokes V with
access to m. If V reaches a rejecting configuration then V' rejects as well; otherwise (i.e., when V/
reaches an accepting configuration), V' accepts with probability 2=% (corresponding to uniformly
selecting ¢ € [2¥]). Tt follows that on input @ and access to oracle m, the verifier V' accepts with
probability ;77 where § denotes the probability that V' accepts input z when given access to oracle
.

In general, our simplifying assumption that the number of accepting configurations of V' is a power
of 2, may not hold and the analysis becomes slightly more cumbersome. Firstly, the number of
accepting configurations of V' for a random-pad (¢, ) is either [M/2*] or | M/2*], where M is the
number of accepting configurations of V on random-pad €. Thus, in the worse-case the number
of accepting configurations for V' (on random-pad (¢,1)) is [M/2*] and it follows that the free-
bit complexity of V' is log,[2/2*] = f — k. Furthermore, the expected number of accepting
configurations (for a fixed ¢ and uniformly chosen i € [2¥]) is exactly M/2* (even if M < 2*) and
so the free-bit complexity of V' equals f,, — k. Finally, observe that the argument regarding the
acceptance probabilities remains unchanged (and actually it does not depend on the partition of
the accepting configurations into 2¥ non-empty parts). The proposition follows. |

We conclude with a transformation which reduces the free-bit complexity. Unlike Proposition 5.2.8,
the following does not decrease the completeness parameters. Furthermore, the transformation



mrBellare, Goldreich, Sudan 121

increases the soundness parameter and does not preserve the gap (between the completeness and
soundness parameters).

Proposition 5.2.9 (decreasing free-bit complexity): Let ¢,s: Zt — [0, 1] be admissible functions
and r, f,k: 2T — Z*. Suppose L € FPCP, [r, f] with a verifier for which the first k oracle-answers
for each random-pad allow at most 2/=* accepting configurations. Then L € FPCP. o[r + k, f'],
where ¢/ =1 — 152 o/ =1 - 1=2 and [’ = log,(2/~% + 2% — 1).

2k 2k

The above can be further generalized; yet the current paper only utilizes the special case in which
¢ = 1 (specifically, in the proof of Part 3.2 in Proposition 5.1.7, we use f = 2 and k = 1 obtaining

J'=log,3 and ¢ =1 and s’ = =),

Proof: The proof is similar to the proof of Proposition 5.2.8. Again, we consider a verifier V
as guaranteed by the hypothesis and let A; be the set of (at most 2/=%) accepting configurations
which are consistent with the :*® possibility of k oracle-answers to the first & queries. Denote the
i"™™ possibility by a; (i.e., all configurations in A; start with a;). We construct a new verifier, V',
which uniformly selects a random-pad ¢ for V and ¢ € [2*] (specifying a part A; as above). The
verifier V'’ makes the first & queries of V' and if the answers differ from «; then V' halts and accepts.
Otherwise, V' continues the emulation of V and accepts iff V accepts.

Clearly, V' uses r 4+ k coin-tosses. The accepting configurations of v' on random-pad (€, ¢) are those
in A; as well as the “truncated V configurations” a;, for j # i. Thus, there are 2/7% 4 2F — 1
accepting configurations. Suppose V7™(z) accepts with probability p, then V' accepts input z with

oracle access to m with probability (1 —27%) +27%.p=1 - 12;”. The proposition follows. |




[AKS]

[Bab]

[BFL]

[BFLS]

Bibliography

M. Ajiral, J. KoMLos AND E. SzZEMEREDI. Deterministic Simulation in Logspace.
Proceedings of the Nineteenth Annual Symposium on the Theory of Computing, ACM,
1987.

L. ADLEMAN. Two theorems on random polynomial time. Proceedings of the Nineteenth
Annual Symposium on the Foundations of Computer Science, IEEE, 1978.

N. Aron, J. SPENCER AND P. ErDOS. The Probabilistic Method. John Wiley and
Sons, 1992.

S. ArRORA. Reductions, Codes, PCPs and Inapproximability. Manuscript, May 1995.

S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximate optima in
lattices, codes and linear equations. FOCS, 1993.

S. Arora, C. LunD, R. MoTwaNI, M. SUDAN AND M. SZEGEDY. Proof verification
and intractability of approximation problems. Proceedings of the Thirty Third Annual
Symposium on the Foundations of Computer Science, IEEE, 1992.

S. ARORA AND S. SAFRA. Probabilistic checking of proofs: a new characterization of NP.
Proceedings of the Thirty Third Annual Symposium on the Foundations of Computer
Science, IEEE, 1992,

L. BaBal. Trading Group Theory for Randomness. Proceedings of the Seventeenth An-
nual Symposium on the Theory of Computing, ACM, 1985.

L. BaBai, L. ForTNow AND C. LUND. Non-deterministic Exponential time has two-
prover interactive protocols. Proceedings of the Thirty First Annual Symposium on the
Foundations of Computer Science, IEEE, 1990.

L. BaBal, L. ForTrnow, L. LEVIN, AND M. SZEGEDY. Checking computations in poly-

logarithmic time. Proceedings of the Twenty Third Annual Symposium on the Theory
of Computing, ACM, 1991.

122



mrBellare, Goldreich, Sudan 123

[BaEv1]

[BaEv]

[BaMo]

[BCHKS)]

[BGG]

[BGLR]

[BeRo]

[BeSu]

[BGKW]

[BeSc]

[BI]

[BLR]

R. BAR-YEHUDA AND S. EVEN. A linear time approximation algorithm for the weighted
vertex cover problem. In Jour. of Algorithms Vol. 2, 1981, pages 198-201.

R. BAR-YEHUDA AND S. EVEN. A local ratio theorem for approximating the weighted

vertex cover problem. In Analysis and Design of Algorithms for Combinatorial Problems
Vol. 25 of Annals of Discrete Math, Elsevier, 1985.

R. BAR-YEHUDA AND S. MORAN. On approximation problems related to the indepen-
dent set and vertex cover problems. Discrete Applied Mathematics Vol. 9, 1984, pages
1-10.

M. BELLARE. Interactive proofs and approximation: reductions from two provers in one
round. Proceedings of the Second Israel Symposium on Theory and Computing Systems,
1993.

M. BeLLARE, D. CoppErRsMITH, J. HAsTAD, M. Kiwi AND M. SUDAN. Linearity
testing in characteristic two. Manuscript, November 1994.

M. BELLARE, O. GOLDREICH AND S. GOLDWASSER. Randomuness in interactive proofs.
Proceedings of the Thirty First Annual Symposium on the Foundations of Computer
Science, IEEE, 1990.

M. BELLARE, S. GoLDWASSER, C. LUND AND A. RussEeLL. Efficient probabilistically
checkable proofs and applications to approximation. Proceedings of the Twenty Fifth
Annual Symposium on the Theory of Computing, ACM, 1993. (See also Errata sheet
in Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing,
ACM, 1994).

M. BELLARE AND P. RocawAY. The complexity of approximating a quadratic program.
Complexity of Numerical Optimization, ed. P. M. Pardalos, World Scientific, 1993.

M. BELLARE AND M. SUDAN. Improved non-approximability results. Proceedings of
the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

M. BEN-ORr, S. GOLDWASSER, J. KILIAN AND A. WIGDERSON. Multi-Prover inter-
active proofs: How to remove intractability assumptions. Proceedings of the T'wentieth
Annual Symposium on the Theory of Computing, ACM, 1988.

P. BERMAN AND G. SCHNITGER. On the complexity of approximating the independent
set problem. Information and Computation 96, 77-94 (1992).

A. Bruum. Algorithms for approximate graph coloring. Ph. D Thesis, Dept. of Computer
Science, MIT, 1991.

M. Brum, M. LuBYy AND R. RUBINFELD. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences Vol. 47, pp. 549-595,
1993.

R. Boprpaxa AND M. HALDORSSON. Approximating maximum independent sets by
excluding subgraphs. BIT, Vol. 32, No. 2, 1992.

A. CoHEN AND A. WIGDERSON. Dispersers, deterministic amplification, and weak ran-

dom sources. Proceedings of the Thirtieth Annual Symposium on the Foundations of
Computer Science, IEEE, 1989.



mrBellare, Goldreich, Sudan 124

[Col

[EIS]

[ESY]

[Fei]

[FeGo]

[FGLSS]

[FeKi]

[FeLo]

[GJ1]

[GJ2]

[GJS]

[GoWil]

S. A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings of the Third
Annual Symposium on the Theory of Computing, ACM, 1971.

S. EVEN, A. ITAT AND A. SHAMIR. On the complexity of timetable and mullticommodity
flow problems. SIAM J. on Computing Vol. 5, 691-703, 1976.

S. EVEN, A. SELMAN AND Y. YACOBI. The complexity of promise problems with ap-
plications to public-key cryptography. Information and Control Vol. 2, 159-173, 1984.

U. FEIGE. Randomized graph products, chromatic numbers, and the Lovasz theta func-
tion. Proceedings of the Twenty Seventh Annual Symposium on the Theory of Comput-
ing, ACM, 1995.

U. FEIGE AND M. GOEMANS. Approximating the value of two prover proof systems, with
application to Max-2SAT and Max-DICUT. Proceedings of the Third Israel Symposium
on Theory and Computing Systems, IEEE, 1995.

U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY. Approximating
clique is almost NP-complete. Proceedings of the Thirty Second Annual Symposium on
the Foundations of Computer Science, IEEE, 1991.

U. FriGe AND J. KirLian. Two prover protocols — Low error at affordable rates. Pro-
ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM,
1994.

U. FEIGE AND L. LovAsz. Two-prover one round proof systems: Their power and
their problems. Proceedings of the Twenty Fourth Annual Symposium on the Theory of
Computing, ACM, 1992.

L. Forrnow, J. RoMPEL AND M. SipsEr. On the power of multiprover interactive
protocols. Proceedings of the 3rd Structures, IEEE, 1988.

M. FureRr. Improved hardness results for approximating the chromatic number.
Manuscript, 1994.

M. Furgr, O. GOLDREICH, Y. MANSOUR, M. SIPSER, AND S. ZACHOS. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing Research: a
research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pp. 429-442,
1989.

M. GAREY AND D. JOHNSON. The complexity of near optimal graph coloring. Journal
of the ACM Vol. 23, No. 1, 43-49, 1976.

M. GAREY AND D. JouNnsoN. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

M. GAREY, D. JOHNSON AND L. STOCKMEYER. Some simplified NP-complete graph
problems. Theoretical Computer Science 1, pp. 237-267, 1976.

M. GoEMANS AND D. WILLIAMSON. New 3/4-approximation algorithm for MAX SAT.
Proceedings of the 3rd Mathematical Programming Sociely Conference on Inleger Pro-
gramming and Combinatorial Optimization, 1993.



mrBellare, Goldreich, Sudan 125

[GoWi2]

[GMW)]

[Hoc]

[TmZu]

[JLL]

[Kah]

[KMS)]

[LaSh]

[Lau]

[Lev]

[LPS]

M. GOEMANS AND D. WILLIAMSON. .878 approximation algorithms for Max-CUT and
Max-2SAT. Proceedings of the Twenty Sixth Annual Symposium on the Theory of Com-
puting, ACM, 1994.

O. GOLDREICH, S. MIcALI, AND A. WIGDERSON. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. Proceedings of the T'wenty
Seventh Annual Symposium on the Foundations of Computer Science, IEEE, 1986.

S. GoLDWASSER, S. MicALl, AND C. RACKOFF. The knowledge complexity of interac-
tive proofs. SIAM J. Computing Vol 18, No. 1, 186208, 1989.

S. GOLDWASSER AND M. SIPSER. Private Coins versus Public Coins in Interactive Proof

Systems. Proceedings of the Eighteenth Annual Symposium on the Theory of Computing,
ACM, 1986.

D. HocuBauwm. Efficient algorithms for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, Vol 6, pages 243-254, 1983.

R. IMPAGLIAZZO AND D. ZUCKERMAN. How to Recycle Random Bits. Proceedings of
the Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE, 1989.

N.D. Jonges, Y.E. LieN anD W.T. LAAsErR. New problems complete for non-
deterministic log space. Math. Systems Theory Vol. 10, 1976, pages 1-17.

N. KAHALE. On the second eigenvalue and linear expansion of regular graphs. Proceed-
ings of the Thirty Third Annual Symposium on the Foundations of Computer Science,
IEEE, 1992.

D. KARGER, R. MOTWANT AND M. SUDAN. Approximate graph coloring by semidefinite
programming. Proceedings of the Thirty Fifth Annual Symposium on the Foundations
of Computer Science, IEEE, 1994,

R. KArP. Reducibility among combinatorial problems. Complexity of Computer Com-
putations, Miller and Thatcher (eds.), Plenum Press, New York (1972).

S. KHANNA, N. LINIAL AND S. SAFRA. On the hardness of approximating the chro-

matic number. Proceedings of the Second Israel Symposium on Theory and Computing
Systems, 1993.

D. LArPIDOT AND A. SHAMIR. Fully Parallelized Multi-prover protocols for NEXP-time.

Proceedings of the Thirty Second Annual Symposium on the Foundations of Computer
Science, IEEE, 1991.

C. LAuTEMANN. BPP and the Polynomial Hierarchy. Information Processing Letters,
Vol. 17 (4), pages 215-217, 1983.

L.A. LeEvIN. Universal’nyie perebornyfe zadachi (universal search problems : in russian).
Problemy Peredachi Informatsii, 9 (3), pages 265-266, 1973.

A. LuBoTzKY, R. PHILLIPS AND P. SARNAK. Explicit Expanders and the Ramanu-

jan Conjectures. Proceedings of the Eighteenth Annual Symposium on the Theory of
Computing, ACM, 1986.



mrBellare, Goldreich, Sudan 126

[LuYa]

[LFKN]

[MaS]]

[MoRa)]

[MoSp]

[PaYa]

[Pet]

[PoSp]

[Raz]

[SaGo]

C. LuND AND M. YANNAKAKIS. On the hardness of approximating minimization prob-
lems. Proceedings of the T'wenty Fifth Annual Symposium on the Theory of Computing,
ACM, 1993.

C. Lunp, L. ForrNnow, H. KARLOFF, AND N. NisaN. Algebraic Methods for In-

teractive Proof Systems. Proceedings of the Thirty First Annual Symposium on the
Foundations of Computer Science, IEEE, 1990.

F. MacWiLriamMs AND N. SLOANE. The Theory of Error-Correcting Codes. North-
Holland, 1981.

R. MoTwanNi AND P. RAGHAVAN. Randomized Algorithms. Cambridge University
Press, 1995.

MONIEN AND SPECKENMEYER. Some further approximation algorithms for the vertex
cover problem. Proceedings of CAAP 83, Lecure Notes in Computer Science Vol. 159,
Springer-Verlag, 1983.

C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimization, approximation, and complex-
ity classes. Journal of Computer and System Sciences 43, pp. 425-440, 1991.

E. Petrank. The hardness of approximation: Gap Location. ISTCS, 1993. See TR-754
of the Computer Science Dept., Technion, Haifa, Israel.

A. POLISHCHUK AND D. SPIELMAN. Nearly-linear size holographic proofs. Proceedings
of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

R. Raz. A parallel repetition theorem. Proceedings of the Twenty Seventh Annual
Symposium on the Theory of Computing, ACM, 1995.

S. SAuNI AND T. GONZALES. P-complete approximation problems. J. of the ACM,
23:555-565, 1976.

G. TARDOS. Multi-prover encoding schemes and three prover proof systems. Proceedings
of the Ninth Annual Conference on Structure in Complexity Theory, IEEE, 1994.

A. SHAaMIR. [IP=PSPACE. Proceedings of the Thirty First Annual Symposium on the
Foundations of Computer Science, IEEE, 1990.

M. YANNAKAKIS. On the approximation of maximum satisfiability. Proceedings of the
Third Symposium on Discrete Algorithms, ACM, 1994.

D. ZuckErMAN. NP-Complete Problems have a version that is hard to Approximate.
Proceedings of the Fighth Annual Conference on Structure in Complexity Theory, IEEE,
1993.



