Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 025 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Analytic Machines

Gunter Hotz, Gero Vierke and Bjorn Schieffer

Fachbereich 14 — Informatik
Universidt des Saarlandes
Postfach 15 11 50
66041 Saarbriicken

Abstract

In this paper the R-machines defined by Blum, Shub and Smale are generalized
by allowing infinite convergent computations. The description of real numbers is
infinite. Therefore, considering arithmetic operations on real numbers should also
imply infinite computations on analytic machines. We prove that IR-computable
functions are Q-analytic. We show that R-machines extended by finite sets of
strong analytic operations are still Q-analytic. The halting problem of the analytic
machines contains the stability problem of dynamic systems. It follows with well
known methods that this problem is not analytical decidable. This is in a sense a
stronger result as the numerical undecidable stability in the theory of Kolmogoroff,
Arnold and Moser.

Keywords: IR-computability, stability, approximation

1 Introduction

In this paper we consider R-machines within the meaning of [B.S.S]. The memory holds
elements of the ring R. The arithmetic of the machine is identical to the arithmetic in
R. The memory size is assumed to be infinite. The machine may address the memory
indirectly, i.e. a memory cell may be used to address others, if it holds a natural
number. We assume only a finite number of memory cells to contain a nonzero value
at the beginning of a computation. Only halting computations are accepted.

In this paper we restrict to machines with R = @ (the set of rational numbers) and
R = IR (the set of real numbers). We now extend the machine model sketched above:

o We allow infinite computations, i.e. computations without halting. Instead of
halting we consider the convergence of the output stream. We call such machines
analytic machines.

e With infinite computations, analytic @-machines are able to deal with real valued
functions. To achieve that, we allow real numbers at the input tape of a Q-
machine. The machine has a rounding register containing a precision § € IN, so
that it can read a rational approximation [z]s € @ with |z — [z]s] < 27° instead of
the real valued input . A possible approximation function [.] : IR — @ is defined
by selecting the binary number with § digits after the point of the infinite binary
number notation.

A function that can be computed by an IR-analytic machine is called IR-analytic. A
function is called Q-analytic, if it can be computed by a Q-analytic machine reading

the input again and again with increasing precision (i.e. 27% — 0). With this machine
model the following question rises: Is an IR-analytic function Q-analytic as well, or are
IR-analytic machines more powerful than ®-analytic machines?

A continuous function f : IR — IR is completely determined by its rational restriction
f1Q. If f]Q is computable, then also f in a sense: Take a rational sequence z1, 2o, ...
converging to z € IR and you receive an approximative computation of f(z) with the
resulting sequence f(zy), f(z2),... — f(z). We will extend this theorem to all R-
computable functions by transforming the programs for the IR-machine into programs
for the Q-analytic machine. The difficulty in the proof is that IR-computable functions
are not continuous in general. The representation theorem for an IR-computable func-
tion of [B.S.S] shows, that f may be given as a countable sum of continuous functions
f7 A, — R with semi-algebraic sets A,. The problem is that such a set A, does
not necessarily contain any rational point. So we are not able to convert the procedure
used for the approximation of continuous functions directly. The basic idea for the
solution of this problem lies within a suitable enlargement of A,, in which we can find
the rational points needed to approximate z. As an introduction, we will give a simple
proof to a little more general version of the representation theorem.

In [B.S.S] the area of attraction for the fixed-points of the iteration of simple poly-
nomials is considered and it is shown that the complement of these areas cannot be
characterized by IR-machines. Therefore, the representation theorem together with the
fact, that the number of disjoint components in the complementary set is of the power
of the continuum, is used. We will show that two well known curves, namely Koch’s
curve and Hilbert’s space filling curve, are not [R-computable but Q-analytic. To do
this, we use the representation theorem together with the Hausdorff dimension of the
graph of a curve.

The set of Q-analytic functions is shown to be a proper subset of the set of IR-analytic
functions. While the set of IR-computable functions is closed under composition and
primitive recursion, this is not true for Q-analytic functions. If we require the Q-analytic
machine to give the precision of its approximation — we will call such functions strong
Q-analytic — we will get the well-known computable real functions within the meaning
of Grzegorczyk which are closed under the named operations.

We extend the R-machines by procedure calls of strong @-analytic functions
fisfoy ... fm and call the resulting machine Mg(fi, fo,..., fm). We will show that
functions computable by Mg(f1, f2,..., fm) are Q-analytic.

A different motivation of our examination is pointed out by the following considera-
tion: computers are usually thought to be discrete machines, whereas they really change
their states continuously over time. But they do this change from one stable state to
another very fast. Such a change is a call of a continuous procedure with very high
output convergence. The simulation of such a system on an R-machine contains the
sequence of calls of strong Q-analytic procedures. The very fast convergence of these
procedures reduces the question of stability of the continuous system to the halting
problem of R-machines. The success in using computers should give us the certainty
that the conception of the Mg(f1, f2,. .., fm)-machines is reasonable.

For analytic machines the halting problem is equivalent to the question of conver-
gence. Finally we will show that the question whether an analytic machine is convergent
is not analytically decideable. The problem is related to the stability problem of dy-

namic systems. In many cases, the stability problem can be reduced to the question
whether the iteration of a function .5 is contractile in the neighborhood of a given point.
If such a function is included as a procedure into our machine, the halting problem of
the analytic machine includes the stability problem of those dynamical systems for
which 5 is R-analytically or Q-analytically computable. The theory of dynamic sys-
tems, associated with names like Kolmogoroff, Moser, Arnold [A.A] and Siegel [S], is
able to prove stabhility of such systems in some special cases. But the theory shows that
in general there is a very sensitive dependence on the starting point of the iteration.
Therefore, the decision of the stability of such systems is thought to be uncomputable
for numerical reasons. The well-known construction to prove the undecideability of the
halting problem of discrete machines helps to show that even with exact IR-arithmetic
the stability of the systems is not decideable in a universal way with IR-analytic or
Q-analytic machines.

2 Basic Definitions

A mathematical machine consists of a configuration-set K, the set of initial states
K, C K, the set of final states K. C K and a next state function

A: K — K with A

K.=1g,.

(1ar denotes the identity function on the set M.) A computation on such a machine is
a sequence of states

b = (ko,kl,kg, .)

with
kiy1 = A(k;) for i > 0.

We call the computation regular, if kg € K, and there exists a n such that k, € K..
Because of A(k,,) = kj, for k, € K. we shortly write

b= (K, > ko, ki,ko,....k, € K.)

for a regular computation.
R* denotes the set of all finite tuples of numbers from the ring B. €' and D will be
arbitrary subsets of R*. To explain in which cases a function

f:D—=C

is called computable we need a simple input function in : D — K, and a simple output
function out : K — C that do not depend on the computed function f. It may be a
little surprising that out is not only given for final states k. € K., but we will need this
later on. We now define a machine

M= (K,K,, K., A, in,out)
and call f: D — C M-computable, iff the computation

b= (K, 3 ko, k1,kay... . kn € K¢)

‘xo, 1, g, ... Input tape‘

{

‘ 0 Precision register ‘

‘ﬂ Program counter ‘

‘ZO, z1, Z3, ... Main memory

‘ a Accumulator ‘

‘7 Index register ‘

!
‘3/07 Y1, Y2, ... Output tape

Figure 1: Graphic description of the R-machine

with the initial state ko = in(z) is regular and f(z) = out(k,).

In section 6 we extend this idea of computable functions allowing infinite computations
if the output function is convergent for some marked states. Therefore, we introduce
the set K; with

K. C K; CK.

Instead of demanding that a computation ends in a final state, we require that it reaches
a state of K; again and again.

The set K; leads to a possibly helpful regularity in the computations. This concept
is identical to the term of infinite accepting computations on finite automata, invented
by Biichi.

We now turn to the aim of this paper. The configuration sets of the machines we
observe are infinite products of @ and IR. The functions A are simple extensions
of rational functions. We call the analytically computable functions ®-analytic or
IR-analytic, respectively. We will examine whether there is a universal method to
approximate the IR-analytic functions by the Q-analytic and we will look at the relation
between the Q-analytic and the IR-computable functions. Finally, we will examine
whether it is possible to decide the halting problem of analytic machines by analytically
computable functions.

3 The Concrete Machine-Model

We now define a machine-model as an abstraction of a simple computer. The R-machine
is equivalent to the usual computer-models and especially to the model used in [B.S.S].
Figure 1 gives a graphic description of the machine.

The input tape is read-only memory, the output tape is write-only memory. The
variables or memory cells can contain a number from R. v and § can contain a natural
number and § a number from

[0:N]:={j e NJ0<j< N},

where N is the length of the program. The é-register is only used for analytic Q-
machines where it keeps the precision for reading the real numbers on the input tape.
We will come back to this point when we introduce the set of instructions for the
R-machines.

Hence we can describe a machine state by a map

p:(a,8,7,6,x0,Y0, 20,1, Y1, 21, T2, Y2, 22,...) = R X [0: N]XINXxIN X R X R x ...

We require only a finite number of variables to contain a value # 0. By that the
configuration set K is defined.
Let k£ € K be a machine state.

a(k), B(k), v (k), 6(k), z;(k), 2;(k), y; (k).

denote the value of the variables «,3,7,d... belonging to the state k. If k£ is obvious
from the context we omit the dependency on k. Now we define

K, ={keK|la=p=7=6=0,z0 € N,z; =0 for j > z9,2; = 0,y; = 0 for all j}

K.:={keK

ﬂ:NayOEINayj:OfOTj>y0}-

At this point we can define the functions in : R* — K, by

in((r1,re,...,m)) = (a=p=7=6=0,29=n,2;,=r; for 0 < i <,

z;=0for j>n,yp=2z=0"forl>0)
and out : K — R* by

out(k) := (y1(k),y2(k), ..., yy(k)).
We define the set Q of instructions for our machine:
1. assignments:
ai=zj, 7=, Q=T Y=o forjeIN .
2. arithmetic operations:
Q= akxzj, i=axr for x € {+,—,x,/},j€ N and r € R.

3. conditionals:

if a ~ 0 then goto m else goto n, m,n €[0: N]and ~€ {=,>}

4. halting:

end

5. index operations:
a:=2z(7), 2(7) =0, a:=z2(7), y(y) =@, yi=a, a:=7, =7+ 1

The effects of the instructions are quite self-evident. The operation end is only allowed
to be the last instruction. We consider a program to be correct only if a division
by zero is avoided for any input and if there are only natural values assigned to the
index register. The programer is responsible for that; to make this easier we define an
additional instruction

if & € IN then goto m else goto n, m,n € [0: N]

which can also be interpreted as a macro, programed using only instructions from (2.
A program is given by a map

T:[0:N]— Q.
Hence we are able to define A : K — K. We define for p,p’ € K

Alp) = ¢/

iff the application of the instruction 7(3(p)) on p is leading to p’. Every instruction
changes only the value of the variables to which it assigns something, except (3, the
program counter. If 7(3(p))is no if-operation, every instruction causes 5(p') = f(p)+1.
Whereas the instruction

if @ ~ 0 then goto m else goto n, m,n € [0: N]and ~e€ {=,>},

causes
B(p') = mif a ~ 0 is satisfied,
and
B(p") = nif a ~ 0 is not satisfied.

The instruction o := 2z(7y) causes a := z,. The other indexed instructions work analo-
gously. We will define the operations to read from the input tape
a = [z;]s and a = [z(7)]s

later on, when we introduce the analytic machines. They are used to read a rational
rounding instead of a real number, where ¢ is the precision of the approximation.

We give an example of a program computing the absolute value |z1] of the input z;.

1 a:=z;

2 if @ > 0 then goto 4 else goto 3;
3 a:=a-(=1);

4 =

5 a:=1;

6 yo=0;

7 end.

M| | denotes the R-machine with that program.

4 A Representation Theorem for R-Computable Func-
tions

We interpret the positions of the program counter as nodes of a graph G. Let py,py € G
be nodes. There is an edge s from p; to po iff there exists a p € K such that 3(p) = p1
and B(A(p)) = p2. We mark the edge s with the operation 7(p,), which is applied on p
and leads to A(p). If w(py) is an if-operation we mark the two outgoing edges with the
result of the test; e.g. with “a = 0” or “a # 0” in case of 7(py) =“if & = 0 then...”.

We interpret the paths in this graph as branches of a tree and get the computation
tree £(M) belonging to the machine M. Hence for every regular computation we have
a path from the root of the tree to a terminal node. This is basically Rabin’s decision
tree.

For the proof of the representation theorem we need a more sophisticated flow chart:
The set of nodes is [0 : N] x IN where [0 : N] is the set of possible positions of the
program counter of the machine. There is an edge from the node (py,n1) to (ps, ng) iff
there exists a p; € K such that

Blp1) =p1, v(p1) =mn1, p2=A(p1)

and
ﬂ(Pz) = P2, ’Y(Pz) = na.

So we additionally use the value of the index register for the characterization of the
machine state. The graph belonging to M is called G,(M). As before we construct the
decision tree from G(M) and call it £,(M). Figure 2 shows G (M) and L, (M)

Let p € K, be an initial state of M. o(p) denotes the computation path belonging
to pin L,(M). If the computation belonging to p is regular, o(p) leads to a terminal
node in £,(M) corresponding to the node N in G. Now we deduce

Lemma 1: Let pg, pg € K,. We define p; := Ai(po) and p; := Ai(py). If a(po) = a(po)
then 7(p;) = m(p;) for all 7 and the instructions are referring to the same memory
cells and registers. Especially all results depend on the same input variables.

This can be proven by an induction over 1.

V, denotes the set of variables (=memory cells) which are read by a regular
computation following the path ¢ in £,(M). V, generally contains variables from
O, L0y« - Ty 205 - - - Zm- Vo does not contain any variables from yg, 1, ..., which are
write-only memory cells. 5, denotes the set of all memory cells to which a value is
assigned during the computation.

We now define a rational function

fo:D—R

for any regular path ¢ and any s € 5,. We define the fJ inductively by the length of
o. For |o| = 0 we define

fZ(v):=0forall v e D and s € 9,.

o= 2 o= 2]
2,0 2,0
a<0 a>0 a<0 a>0
3.0 T TN | [3.0

Figure 2: Computation graph and decision tree of M

Let |o| = n and o’ be the prefix of ¢ such that |o/| = n — 1. If 7, is the instruction
marked on the n-th edge of o and x € {+, —, X, /}, we define

f;’, if m, does not assign a value to s,
i if 7, = (s:=1),

fo=L fxfr i, = (si=axt),
1w ifr, =(s:=axr),r € R,

f;”:lzl ifs=vy,m=(y:=7x1).

If 7, uses a indexed variable then s or t is the variable fixed by the current value of
v. It is found in the second component of the terminal node of o¢'; e.g. in the case
T, = (a:=2(y))and o' = (...,(n —1,5)) we have t = z5 and fJ := g;

Let pg,po € K, such that o(pg) = 0(po). By Lemma 1 we can obtain the results
of the computation produced by pg and pg by the same rational function f7 from the
input values (z1,...,2,).

We will now characterize the input values leading to the same computation paths.
Let o be a computation path in £,(M). X7 denotes the set of prefixes o’ of 7, leading
to if-operations or to an operation “y :=...".

We see that for all o/ € ¥ the (in)equations

!

o, am) =0, #0, >0, <0

are fulfilled by the rational functions fg’ iff the corresponding condition in ¢ holds.
Likewise fgl(ml, o m) =k, if o' = (..., (n,k)) holds. F7'(z1,29,...,2,,) denotes

these (in)equations. It determines the path o. Hence
Ay i={(z1,....2m) € D| F7'(21,...,2,,) is satisfied for all o/ € ¥7}

is the set of the solutions of the algebraic requirements belonging to o.

We demanded for our programs that the division by zero has to be avoided; therefore,
the denominators of the rational functions have no zeros. By multiplying the ratio-
nal equations with their denominators we get a system C,(z1,..., 2,) of polynomial
(in)equations which determines A,. Hence A, is a semi-algebraic set. a, : R* — {0,1}
shall be the characteristic function of A, C R*. Let Saq be the set of terminating
computation paths in £(M). Concludingly, we sum up our result:

Representation Theorem: For an R-computable function f: D — R* holds

(1) D= U A,
CTESM
(2) f: GES (,Za-'(1717 5-27"'7 gjfgo)
a M E

Part (1) of the representation theorem is shown in [B.S.S] for D C R*. This theorem is
a generalization of a representation theorem Rabin proved for computations of limited
length. It is the basis for the development of lower bounds for the decision z € D
depending of the betti-number §y(D) [BenOr].

The representation theorem implies that certain functions are not IR-computable.

5 Examples of Non-IR-Computable Functions

In [B.S.S] the representation theorem has been used to prove that the characteristic
functions of certain Julia-sets are not IR-computable. In fact functions p(z) = 2% + ¢
were treated with ¢ € IC and z varying over IC. Looking at the case |¢| > 4 and the
attractor oo we realize that the Julia-set of (p,00), i.e. the set of points which are
not attracted by oo has a nondenumerable number of connected components. If the
characteristic function of that set was IR-computable it would contain only a countable
number of connected components.

In [Ho] the representation theorem is used to show that fractal curves

p[0:1] — IR?

are not IR-computable. The Hausdorff-dimension of p is at most 1 if u is a rational
function or consists of not more than a countable number of rational functions. The
well-known Koch curve has the Hausdorff-dimension

1
~1,2.

(1-logy(v5-1))

Hence it is not IR-computable. The Hilbert curve is space filling, so its Hausdorft-
dimension is 2. Hence it is not IR-computable either.

6 Analytic Machines

It is easy to see that the set of the IR-computable functions is closed under composition
and the cartesian product: To construct a machine computing the function g o f we
use the output of a machine M; (computing the function f) as the input for another
machine M, (computing g).

Let f: D — D be an R-computable function. We define

f(l) := f and f("'H) =fo f(”) forn=1,2,....
We get “iterations” of f which are also R-computable. The fact that

g(n,m) = f(n)('r)

is also computable, can be shown by well-known methods from the theory of computing.
It is an interesting question, how to continue this function in a natural way from IN x D
to IR x D or a subset D' C IR X D. In general it is not clear how to continue a machine
computing g(n,z) in a natural way. Let us have a look at the question what kind
of function we get, if we allow an infinite number of iterations. That means we are
interested in the function

lim f(”)(ac)

n—od

where fis R-computable. This question is a generalization of a question raised by Julia
[J]. We are interested in the following two problems:

e [s it possible to approximate the IR-analytic functions by the Q-analytic func-
tions? Qur interest in that question is based on the fact that in contrast to
IR-machines we are able to construct Q-machines. So the question means, can we
approximate the ideal world given with IR-machines with our real world.

o Is there a general way to decide the convergence? As we mentioned before this
problem is connected to the problem af stability of dynamic systems.

We will now define “Q-analytic” and “IR-analytic”. As we mentioned before the defi-
nitions are not quite analogous.

Definition 1: Let M be an R-machine. We call a computation

Poy Py P2; - - -
analytic iff it satisfies (1) and (2).

(1) p; € K, for an infinite number of
(2) out(pi) converges for i — oo.

Definition 2: We call M a ¢-Q-machine iff it satisfies (1),(2) and (3).

(1) M has the same structure as a R-machine and has the same registers. The in-
put variables z; may contain real numbers; for all the other variables (a, zg, 21, .. .)

10

only rational numbers are allowed. § and 4 contain positive integers and [con-
tains a number from [0 : N].

(2) The operations which are defined for the R-machine are also defined for M.
M does not terminate with the operation end like an R-machine. Instead of the
end operation it has an init operation to restart the computation with the address
B = 1. The instruction at address 1 is

b:=6+1;
which is not used elsewhere. The instruction at address N is
init;
which assigns 0 to a, v and all z; and 1 to 3. We define the additional instructions
a:=94

and
a = [z;]s and a = [z(7)]s.

The effects of § := § + 1 and a := ¢ are obvious. []s is an IR-computable function
from R to Q, such that

[z]s € Q and |z — [z]5] < 27°.

(3) The definition of K can be deduced from (1). We define K, as before. K
is defined like K., but K; are no final states. In addition, we distinguish the set
K. This is motivated by the special status of the precision register §. We define

Ky:={kla=~v=0,8=1,6 e N, 29 € N, z; = 0 for j > z¢, z; =0 Vj}.

The difference between K and K, is that é can contain a number greater then 0
in Ky.

Definition 3: Let M be a §-Q-machine, then we call the computation
L0, P1,P25 -+
analytic iff it satisfies (1) and (2) from definition 1 and additionally

(3) When the machine leaves Ky it goes to a state of Kj.

Explanation: We want to make sure that the machine only uses one rounding of an
input value at a time. Therefore we require (3), namely that all memory cells
except the output tape are cleared after the computation for one precision 6.

Definition 4: A function f: D — (' is called R-analytic iff there exists an analytic
computation on an IR-machine such that

for all # € D holds: in(z) = po, p1, p2, . .. is analytic, and

11

lim (out(p:)) = f(x).

72— 00

A function f: D — (' is called §-Q-analytic iff there exists an analytic computa-
tion on an 6-Q-machine such that

for all 2 € D holds: in(z) = po, p1, p2, - . . is analytic, and

lim (out(p;)) = f(=).

71— 00

We will see that the choice of the function [|s has a great influence on the set of the
6-Q-analytic functions.

Definition 5: A rounding is called normal iff it satisfies (1) and (2).
(1) For all z € IR and all § € IN there exists a Z € R \ Q such that [z]s = [%]s.
(2) [[z]s]s: = [z]s for all §,6" with §" <6

It is easy to see that the function that takes é digits after the point from the infinite
binary number notation is an example for a normal rounding.

Definition 6: A program for a 6-Q-machine is called robust, iff it computes the same
function for every rounding.

A function f: D — C with D,C € IR* is called Q-analytic, iff there exists a
robust program that computes f analytically.

It is called normal analytic, iff it can be computed analytically by a 6-Q-machine
using a normal rounding.

Theorem 1: Every IR-computable function is Q-analytic.

Proof: Tet f: D — IR* be R-computable and let M be an IR-machine computing
it. In this proof we will regard f as an infinite tuple of single-valued functions
(fi, fa,...) with f; : D — IR . We will call z = (z1,29,...,2,) € D the input
and define [z]s := ([21]s, [22]s, - - -, [2n]s)-

The representation theorem implies

f=hto)= ao-(F5 00 [0, ,0,0,..),

1 Jypa
O’ESM o

with f;. being the rational functions belonging to the signature o and a, being
the characteristic function of the semi-algebraic set A, belonging to o.

First we examine the case that z € A, and A, is an open set. In this case
lim fy ([z]s) = f;. (=) holds for all 7.
f—o0 " 7 ’

Hence we can compute f(z) analytically with a -Q-machine using the program

defined like this:

12

T M of M TM! of MI

Tm(1) Tpmr(l) =% =6 4+ 1;7
T™m(2) Tamr(2) := maa(1)
Tm(N —1) T (N):=7pm(N —1)
TMm(N) = “end;” | mapp(N + 1) :=%“init;”

The “end” in 7 is replaced by “init”, so that after every run of the original
program the precision used to read xz is increased. A, is open, so there exists
an M € IN with [z]s € A, for 6 > M, such that the computation with input
[z]s for é > M takes the same computation path as for input z. Since the f7
are continuous the output of the computation converges to f(z) in this case. In
general M’ will fail to compute correctly if A, is not open and z € A, is located
at the border of A,: Let o/ € X7 be a prefix of o leading to a conditional & > 0 or
o = 0 as before. Then it is possible that f7'(z) = 0 but £2'([z]s) # 0 for all 6. In
this case the simulation takes the wrong path for every precision. This problem
can occur in two cases: At the condition “if @ > 0”7 with ¢ taking the “no”-path
or at the condition “if a = 0” with ¢ taking the “yes”-path.

We replace all conditions “a > 0” in 7 like this:

yes no no yes

EEIE—

So we only have to consider the second case. We solve our problem by replacing
every condition “a > 0” in 7’ by a procedure deciding whether [2]5 € B, s or not.
We will show later on that this procedure is computable. We substitute

yes no no

and obtain a program 7. B, s is an open neighborhood of the set {z | fgl(ac) =0}
and is defined such that it contracts itself to this set for § — oc. In addition

17 () = 0= [2]s € By s

must hold for all §. We define:

n

Bors = {#| 3z € R™, (Y (2 —)% < n-27%, f2'(2) = 0)}

=1

13

By substituting the rational function fg’ by the polynomial Pgl that we get by
multiplying fJ " with its numerator we have

By s ={%|32z € R", (Z(Tz — &) <n-270 P7(2)=0)}

=1

We apply the construction we used to change 7 into an analytic program on #
and obtain a machine M.

We now observe the computations of M and M and realize the following:

If the condition “a = 0” is satisfied in M then the computation on M is taking
the same path as the computation for z on M because B,/ s has been defined
such that [¢]s € By 5 if f7'(2) = 0. On the other hand, if “a = 0” is not satisfied
in M then there exists an M € IN such that [z]s € B,/ s for all 6 > M.

If 6 > M we see that the computation for [z]s on M takes the same path as the
computation for z on M. Inductively this holds for every condition in the path
o and so it is obvious that M is analytically computing f.

There are two more problems to mention: It is possible that f7([z]s) is infinite
for [z]s € By s\ As. It could happen that [21]s = 0 # z; and the instruction
“a := a/z1” should be carried out. In this case we go to the instruction “init” and
restart the computation with higher precision. As f? has no infinite discontinuity
on A,, f7 on By s has no infinite discontinuity for sufficient large 6.

The second problem is that it is possible that M never terminates because the
rounding [2]s may leave the definition area D of the computed function f: D — C
and so M may hang up in an endless loop. We solve this problem by restricting
the number of branchings, e.g. to §. This means we abort the computation and
go to the instruction “init” after the §-th branching. There exists a sufficient
large 6 such that M will take the right path and does not abort.

Now we have to prove that the test [z]s € B,/ s can be decided by a computable
procedure. We see that

By ={#|30 € R,y € R, (y* + Y (2 =)" —n 27" = 0, P (2) = 0)}.

=1

So we get B, s as the projection Z of an algebraic manifold over z,% and y. The
test T € B, s is equivalent to

Bos(#) = {(z,)| y* + Z(rz —@)?=n-27" =0, P (x) = 0} £ 0.

PZ'(z) is computable, hence B, s(#) = 0 is decidable ([T], [Col]). So we can
replace the test # € B,/ s by a procedure deciding this question. Thus, the proof
is completed. The simulation is robust because we have not used any quality of
the rounding except |z — [z]5] < 27°.

(theorem 1) O

14

Theorem 2: The set of the IR-computable functions is a proper subset of the set of
the §-@Q-analytic functions.

Proof: As we mentioned before the Koch curve and Hilbert’s space filling curve are
not IR-computable. They are Q-analytic because these functions are defined by
an infinite sequence of Q-computable functions, converging to the Koch curve
resp. Hilbert’s curve.

(theorem 2) O

We will now look at two functions which will be useful later on. We define d; : [0,1] — R
for 2 =1,2 by

% form:é—’,(p,q):hp,qeﬂ\l

dy(z) :=
0 forazel0,1]\Q
1 forzeQnio,1]
dy(z) :=
0 forz€(0,1]\Q.

Lemma 2: d; is Q-analytic.

Proof: The machine reads z with the precision 4, i.e. the rational number [z]s. The
machine searches the smallest rational number £ € [[m]5 - 275 [2]s + 2_5] with
minimal ¢'. If 2 is irrational then }; — 0; else there exists a &', such that for

all 6 > 6’ the input = = 2—’ is the number with the minimal denominator in the

interval [[m]g — 270 [2]5 + 2_5], thus the machine will constantly write % on the
output.

(lemma 2) O

Lemma 3: d; is IR-analytic.

Proof: The machine enumerates all rational numbers. Then it compares every ¢; to
the input z. If = ¢; then the machine writes 1 to the output and terminates®.

(lemma 3) O

We will now examine the question in which cases dj is Q-analytic as well and in which
cases dy is not Q-analytic. For that, y;(z,) shall denote the output y; of a §-Q-machine
for the input « with the precision 6.

Lemma 4: There exist roundings []s, such that ds is 6-Q-analytic.

"This is easy to do by enumerating the positive integers ¢ € IN and testing whether there is a
multiple of % in the input interval.

2 As it is an analytic machine it does not actually terminate but keeps on running without changing
the output.

15

Proof: If there is an approximation []s for which

[:v](g:gandqgé = =

p
q
holds then dy is 6-Q-analytic. If this condition holds the machine only has to
calculate p and ¢ such that [z]s = g—’. Then it checks whether ¢ < 4. If this is the

case it writes 1 to the output y; else it writes 0. Hence for all 2z € Q) there exists
a M € IN, such that y([z]s,6) =1 for all § > M.

We still have to show that such an IR-computable rounding exists: If z = 2—) and
q < & we define [z]5 := @ else we search any number £ with ¢ > § and |z — 2| < 279
and define [z]s := . This rounding is not normal because it does not satisfy the
requirement (2) for normal roundings.

(lemma 4) O

Lemma 5: d; is not §-Q-analytic for any normal roundings.

Proof: We assume that there exists a §-Q-machine computing dy analytically with []s
being normal. We now show that this assumption is contradictory.

Let % > ¢ > 0. The assumption implies: If z € @ there exists a §, such that
y1(z,6) > 1—eforé > é,. If 2 € IR\Q then there exists a ¢, such that y;(z,6) < ¢
for 6 > 6.

We will construct a real number » using a convergent sequence such that y;(z,d)
is oscillating between values greater than 1 — ¢ and less than ¢ with increasing §.

We start with any number v; € Q. Then there exists a §;, such that y,(vy,6;) >
1-—-e.

The requirement (1) for normal roundings implies that there exists an irrational vy
such that [vg]s, = [v1]s, (with 6 = §' = §1,v2 = & and vy = z). The requirement
(2) for normal roundings implies [v2]s = [[v2]s,]s = [[v1]s,]s = [v1]s for all § < 6;.
As vy € R\ Q there exists a d; > 61, such that y1(ve,d2) < €. Then we define
vy 1= [v2]s, € @, and find a 85 > 6, with y;(vs,03) > 1 —e.

In the same way we find for all even i an irrational »; with [v;]s = [v;1]s for
all § < 6;—1 and a é; > 6;_1, such that y;(v;,6;) < . For all odd i there exists
a rational v; with [v;]s = [vi—1]s for all § < 6;—y and a §; > é;,_1, such that
y1(vi,6;) > 1—¢.

As27% — 0 for i — oo and vy € [v; —27%, v;+27%] there exists a limit lim ;.

We define » := lim »; and hence [v]s = [v;]s holds for all j and all § < é;. Hence
if i is odd y1(v,6;) > 1 — ¢ else y1(v,8;) < e. Hence the output of the machine
diverges.

(lemma 5) O

From Lemma 3 and Lemma 5 we conclude:

16

Theorem 3: The set of the normal Q-analytic functions is a proper subset of the set
of the IR-analytic functions.

We now deduce:
Theorem 4: The set of the §-Q-analytic functions is not closed under composition.

Proof: By first computing di(z) and then comparing it to 0 we can compute ds:

1 ifdy(z)#0
dQ(“"):{ 0 ifdy(z)=0

(theorem 4) O

This is not satisfactory at all because the composition of computable functions should
be computable as well. Therefore we will define “strong analytic” by increasing the
requirements for “analytic”.

7 Strong QQ-analytic Machines

Definition 7: We call a computation

Po, L1, P2, - -
strong analytic iff (1), (2) and (3) are satisfied.

(1) The computation is analytic.
(2) | Jim wi(p;) = yi(pi)l < wa(pi), forall yy and all p; € K,y
(3) y1(p;) — 0 for j — oc.

That means if a computation is strong analytic we know the precision of the output.
Lemma 6: The strong Q-analytic functions are continuous.

Proof: We assume a strong Q-analytic function f with a discontinuity Z. Without loss

of generality let f(z) > f(Z)+¢ forae > 0and 2 > Z. Then there exists a M
such that for all § > M

y1('%76) <

o] M

holds. There exists a rounding []s and z > #, with [Z]s = [z]s for all § < M.
Hence ys(#, M) = yale, M) and 3 (, M) = (2, M) < £. By |f(z) - f(3)] > ¢
we deduce a contradiction to definition 7.

(lemma 6) O

In the following we show that the strong @-analytic functions are closed under compo-
sition and primitive recursion.

17

Lemma 7: Let g : R” — IR and & : IR""2 — R be two strong Q-analytic functions.

We define f: IN x R™ — IR by
7(0,2) 5= 9(a)

and
f(n+1,2) = h(n, f(n,2),)
for n € N and 2 € IR". Then f is strong Q-analytic.

Proof: We can compute f(n,z) using n+ 1 6-Q-machines, using the output of the i-th

ad 1:

ad 3:

machine as input for the 7 + 1-th.

The computation is analytic so the machines don’t terminate. Therefore, all
machines have to work simultaneously and have to use the current output of the
previous machines.

We have to prove:

1. The output of a §-Q-machine computing a strong analytic function can be
used as input for another 4-Q-machine.

2. It is possible to simulate all reading operations and writing operations in the
main memory. This point is obvious.

3. It is possible to simulate several §-Q-machines by a single one.

Let M be a machine computing a strong analytic function. Let 7 be the real

number the output of M converges to. That means: y1(p;) — 0 and y2(p;) — ¥
for j — oo, with |7 — y2(p;)| < 11(p;) for all p; € K.
Now we want to use 7 as input for another §-Q-machine M’. The special charac-
teristics of the rounding are not important. Hence it is sufficient if |[7]s—7| < 27°.
If we wait long enough the machine M is computing so exactly that 3 < 27¢
holds. Hence |7 — 2| < 27%. So we can take y, for [7]s and use it as input for
M’ as soon as y; < 27°%.

We prove that a single machine M can simulate two machines My and M.
From this we conclude inductively that n machines can be simulated by one.

We divide the memory of M in 4 sets of memory cells:
ZO .
Loz, 22, 23, 24, Z5
1.
Z Zg, Z9, 212,
2.
Z° 27, 210, *13,

3.
Z . 2’8, Z]], 214,

Now we identify Z!' with the memory of My, Z? with the output of M resp.
the input of My and Z° with the memory of Mj. The input tape of M; is the
input tape of M, the output tape of My is the output tape of M.

We use Z° to save the registers. Let Za1 = 21, Zy1 = zy be the a- and 7v-
registers of My and z, 2 := 23, 242 := 24, 252 := 25 the a-, 7- and é-registers of
Mg; The é-register of M is the é-register of M;.

Now we give an informal description of the program running on M.

18

¢ Load a- and y-register of M; from z,; and 2, ;.

e Simulate My until § is increased. It is easy to see that it is no problem to
work with Z! and Z? instead of the whole memory and the output tape. This
requires only few modifications in the program of M;. Write an approximate
output into Z2.

¢ Save the a- and ~-register.

o Test if the approximate output is precise enough to be used as input for M.

¢ If not, go back to M.

o Otherwise load the a- and y-register of My from z, 5 and z, 5.

e Simulate Mgy until ¢ is increased. Write the output of My onto the output
tape of M.

e Save the a- and ~-register, increase é and go on simulating M.

The output of My converges and with convergent input the output of My con-
verges as well. Hence by induction we conclude that the strong Q-analytic func-
tions are closed under primitive recursion.

(lemma 7) O

In general we are not able to say whether the minimal precision for which the machine
takes the right path o is reached or not: If there is at least one branching on which
we assume 2 = 0 we do not know whether this decision is stable for all computations
with higher precision. Therefore, this approximation is only analytic and not strong
analytic.

We will now observe the relation between the strong analytic functions and the com-
putable real functions defined by Grzegorczyk. We are not looking at the original
definition but at an equivalent one ([Ko], page 51). This definition uses a turing ma-
chine with an oracle. The oracle serves the same purpose as our rounding []s. The main
difference to our definition of strong analytic is the following: The turing machine has
to compute an approximation § for a function f(z) with

g — f(z)| <277

From this it computes the input precision 27™ needed to compute §. Then the machine
queries the oracle, i.e. it claims an approximate value 7 for 2 with |z —#| < 27™. Using
Z as input the turing machine computes the output §. f is called real computable iff
there exists a machine that can compute a § with |§— f(z)| < 27" for any input Z with
|z — & < 27™.

It is easy to see that our machine can simulate the turing machine and therefore the
real computable functions are strong analytic. We also realize that any strong analytic
function is real computable. Here we need that the strong analytic functions are robust.

There exists a precision §’ such that for all § > 6’ we know whether z = [2]s holds

for every rational z if we use a rounding with
[m]gzgandqgé = B:x
q q

19

With this rounding we can compute strong 4-Q-analytic functions with rational dis-
continuities. As the real computable functions are continuous the definitions are not
equivalent in this case. It is not satisfactory that the definition of strong analytic de-
pends on the rounding for real numbers. On the other hand it is not satisfactory that
the Theta function ©(z) with O(z) := 0 for 2 < 0 and O(z) := 1 for 2 > 1 is not real
computable.

8 Procedures

We now extend our machine model by allowing the use of procedures {fi,..., fin}
which are robust and strong Q-analytic.

Let My, be a Q-machine which computes the strong Q-analytic function f; analyti-
cally.

We define a new instruction for an IR-machine by

Q= fi(p17p27 .- 7pn)

which assigns the result of My, for the input py,p,,...,p, to a. Here p; is an element
of {a,z1,29,...,21,29,...} for j € {1,2,...,n}. Note that this is an extension to the
well known term procedure because My, is analytical and never has to return a value
as a result.

Mm(fi,..., fm) denotes an IR-machine using programs including the procedures
{fly- . 7fm}

If we want to include strong Q-analytic functions as procedures into @-machines we
can only use approximations because we are not able to assign real numbers to the
variables of the -machine. So we define

Q= [f(p17p27 c '7pn)]5

as a new instruction for a ®-machine. Thereby is [f(p1,p2,...,Pn)]s € Q and
|[f(p17p27 s 7pn)]5 - f(p17p27 s ,pn)l < 2_6' MQ(fh ey fm) denotes a Q'maChine
using the procedures {fi,..., fi}.

Can a machine using these procedures be simulated by an ordinary Q-analytic ma-
chine? We can compute the approximation [f(p1,p2,...,pn)]s for a strong Q-analytic
function fin finite time. Therefore, we have no problems in simulating M Q(fl, coes fm)-

We now examine the machines Mg(fi,..., fm), for which the exact result is avail-

able.

Theorem 5: All functions which can be computed by Mi(f1,..., fn) are Q-analytic.

Proof: The proof of that theorem is related to the proof of theorem 1. But instead of
the question whether [z]s € B, s we now use the knowledge of the precision of
the approximated value z to decide a condition @ = 0 or @ > 0. So we can define
an interval

[z]s — 276 —. Timin(0) < & < Tppar(0) := [2]s + 279,

Where 2,4 (0) — @ and @y,45(8) — @ for § — oo.

20

If 2 =0 than 2, (6) < 0 < Zyn4,(6) holds always.

If z # 0 then there exists a M, such that for 6 > M : 0 < 2,,in(0) < Tyax(6) or
mmzn(é) < xmax((s) < 0 holds.

If Zmin(6) <0 < Zppax(d) we assume z = 0 and chose the corresponding branch.
If x = 0 we are always right; If © # 0 then there is a M so that we avoid this
mistake for all § > M.

To keep the knowledge about the precision when a procedure call is made, we use
the fact that these functions are strong Q-analytic and therefore can tell us the
precision of their current approximation.

Every IR-machine terminates after a finite number of branchings. Therefore there
exists a M such that for all § > M the §-Q-machine takes the right computation
path.

As in the proof of theorem 1 difficulties with infinite discontinuities or non-
terminating computations can occur. They are treated analogously.

This simulation is robust as we have not used any quality of the rounding except
|z — [z]s] < 278,

(theorem 5) O

Remark: In general, functions analytically computed by Mg(fi,..., fm) are not Q-
analytic. This is easy to see because they include the IR-analytic functions which
are not Q)-analytic.

9 The Halting Problem

We examine whether the Halting Problem of R-analytic machines is R-analytic itself.
Without loss of generality we do without the instructions

a:=axrwithxe{+,—,,/},reR

and interpret the real numbers r as additional input values. Therefore, the correct
programs for R-machines are countable. Let Il be the set of correct programs and let
M be the machine with the program = € 1l. There exists a computable injective
function ¢ : T — @, for which the inverse ¢! is also computable. We define the
function erg : II X R* — IR U {u}, such that for all 2 € IR* and 7 € 1II holds:
erg(m,z) := y if M, converges to y € IR for the input z and erg(m,z) := u if M,
diverges for the input z.

Now we assume the existence of a machine M which can decide whether the output
of an arbitrary machine M, converges or diverges for any given input 2 € IR*. Its result
is 1 in the case of divergence and 2 in the case of convergence. If M/ can do this it
can do it for the special input z = ¢(7) as well. So for all = € I

{ 1 iferg(m,é(m))=u

2 otherwise

erg(', o(r))

21

Then we define 7" by programing an infinite loop that produces an output oscillating
between 0 and 1 if M,/ produces an output close to 2. So we get

erg(ﬂ'", o(7)) = { 1 iferg(m,d(r))=u

u otherwise.

Hence
" my) 1 iferg(n”, (") = u
67“9(71' 7¢(7T)) - { u if erg(ﬂ'", ¢(ﬂ.//)) =1

This contradiction proves the incorrectness of the assumption. Therefore the question of
the convergence of an analytic B-machine is not analytically decidable by an R-machine
in general.

It follows from results in ergodic theory [A.A], that in general, the halting problem
can not be decided by numerical methods. Our result is stronger in so far as it states
that there is no universal decision algorithm with finite description, even if we allow
real arithmetic and infinite computations.

Literature

[A.A] Arnold V.I., Avez A.
FErgodic Problems of Classical Mechanics
Addison-Wesley, Advanced Book Classics (1989)

[BenOr] Ben-Or, M.
Lower Bounds For Algebraic Computation I'rees

Proceedings 15th ACM STOC, 1983, 80-86

[B.S.S] Blum L., Shub M., Smale St.
On a theory of computation and complexity over the real numbers:
NP completeness, recursive functions and universal machines

Bull AMS Vol 21 (1989)

[Col] Collins, G. E.
Quantifier Klimination for Real Closed Fields
by Cylindrical Algebraic Decomposition
Proceedings of EUROSAM 74, SIGSAM Bulletin, Vol. 8, No. 3 (1974)

[Grz] Grzegorezyk, A.
On the definitions of computable real continuous functions
Fund. Math. 44, 61-71

[Ho] Hotz, G.
Uber Berechenbarkeit fraktaler Strukturen,
Abhandlungen der Akademie der Wissenschaften und Literatur, Mainz
Math.-Nat. Klasse. (1994, Nr. 1)

[J] Julia, G.
Sur literation des fonctions rationelles
Jour. de Math. Pure et Appl. 8 (1918)

22

[Ko] Ko, Ker-I
Complexity Theory of Real Functions
Birkh&user Boston (1991)

[S] Siegel, C.T..
Vorlesungen tber Himmelsmechanik (Kap. 3)
Springer Verlag (1956)

[T] Tarski, A.
A Decision Method for Flementary Algebra and Geometrie
second ed., rev., Univ. of California Press, Berkeley. (1951)

23

