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Abstract. We introduce algorithms for lattice basis reduction that are
improvements of the famous L*-algorithm. If a random L°-reduced lat-
tice basis b1,...,bn is given such that the vector of reduced Gram
Schmidt coefficients ({¢i;} 1 < j < ¢ < n) is uniformly distributed
in [0, 1)(3)7 then the pruned enumeration finds with positive probability
a shortest lattice vector. We demonstrate the power of these algorithms
by solving random subset sum problems of arbitrary density with 74 and
82 many weights, by breaking the Chor—Rivest cryptoscheme in dimen-
sions 103 and 151 and by breaking Damgard’s hash function.

1 Introduction and Summary

We address the challenging problem whether it is possible to find, for a given
integer lattice basis by,...,b, € Z™, in polynomial time a nonzero lattice vec-
tor of length n®M X , where \; is the minimal length of nonzero lattice vectors.
The L3-algorithm of Lenstra,Lenstra, Lovasz [LLL82] finds in polynomial time
a lattice vector of length 2% \;. Schnorr [S87, S94] has extended this algorithm
from block size 8 = 2 to arbitrary block sizes 2 < 8 < n. Roughly speaking,
this extension goes as follows. Whereas the L3-algorithm iteratively swaps two
consecutive basis vectors b;, b;41 if this decreases the length of b;, the orthogonal
projection of b; in span(by,...,b;_1)%, block reduction with block size 3 itera-
tively transforms blocks b;,b;41,...,biys—1 of § consecutive basis vectors as to

~ n=1
minimize b;. The first vector of a block reduced basis satisfies ||b;|| < 'y;_l A,

where y5 ~ f—e is the Hermite constant of dimension 3. For an implementation

of block reduction, see the algorithm BKZ of [SE94]. With block size § = 20 it
is only 10 times slower than L3-reduction but for large block sizes 3 the delay
factor is about B9 This delay factor is the time to construct a shortest vector
b; for a block of size  using complete enumeration of all short lattice vectors.
A shortest vector of the entire lattice can be found by the algorithm of Kannan
[KAS87] in exponential time n©(?).

In this paper we present and analyse a new rule for pruning the enumer-
ation of short lattice vectors. This pruning very likely finds a shortest lattice
vector, and is exponentially faster than complete enumeration. It is based on
the Gaussian volume heuristic that estimates the number of points of lattice L
in nice subsets S C span(L) as vol(S)/det L. If a random L3-reduced lattice ba-
sis by, ..., by is given such that the vector of reduced Gram—Schmidt coefficients

({wi;} 1 <j < i< n)is uniformly distributed in [0, 1)(2), then the pruned



enumeration finds with positive probability a shortest lattice vector. We let {r}
denote the residue modulo 1 of the real number r in the interval [0, 1).

Pruning the enumeration by the Gaussian volume heuristic is more powerful
and more flexible than the previous pruning rule of [SE94]. We combine the
new pruning with the block reduction algorithm BKZ of [SE94]. This pruned
block reduction is the most powerful lattice reduction algorithm so far. It solves
almost all subset sum problems of dimension 74 and 82 for all densities, it breaks
the Chor—Rivest cryptosystem in dimensions 103 and 151, and it easily breaks
Damgard’s knapsack hash function [DA89]. Our experiments raise new hope that
almost shortest lattice vectors can be found in polynomial time.

Lagarias and Odlyzko [LO85] have been the first to solve subset sum problems
by lattice reduction. Their attack on subset sum problems of low density was
improved by [RK88]. Since then the main progress came from block reduction
[SE94], [S87], [S94] and by introducing a superior lattice basis [CJLOSS92]. Kaib
and Ritter [KR94] propose an alternative approach based on lattice reduction
in the l,—norm.

2 Basic concepts for efficient lattice reduction

Let IR” be the m-dimensional real vector space with ordinary inner prod-
uct (,) and Euclidean length ||y|| = (y,y)'/%. A discrete, additive subgroup
L C R™ is called a lattice. Every lattice is generated by some set of linearly
independent vectors by, ..., b, € L, called a basis of L, L = {t1b1 4+ ---+t,b, |
t1,...,tnp €7Z}. Let L(by,...,b,) denote the lattice with basis by,..., b,. Its
rank or dimension is n and its determinant is det L = det[{b;, bj>1<i’j<n]1/2.

With an ordered lattice basis b;,...,b, € R™ we associate the Gram-
Schmidt orthogonalisation by,...,b, € IR” which can be computed together
with the Gram-Schmidt coefficients p; ; = (b;,b;)/{b;,b;) by the recursion
31 = by, /b\l =b; — E;_:ll /,Lm-/b\j for @ =2,...,n . We let m; denote the or-
thogonal projection m; : IR™ — span(by,...,b;—1)t fori=1,...,n, m(b;)=
S, y&jgs. Then m;(L) is a lattice of rank n— i+ 1.

An ordered basis by,...,b, € IR™ is L3-reduced, according to A.K. Lenstra,
H.W. Lenstra and L. Lovédsz [LLL82], with ¢ € [1/4,1) if (1) and (2) hold:

(1) |piil <1/2 for 1<j<i<n

(2) 8- |lbu—ill? < 1Bk + premtbr—1l> for k=2,....n.

A basis satisfying (1) is called size-reduced. The L3-algorithm of Lovdsz
[LLL82] transforms an integer lattice basis in polynomial time into an L3-reduced
basis of the same lattice. Schnorr, Euchner [SE94] propose a floating point ver-
sion L3FP of the L3-algorithm. This algorithm is used whenever we apply L3-
reduction.

A lattice basis by, ..., by is block reduced with block size (3 if it is size reduced
and if b;, for ¢ = 1,...,n, 1is the shortest nonzero vector of the lattice
7 L(bi, ..., bmin(i+s-1,n)). Block reduction has been analysed in [S87], [S94].



We consider the following function ¢; with integer entries ug, ..., u,

2
n n n

er(Uty ..oy Up) = ||7rt2uibi||2 = Z Z“iﬂi,j ||/I;J||2 fort=1,...,n.

i=t j=t =7

We present the core of the procedure ENUM of [SE94] that generates a
shortest lattice vector by complete enumeration in depth first order.

Algorithm ENUM

INPUT  [|b;]|%, pis for 1<t<i<nm.

OUTPUT a minimal nonzero place (u1,...,u,) and a minimal value ¢; for the
function e;.

1. FOR i=1,...,n DO ¢ :=wu:=u_ =y =0
U i=up =1, t:=1, e :=¢ :=|bh|?*.
( we always have ¢&; = ¢; (Uz,...,Un), €1 is the current minimum of ¢; )
2. WHILE ¢ <n R
o= Copr + (g + 102)° [[Be]]?

IF Et <
THEN IF ¢>1
THEN t:=t—1, yo =320 Uiy, U= [~y

ELSE ¢ :=¢;, uj:=u; for i=1,...,n
ELSE t:=t+1
~ _{ﬂt+1 if t=1tma

U= next(;, —y;) otherwise
END while
Here (7] = [r — 0.5], tmas is the maximal previous value of ¢. We define
a' = next(a,r) to be the integer which is, next to a € 7, nearest to r € RR.

We have |a—r| < |a' —r| < |a—r|+ 1, sign(a’ —r) # sign(a —7r), la—r| =
o/ —r|=>a<r<ad.

Correctness. The algorithm ENUM enumerates in depth first order all
nonzero integer vectors (g, ...,u,) for ¢ =1,... ,n that satisfy e:(Uz,..., Uy,)
< ¢1 where ¢1 is the actual minimal value for the function ¢;. All enumerated
vectors satisfy u; > 0 for the largest ¢ with u; # 0. For fixed W41, ...,Un, the
sequence of values U, generated by iterating the function next(*,—y;), makes
the sequence ¢;(Uy,...,Un) non decreasing. Therefore, if the test ¢ < ¢; fails
for the current vector (uU,...,un), the subsequent increment of stage ¢ has the
effect to discard all vectors (u,Usy1,...,U,) where u; preceeds u in the itera-
tion of next(x, —y;). The discarded vectors can not lead to the minimum of the
function ¢;.

3 Pruning the enumeration

We prune the enumeration of vectors (u,...,u,) in ENUM by tightening
up the test “IF ¢ < ¢;”. We cut off the depth first search at (U, ..., u,) if the



probability that (w@,...,u,) can be completed as to satisfy e (1, ...,U,) < €1
is less than a chosen threshold 277,

The Gaussian volume heuristic. A general principle, dating back to Gauss,
estimates the number of points of lattice L in nice subsets S C span(L) as

vol(S)/ det L.

How to apply it. Suppose we have chosen integers ug, ..., u, and we search
for Uy, ..., Us—1 as to satisfy ¢1 (U1, ..., Un) < c1. We let L denote the lattice L =
n
L(by,...,bi—1). So we want to add to the given lattice vector b = > u;b; a vector
=t
t—1 _ '
b= > ub; in L as to satisfy ||b+ b||> < ¢1. We decompose b into orthogonal
i=1
parts b =y — z with z = — Z;;i S, Uipi b € span(L),y € span(L)*,
¢ = ||lyl|*>. This means, we search for a point in

(b+L)YNS(HWeé—¢,y) = LnS(Ve — ¢, 2)

where S(r,y) is the (¢ — 1)-dimensional sphere with radius r and center y in
y + span(L). Here the equality holds since z = y — b. Now we apply the volume
heuristic to the lattice L and the sphere S(v/¢; — ¢;,2) C span(L). Hence the ex-
pected number of vectors (uy, ..., U _1) € Z'~" satisfying ¢y (U1, ..., %,) < & is
vol S(v/é1 — ¢, )/ det L. We propose to cut off the enumeration of (w1, ..., u_1)

if this ratio is less than 277 for a fixed chosen p.

b+span(L)

S(VC1 —a,y)

7

point in b4 L sphere in span(L)

with radius /¢

Figure: the volume heuristic



GAUSS-ENUM. We replace in ENUM the condition “IF ¢ < ¢;” by “IF
vol S(veé1 — ¢, z)/det L < 27P”. We call the new procedure GAUSS-ENUM.
The parameter p controls the pruning. Large values p correspond to weak prun-

ing, p = oo corresponds to complete enumeration (no pruning). The inequality
vol S(v/e1 — ¢, 2)/ det L < 27P is equivalent to ¢; < ¢; — 1 where

1/t—1Y 2 =
_ = i—1 -p .
1=+ (F)! (2 gnbzn)

If GAUSS-ENUM cuts off the depth first search at (u,...,u,) the prob-
ability, that (U,...,u,) can be completed as to satisfy e¢1(U1,...,Us) < c1,
is at most 27P. In the analysis of GAUSS-ENUM we disregard that GAUSS-
ENUM discards, in addition to the vectors (ui,...,up) , also the vectors
(Uy,...,Ut—1,U,...,U,) where U; precedes u in the iteration of next(x, —y:).
This can be repaired by a slight change in GAUSS-ENUM. However this yields
a reduction algorithm that is less efficient in practice.

2
t—1

Justification of the volume heuristic. The Gaussian principle does not hold
in general. MAazo and Opryzko [MO90] show that it fails even in the case of
spheres and the lattice L = Z" for particular choices of the center z . However
the principle holds if the center of the sphere is “uniformly distributed (u.d.)
modulo the lattice”.

Definition. For a lattice L with basis by,...,b, a probability distribution
of points S, t;b; in span(L) is called u.d. modulo L if the reduced vector
({t;}i=1,...,n) isud in [0,1)" .

This notion does not depend on the choice of the basis. If by,...,b, and
bi,...,b, aretwo bases of lattice I there is a matrix U € GL,(7) satisfying
[b1,...,ba] = [b1,...,b,] U. Since |detU|=1 the linear transformation by U
transforms the uniform distribution on Y., b; [0,1) into the uniform distri-

bution on Z?:l b; [0, 1). Alternatively we can express the uniformity modulo
L in terms of the Gram-Schmidt orthogorAlalization 31, . ,En associated with
the basis b1,...,b,. The vector Y7 ¢/ b; in span(L) is u.d. modulo L if
and only if the vector ({t/}i=1,...,n) isud.in [0,1)".

Lemma 1. Let L be a lattice and S(r,z) C span(L) the sphere with fized
radius v and random center z that is u.d. modulo L . Then FE,#(S(r,z)NL) =
vol S(r,z)/ det L holds for the expectation E,.

Proof. For two points z,z € span (L) that coincide modulo L ,ie. 2z =
zmod L, we have #(S(r,z) N L) = #(S(r,z) N L) . The average number of
lattice points in S(r,z) is the average number of lattice points per volume part
vol S(r, z). Hence the expected value of #(S(r,z)NL) is vol S(r,z)/det L. O

[



We apply Lemma 1 to the situation in GAUSS-ENUM with u, ..., u, being

fixed, ¢ = ¢t (Ut,...,Upn), €1 > ¢ and a lattice point of L is searched in the
t—1 n —

sphere S(v/é1 — ¢t,z) with center z = — Y > U;; ;b;.
j=1li=t

Theorem 2. If the vector ({p;;} 1 < j < i < n) is ud. in [0, 1)(3) then for
every fized nonzero (g, ..., Un) € 2"~ the center z is u.d. modulo the lattice
L =1L(by,...,bi_1). Moreover

E, #] (W, .., 0-1) €L i e1(TU, ..., Un) < c1] = vol S(V/e1 — G, 2)/detL.

Proof. We can assume that %, # 0 since otherwise we can decrease n. We see
n

that the vectors ({tuppn it i=1,...,t—1)and ({d wip;}j=1,...,t—1) are
i=t

u.d., in [0,1)!~1. This shows that z is u.d. modulo L. Since

#[(Tr, .. ) €L e (W, .., Un) < ] = #(S(VeE -, 2) N L)

the expression for the expectation F, follows from Lemma 1. O

Success rate of GAUSS-ENUM. Suppose a distribution of L3-reduced lat-

tice bases so that the vector ({g;;} 1 < j < i< mn)isud. in [0,1)(3) and
let p > log,n. Whenever the depth first search is cut off at a fixed vector
(U, ..., Ty,) € Z"~"*! then, by theorem 2, the event that a lattice vector short-
er than /c; gets lost, has probability at most 277, Therefore the probability of
missing the shortest lattice vector is at most 277 times the average number of
cutoffs. While the number of cutoffs can be arbitrarily large for badly reduced
bases statistical experiments show that, for random L3-reduced basis, the aver-
age number of cutoffs is proportional to ¢, ,2P where the factor ¢, , decreases to
0 as p increases. E.g. for n < 30 and p = 7 the probability of success is at least
0.1.

4 Solving subset sum problems

Given positive integers ay, ..., a,, s we wish to solve the equation Z:'L=1 a;e;
= s with z1,...,z, € {0,1}. We assume that we are also given ¢ = Y_""_, z;, the
number of 1-entries of the solution. So we search for a {0, 1}-solution (z1, ..., 2,)
of the two equations >.._, a;z; = s, Y.i_, z; = q. Following [CJLOSS92] we
associate to this problem the following lattice basis by, ..., b, € /A

bo=(1,q4q,...q, n’s, n’q)
by =(0,n,0,...0, n%a;, n? )
(3) by =(0,0,n,...0, n%as, n? )



According to [CILOSS92] the shortest vector z of the lattice L(bg, ..., b,) solves
via (4) almost all subset sum problems of density less then 0.9408, where the
density is n/ max; log, a; . Even beyond this density threshold, solutions of the
problems in this paper are associated with very short lattice vectors.

With a {0, 1}-solution & = (z1,...,2,) of the subset sum problem we as-
sociate lattice vectors z = (z0,...,2n42) = *(=bo+ Z?:l z;b;) that satisfy
lzo] = 1, 2n41 = 2ny2 =0, 2;/20 € {q,g—n} for i =1,...,n. Conversely every
such lattice vector z = (zo, ..., zn+2) induces a subset sum solution

(4) @z := [IF 2z /20=¢—n THEN 1 ELSE 0] for i=1,...,n

We have tested the following algorithm for general subset sum problems with
n = 74 and n = 82 many weights and for the Chor—Rivest subset sum problem
with n = 103.

Algorithm PRUNED SUBSET SUM
INPUT lattice basis by, ..., b, € Z"*3 asin (3).
Perform four successive stages of reduction :

1. L3-reduction.

2. block reduction with block size 20.

3. pruned block reduction with block size 50 and p = 10.
4. pruned block reduction with block size 70 and p = 12.

Algorithmic details. 1. For L3—reduction we use the algorithm L3FP of [SE94].
We set § = 0.99, we apply the deep insertion rule of [SE94] for the first basis
vector.

2. Block reduction is done by the algorithm BKZ of [SE94] with § = 0.99 resulting
in a basis bg, ..., b, satisfying for i =0,...,n

(5)  0.99]b]| < ||mi(b)|| for all nonzero b € L(bi, .- ., bmin(i4p—1.m)) -

3. Pruned block reduction is done the same way as block reduction except that
we use instead of algorithm ENUM the algorithm GAUSS-ENUM with an ap-
propriate pruning parameter p. The resulting basis may occasionally fail the
inequalities (5).

4. Test for solution and early termination. Subsequent to every size-reduction
of a basis vector b; it is always tested whether b; solves the subset sum problem,
i.e. whether (4) induces a solution z for z = b;. Also for each stage of the re-
duction, the vectors of the reduced basis are tested for solution. The algorithm
terminates as soon as a solution has been found.

5. Reduction to the sublattice I = {(z0y---s2n+2) € L(bo,...,bn) : zpy1 =
Zn42 = 0}. After the L3-reduction in stage 1 we construct a basis of the lattice
L and we continue the reduction process with this basis. Working with the lattice



I simplifies subsequent reductions since rank(f) = rank(L) — 2. To construct
a basis of L we linearly transform the L3-reduced basis by, ..., b, of L so that
bi; =0 holds fori=1,...,n—2and j = n+ 1,n+4 2. Then we eliminate the
vectors b, _1, b, from the basis and we remove from the vectors b; i =0,...,n—2
the last two coordinates b; n41,bi nt2. Upon entry of stage 2 we randomly per-
mute the basis so that it starts with the vectors b; that have a nonzero coordinate
b; 0. This enhances the generation of short lattice vectors z which induce via (4)
a subset sum solution.

5 Attacks on the Chor—Rivest cryptosystem

Chor, Rivest present a public key encryption method for which deciphering
has the form of a subset sum problem of high density, for details see [CR88].
Chor, Rivest propose examples of their scheme with n = 197 and n = 211
many weights. For testing possible attacks they also designed a small example
with n = 103 many weights and subset sum problems of density 1.271. The
Lagarias—Odlyzko method which is based on L3-reduction completely failed for
the n = 103 subset sum problems.

Interestingly, block reduction with pruned enumeration solves the Chor-
Rivest subset sum problems with n = 103 many weights in only 1.5 hours
average time with 42% success rate. Thus the widespread believe that subset
sum problems with density greater than 1 cannot be solved via lattice reduction
is outright wrong. The Chor-Rivest scheme with n = 103 and density 1.271 is
even less difficult than random subset sum problems with n = 82 and density 1.

Generation of the Chor—Rivest subset sum problems. We take the par-
ticular weights ai,...,a103 of the example constructed by Chor, Rivest. We
generate 50 random vectors (z1,...,2103) € {0,1}'9 so that 2112? z; = 12,

103 )
and we set s := > .7 x;a;. In the corresponding subset sum problem we are

) . 103 103
given aq,...,ai03,s and have to solve the equations ), zija; = s, ) ,_j 2 =

12 with 21,...,2103 € {0,1}. (The number 12 arises from the particular con-
struction of the weights a; starting from the field IF = GF(103!2), a generator
g for the group of units IF*, an element ¢ € IF that is algebraic of degree 12 over
GF(103), a random permutation 7 in Sym(n) and a random number d with
0 <d < 103'2 — 2, and setting a; := log,(t +m(i)) +d for i=1,...,103 )
We solve these 50 subset sum problems by applying the algorithm PRUNED
SUBSET SUM to the lattice basis (3) with n = 103, ¢ = 12.

The first table shows, for each of the stages i = 1,2,3,4, in column 4 the
number of successes on stage ¢, in column 5 the number of successes up to stage
i, in column 6 the average time (with respect to all 50 problems) of stage i,
in column 7 the total time up to stage ¢ and in column 8 the maximal time of
stage 7. The last column contains the total time for all 50 problems divided by
the number of successes. All times are in minutes for a HP 715/50 workstation

under HP-UX 9.05 .



block #£ successes time in minutes || total time |
stage| size | p |lon stage|up to stage average|av. total”maximal”per success|

1 2 oo 0 0 0.6 0.6 0.7 0

2 20 oo 3 3 7.6 8.2 16.9|| 163.5
3 50 {10 18 21 86.8 95.0 247.3| 226.1
4 | 70 |12 14 35 173.4)  268.4 938.3|| 383.5

Stage 1 which performs L3-reduction does not find any solution. This con-
firms the previous results of Odlyzko showing that L3-reduction is too weak
even if the CJLOSS basis (3) is used which is much stronger than the Lagarias—
Odlyzko basis used in the experiments of Odlyzko.

Stage 4 by itself is quite inefficient. It takes a total of 619 minutes per success.
This suggests to replace stage 4 by a repetition of stages 1,2,3 with a randomly
permuted input basis. The next table shows the results for two repetitions of
stages 1,2,3.

#£ successes || time in minutes || total time
in round|total||laverage|av. total||per success
stages 1,2,3 21 21 95.0 95.0| 226.1
1. repetition 11 32 65.3| 160.3 250.5
2. repetition 6 38 33.5]  193.8 255.0

With two repetitions the success rate is 76% with an average time of 3.2
hours. It may be of interest that an alternative algorithm of Ritter, see [KR94],
solves all n = 103 Chor—Rivest problems in about 7 hours maximal time.

Chor—Rivest subset sum problems with more weights. A limited number
of first experiments have been carried out by H.H. Horner in attacking a Chor—
Rivest cryptosystem with n = 151 many weights and ¢ = 16 [H94]. So far he
could solve 5 out of 50 random problems with an average time of 195 hours for
the solved problems.

6 Attacks on Damgard’s knapsack hash function

In [DA89] a hash function h his proposed based on the subset sum problem.
Choose random numbers ay, ..., ass6 in the interval [1,2'29 — 1] and hash a
message m consisting of the bits my, ..., mosg into the integer A(my, ..., masg) =
Zi? a;m; .

To construct a collision for A it is sufficient to find a nonzero {+1, 0}-solution

(21,...,2a56) of the equation 23261 a;x; = 0. This yields messages m, m’ with
bits m; = max{0, z;}, m{, = —min{z;,0} for i = 1,...,256 satisfying h(m) =
h(m').

Following an analysis of Joux, Stern [JS94] collisions exist almost surely even
for the restricted problem with 80 out of the 256 weights a;. We construct nonzero
{+1, 0}-solutions of the equation 2212? a;z; = 0. We associate to this problem



the following lattice basis by, ..., b, € Z"*! with b; = (0,...,10) ..., 0, na;) for
i=1,...,n and n = 100.

A nonzero lattice vector z = (21, ..., zp41) yields a collision if z, 41 = 0 and
(z1,...,2n) € {£1,0}". We apply to this basis a two-stage reduction consist-
ing of an L3-reduction and a single pruned block reduction with block size 50
and alternative p—values 8,9,...,12. We test after each size-reduction whether
the reduced vector z yields a collision. (The more powerful reduction algorithm
PRUNED SUBSET SUM is less efficient since the shortest lattice vector is most
likely not in {£1,0}". This follows from the analysis in [JS94]. )

Each row in the following table corresponds to 20 random vectors (ai,. ..,

a100) € [1, 2120 _ 1)100. We report the number of successes, the average running
time in minutes, the minimal and maximal size of the detected collision ( the
size of a collision (z1,...,2,) € {£1,0}" is #{i : 2; # 0} ), and the pruning
parameter p.

| total time
block size| p |# successes|av. time in minutes|min size|max size|per success
50 8 7 235.04 48 58 671.54
50 9 16 261.98 44 62 327.48
50 10| 16 365.84 45 59 457.30
50 11 19 388.05 37 61 408.47
50 12| 20 386.65 44 60 386.65

A first collision for Damgard’s hash function has been constructed in [JG94]
using pruned block reduction via the pruning of [SE94]. They report one success
for ten problems. The new results demonstrate the superiority of pruning via
the volume heuristic.

We can further improve the performance our attack on Damgard’s hash func-
tion. If the pruning with parameter p decides to cut off the enumeration we repeat
the cut off test with p + 1. If p + 1 does not cut off we perform a reduction in
size on the current vector Z?:t u;b;. This yields a relatively short lattice vector
S, ﬂﬁz with || < 1/2. We test if the reduced vector yields a collision. To
save some time we cut off the reduction in size if the vector Z?:t LNL:R becomes to
long, e.g. longer than 60 in the following examples. The improved attack yields
the following performances:

| total time
block size| p |# successes|av. time in minutes|min size|max size|per success
50 6 6 77.10 43 59 257.00
50 7110 128.71 39 58 257.42
50 8 19 121.50 45 59 127.90
50 9 20 127.70 43 60 127.70
50 10] 20 115.24 44 59 115.24
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7 General subset sum problems

We report on solving random subset sum problems of arbitrary density in
dimensions n = 74 and 82. The previously most powerful algorithm [SE94] could
solve almost all problems in dimension n = 66 by combining block reduction
with some sort of pruning. The new algorithm PRUNED SUBSETSUM prunes
the enumeration of short lattice vectors by the volume heuristic. It solves for
n = 74,82 a substantial fraction of all random subset sum problems of arbitrary
density.

In the following table, every row with entries n, b corresponds to 20 random
input bases (3) that are generated as follows. Pick random integers ay, ..., ap
in the interval [1,2"], pick a random subset I C {1,...,n} of size n/2 and put
s = Zie] a;. To solve the corresponding subset sum problem Z?:l a;x; = s
we apply the algorithm PRUNED SUBSET SUM to the lattice basis (3) with
g = n/2. The numbers in columns S, S1, S2, S3, S4 denote the total number of
successes, and the number of successes in stages 1, 2, 3, 4.

# successes average time in minutes
n| b S|SI|SQ|83|S4 stage 1|Stage 2|stage 3|stage 4| total
74| 26|(20{19( 1| 0| 0| 0.08 0.00 0.08
74| 34|120] 5(13| 2| 0| 0.13] 0.23] 0.05 0.40
74| 42|(19] 1| 4|13| 1|| 0.15] 1.05] 0.62] 0.07| 1.88
74| 50|[17| O 0|11| 6| 0.20] 1.43| 4.08| 2.75| 8.47
74| 58|(15| O 0| 4|11|| 0.23] 2.12| 10.98| 14.67| 28.00
74| 66|(12| O 0| 6| 6| 0.28] 2.72| 21.82| 27.67| 52.48
74| 74|(12| O 0| 6| 6| 0.32] 3.68] 27.28| 31.72| 63.00
74| 82|20 O 0|19| 1| 0.38] 5:70| 11.42| 0.37| 17.87
74| 90|(20| Of 8|12| 0| 0.45| 4.07] 2.17 6.68
74| 98|120| 0[15| 5| 0| 0.55| 3.00] 0.38 3.93
82| 34|120| 2(16| 2| 0| 0.17 0.37] 0.05 0.06
82| 42|20 0| 7|13| 0| 0.20{ 1.30] 0.88 2.38
82| 50|(18| Of 1|13| 4| 0.27) 1.77] 4.78 1.32| 8.13
82| 58|l 8| O 0| 4| 4| 0.28] 2.85] 10.25| 26.65| 40.05
82| 66|| 5| 0 0| 0| 5|| 0.33] 3.20] 30.25| 65.93| 99.73
82| 74|l 4| 0 0| 1| 3| 0.37] 3.73| 60.67|171.37(236.13
82| 82|| 5| O 0| 1| 4| 0.45] 4.73|104.87|172.53|282.06
82| 90|(14| O 0| 9| 5| 0.53] 6.00{ 60.95| 73.72|141.20
82| 98|20 Of 0|17| 3|| 0.61] 7.55| 33.90| 7.65| 49.72
82(106|(20| 0| 3|17| 0| 0.68] 9.87| 9.28 19.83

PRUNED SUBSET SUM is remarkably efficient for densities less than 0.9408
where the shortest lattice vector most likely yields a solution, see linesn = 74,6 >
82 and n = 82,b > 90. This gives new hope that shortest, or near shortest lattice
vectors can be found in polynomial time.

Random subset sum problems with n = 82 and density 1 are harder than
the Chor—Rivest scheme with n = 103 and density 1.271. Here stage 4 of the
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algorithm PRUNED SUBSET SUM is necessary for the generation of solutions.
Only 5 out of 20 problems for n = 82,b = 82 are solved in 282 minutes. The
Chor—Rivest problems are easier because the problem solution yields a shortest
lattice vector with no further vector being nearly as short.
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