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Abstract

We say an integer polynomial p, on Boolean inputs, weakly m-represents
a Boolean function f if p is non-constant and is zero (mod m), whenever f is
zero. In this paper we prove that if a polynomial weakly m-represents the Mod,
function on n inputs, where ¢ and m are relatively prime and m is otherwise
arbitrary, then the degree of the polynomial is ©(n). This generalizes previous
results of Barrington, Beigel and Rudich (STOC 1992, pp. 455-461) and Tsai
(Structures 1993, pp. 96-101), which held only for constant or slowly growing
m. In addition, the proof technique given here is quite different. We use a
method (adapted from Barrington and Straubing, LATIN ’92, pp. 24-31) in
which the inputs are represented as complex ¢*" roots of unity. In this represen-
tation it is possible to compute the Fourier transform using some elementary
properties of the algebraic integers. As a corollary of the main theorem and
the proof of Toda’s theorem, if ¢, p are distinct primes, any depth-three circuit
which computes the Mod, function, and consists of an exact threshold gate at
the output, Mod,-gates at the next level, and AND-gates of polylog fan-in at
the inputs, must be of exponential size. We also consider the question of how
well circuits consisting of one exact gate over ACC(p)-type circuits (where p
is an odd prime) can approximate parity. It is shown that such circuits must
have exponential size in order to agree with parity for more than 1/2 4 o(1) of
the inputs.

*Revised and expanded version of “Lower Bounds for Depth-Three Circuits with Equals and
Mod-Gates,” in 12th Annual Symposium on Theoretical Aspects of Computer Science, Springer-
Verlag (1995) 71-82.



1 Introduction

One of the challenges facing circuit complexity is to prove lower bounds on bounded-
depth circuits with Mod,, gates (that determine if the number of inputs is not divisi-
ble by the number ). If rn is prime, exponential lower bounds are known for general
bounded-depth circuits including AND’s and OR’s in addition to the MOD’s [Sm].
Unfortunately the proof techniques for these results make essential use of the fact
that Z/mZ is a field if m is prime, and the situation for composite m (in which case
Z/mZ is a ring which is not even an integral domain) has proved to be more difficult.
Algebraic or combinatorial techniques other than those used in [Sm] or [Raz] appear
to be necessary.

Recently, progress has been made in the simple but important case of a single
Mod,,-gate over small AND’s [BBR], [Tsai]. This paper, for the most part, continues
this line of investigation. Since this computational model is really based on poly-
nomials, we formulate the problem accordingly. Let p : {0,1}" — Z be an integer
polynomial, and ¢, m > 2 be relatively prime natural numbers. What is the minimum
degree of p such that for all (z,...,2,) € {0,1}", p(zy,...,2,) =0 (m) iff 37, z; is
divisible by ¢7 This question was studied by Barrington, Beigel and Rudich [BBR],
and, in subsequent work, by [Tsai]. The strongest lower bound, obtained by Tsai,
states that the polynomial must have degree linear in n, if m is a constant or a
slowly growing function of n. But what if m is some arbitrary function of n, where
the only constraint on m is that it is prime to ¢? This question has a number of
motivations, which are discussed below. It is also of some intrinsic interest, since
allowing m to vary in this way gives a considerably stronger computational model.
Intuitively it would make sense that the degree lower bound has nothing to do with
m’s dependence on n, and is only due to the relative primality of ¢ and m. However,
it is not clear how the techniques of [BBR] and [Tsai] can be adapted to handle this
more general case. In this paper we introduce an alternative technique which can.

Here we therefore consider a generalization of the problems studied in [BBR],
[Tsai]. The most significant lower bounds will be for the modulo functions,

0 if Y,z =r(m)

1 otherwise,

Mod, o (21, oy ) = {

or their negations (for example, a Mod,, gate computes the function =Mod,, ).
Let f be any Boolean function on n inputs. We say an integer polynomial p on n
Boolean inputs m-represents f if for all input settings of zq,..., 2z, f(z1,...,2,) =0
iff p(z1,...,2,) = 0 (m). The Mod,,-degree of f is the smallest degree of a polynomial
which m-represents f. The Mod-degree of f is the smallest Mod,,,-degree of f for any
m. Let f, be any one of the functions Mod, , or =Mod, ,. Define the relatively prime
Mod-degree (or rp-Mod-degree, for short) of f, as the smallest Mod,,-degree of f, for
any m which is relatively prime to ¢. Some functions have large Mod-degrees (for
example, the AND function; see Proposition 9 below). Trivially, the Mod-degree of
any f, is 1. Our main theorem is,



Theorem 1 For any n € N, the rp-Mod-degree of any of the functions Mod, ,(z1,
oy &y) or =Mod,  (z1, ... ,x,) is al least \_ﬁj

Actually a stronger result is proved. Introducing terminology analogous to that
of [ABFR], say a polynomial weakly m-represents a Boolean function f if p is not a
constant function and f(z1,...,2,) = 0 = p(z1,...,2,) = 0 (m). The weak Mod,,-
degree and the weak rp-Mod-degree are defined in the obvious ways. Theorem 5 in
section 3 of this paper says that the weak rp-Mod-degree of the modulo functions
is (n). As a by-product (see Corollary 6), we present a new proof that, if m is
independent of n and is not a prime power, the minimal degree of a polynomial
which m-represents the =Mod,, function is €(n), a result originally obtained in
[Tsai]. Another application of this stronger version (in the special case of ¢ = 2)
is described below.

The proof strategy is substantially different than those used in [BBR] and [Tsai].
We make use of the representation of Boolean inputs by complex roots of unity,
introduced by Barrington and Straubing [BS]. There the goal was to show that the
sign of p could not agree with Mod, ,. Related results, via similar techniques, for lower
bounds on circuits consisting of one threshold over Mod, gates, have been obtained
recently by Krause and Pudlak [KP]. As in this previous work, the formulation in
terms of roots of unity permits the application of the powerful technique of spectral
analysis. The main difference between the setting here and that of [BS] and [KP] is
that here we work in a finite ring (i.e., Z/mZ) rather than an infinite field (i.e., the
complex numbers). As we will see, this requires the explicit use of some elementary
properties of rings of algebraic integers.

In [BS], it is shown that the sign of a low-degree polynomial can’t agree with
Mod, . even for a constant fraction of the input settings. We prove a similar result
that, for odd prime p, a low-degree polynomial cannot p*-represent the parity function
for more than a fraction 1/2 + o(1) of all input settings (Theorem 12, in section 5).
Strong lower bounds on approximately m-representing parity for any odd m, or on
approximately m-representing Mod, for any relatively prime ¢ and m, remain open.

The topic of this paper was originally motivated by some questions about depth-3
circuits involving both threshold and mod gates. As is well known, threshold and
parity gates are a potent combination. Inspired by Toda’s theorem [Tod] that PPFH C
PP®" Allender [Al] showed that any quasi-polynomial size “generalized perceptron,”
consisting of a threshold gate over AC)-type circuits, can be simulated by a quasi-
polynomial-size depth-three circuit consisting of a threshold gate at the root, parity
gates at the next level and AND gates of polylog fan-in connected to the inputs
(which we refer to here as “threshold-of-@©%” circuits; see section 2 for notation).
On the negative side, drawing on work of Hajnal et al. [HMPST] and Boppana and
Hastad [Has], it was shown in [Gre 91] that small generalized perceptrons cannot
compute the parity function (in terms of complexity classes, that there is an oracle
A such that &P4 z PPPHA). Improvements and generalizations have appeared in
[Bei 92], [BRS], [BS]. However, as of this writing, no non-polynomial lower bounds



are known for the more powerful threshold-of-@&* circuits (and hence no oracle is
known separating PP®F from PSPACE). In fact the best one can do, by Smolensky’s
theorem [Sm], is Q(nlﬂ_o(l)) for threshold—of—Mod;‘ circuits computing parity (¢ an
odd prime). Although this problem has not received as much press as the ACC
problem [Bar]|, it shares at least some of its difficulty.

Some progress has been made in a restricted version of the problem in [CGT],
in which the functions computed by the parity sub-circuits are symmetric. Here we
consider a different kind of restriction: the parity sub-circuits are general, but the top
gate is an “exact threshold” or “exact” gate (the resulting circuits are called “exact-
of-@1” circuits). In terms of Turing machine complexity classes, we thus consider
the relativized power of classes such as C_P®”. While the resulting problems appear
to be considerably simpler than those associated with PP®F | it is hoped that some
insight will be gained towards attacking the more general problem.

The natural conjecture is that if ¢ and p are distinct primes, an exact—of—Mod;
circuit which computes the Mod, function would have to be of exponential size. We
prove this in section 4. By the proof of the second part of Toda’s theorem (see
Theorem T7), this problem easily reduces to Theorem 1.

How well can an exact—of—Mod;' circuit approzimate Mod,? We can answer this
question for ¢ = 2, and indeed, building on the main result and extending some
known techniques, obtain an improvement of part of Smolensky’s theorem about
ACC(p)-type circuits for odd prime p. We find that exact-of-ACC(p) circuits can
equal the parity function for at most 1/2 + o(1) of the inputs, unless they are of
exponential size. This is a consequence of Theorem 12 (mentioned above) and one
of Smolensky’s lemmas, and its proof is also given in section 5.

In section 6, we show how these results translate to oracle separations of
polynomial-time Turing machine counting classes.

2 Preliminaries and Notation

It is assumed the reader has some familiarity with circuit complexity and polynomial-
time complexity classes as in, e.g., [BDG]. More detailed background can be found
in [Str] and [Bei 93].

Following the convention of [GKRST], if G is a Boolean gate, G denotes a family
of circuits with GG at the root and AND gates of polylog fan-in at the input level.
If C; and Cy are circuit classes, Ci-of-Cy denotes the class of circuits with Cy-type
circuits serving as inputs to Cy-type circuits. Examples of these notations were given
in the introduction.

An ezact gate over n Boolean inputs zq, ..., z,, with weights w; € Z (1 < ¢ < n)
and threshold ¢t € Z, returns 1 iff 37, w;z; = t. We interpret the term w;z; as
a sum of |w;| identical inputs z;, so that the quantity Y- | |w;| is called the size
of the exact gate. Thus in an exact-of-C circuit, the size of the exact gate is the
number of subcircuits of type C, including repetitions. (This convention simplifies



the statements of the results. If we called n the size and Y-, |w;| the weight, the
results would have to be expressed as tradeoffs between size and weight.)

A circuit family is of type ACC(p) if it is of bounded depth and each circuit in
the family has AND, OR and Mod,-gates.

If Ris aring and m € N, ¢ = b (mR) means that for some x € R, a = b+ mu.
When it is clear that R = Z, we use the notation a = b (m). As usual, R/mR
denotes the residue class ring of R modulo R-multiples of m.

The proof of the main theorem makes use of the ring of algebraic integers, which
we denote by Q. Most algebra or number theory texts discuss the subject (see,
for example, [IR] (chapter 6) for a compact treatment, including proofs, of all the
relevant notions). For the sake of completeness, the definition and the necessary
facts that are used in this paper are included here. An algebraic integer is a complex
root of an integer polynomial (i.e., one with integer coefficients) in which the leading
coefficient is one. For example, the roots of the polynomial z” — 1 (i.e., the complex
n' roots of unity) are algebraic integers. It is straight-forward (although not trivial)
to prove that  is a ring under complex addition and multiplication. Crucial for this
paper is the elementary property that an algebraic integer is a rational number if and
only if it is a rational integer. Because of this fact, the notation a = b (m) means
a=b (mN) as well as a = b (mZ) if a and b are integers. Nevertheless, we usually
resort to the more precise notations a = b (mQ) or a =b (mZ).

3 Lower Bounds for the rp-Mod-degree of Mod-
ulo Functions

We start by reviewing the formulation of [BS] to express circuit inputs as complex

roots of unity. Let ¢ be a natural number > 2 and ( denote the primitive complex
2ms

root of unity e ¢ (g will be fixed in this section). Let D = {1,(,(?,...,¢?"'}. Note

that

Eyk:{ q ikaQ ()

D 0 otherwise.
We will consider polynomials over n variables yy,...,y, € D. Let V denote {0, ...,q—
1}. Since y? =1 for any y € D, a monomial will have the general form [];cs, yi',
where e € V", and by definition Se denotes the set {i|e; # 0}. Define [T;cqyi* = 1.
The integer | Se| is called the weight of the monomial.

The first crucial observation to make here is that the sum of a monomial of non-
zero weight less than n over all values of the y;’s subject to the constraint [T, y; = ("
(for any integer r) is zero. Let “y : [Ty = (7" denote that y € D" varies subject to
the constraint [T, v; = (".

Lemma 2 Let r,n be integers. Let e; (1 € {1,...,n}) be integers such that for each



i,0<e; <q—1. Define Se as above and suppose |Se| < n. Then

e qn—l ZfSe:Q)
> -1

- otherwise.
y:[Jy=¢" i€5e

Proof: If So = (), the result is obvious. Suppose Se # . Since |Se| < n, there is
an ' € {1,...,n} — Se. The constraint []"_, y; = (" is equivalent to,

yir=C"-TTy™"
il

This determines y;s uniquely in terms of the other y;’s. We can then perform the sum
over the y;’s (¢ # ¢') independently. Hence for any ¢ € Se, the sum has a factor,

> v,

yi €D
which is zero, since ¢; Z 0 (¢). |

For any integer r, it will be convenient to define the r-inner product (f,g), for
functions f, ¢ over D" as,

(f.9)r = nl_l S Wi Y)Wy s Yn)-
T yIlv=c

Lemma 2 says that (1,[Ties, ¥:')r is zero unless Se = 0, in which case it is 1. More
generally, the set of monomials of weight < n/2, under the r-inner product, form an
orthonormal basis for polynomials of weight < n/2 over D".

Lemma 3 Let e’;e € V" and |Se U Ser| < n. Then,

¢! e\ )1 ife=¢
<]-_-[ yi’]-_-[yi> _{O otherwise.

iESe/ 1ESe r
Proof:  Define,

Stece) = ( T0 4 T o) -

€S i€Se

T

The inner product can be written as,

SOOI vt I v I wi

n—1
T y[ly=¢" i€Sei—5e i€Se—Se1  i€SeiNSe

Because |Se U Ser| < n, we can apply Lemma 2. By that lemma, if SeASer # 0,
S(e,e') = 0. If SeASer = 0, S(e,€e’) = 0 unless e = e’. If e = €’ then the sum is
¢" ' so S(e,e)=1. 1



The main result concerns integer polynomials which take on values in the ring
Z/mZ for some m. Because we work with inputs that are roots of unity, we will find
it necessary, in proving the main theorem, to consider algebraic integer polynomials
with values in Z/mZ. For the moment, we consider the even more general case of
polynomials with algebraic integer coefficients and values in /mQ'. In the following
lemma, we show, for such a polynomial ¢ : D" — Q of weight < n/2, that we can
solve for the coefficients in terms of special values of ¢, namely, exactly those values
of t(y1,...,yn) such that J[7;y; = (7, for any r. This set of coefficients (the ce’s
in equation 1 below) is called the Fourier transform of ¢{. Thus the lemma gives
a particular method for computing the Fourier transform when the polynomial has
weight < n/2. The idea of the proof of the main theorem is to use this lemma to
show that the Fourier transform is zero if {(y1,...,y,) = 0 (m) for the indicated
values of y.

Lemma 4 Let m be a natural number relatively prime to q. Suppose t : D" — Q/mQ
is a polynomial with algebraic integer coefficients and weight < n/2, i.e., of the form,

Hyry oy yn) = Z Ce H yit (mQ) (1)
ecVn:Se|<n/2  i€Se
where co € Q. Then for any natural number r and e € V" with |Se| < n/2,
ce = ( H Yt (Y1, ey yn))e (mS). (2)
1€ESe
Proof:  Note that since ¢ and m are relatively prime, ¢ has an inverse in Z/mZ, and

hence also in /m€). Hence the r-inner product is well-defined in Q/m$). Let ' € V"
be such that |Se/| < n/2. Take the r-inner product of both sides of equation (1) with

[Lies,, yz-eg. We obtain,

< ]___[ yieiat(yla“wyn)% = Z Ce< ]___[ y;ia ]___[ yiei>7‘ (mﬂ)

1€Seas eEV":|Se|<7L/2 1€Seas 1E€Se
Note |Ser U Se| < n. Apply Lemma 3 to the above equation to obtain equation (2).
|

We now state and prove the main theorem. Theorem 1 is then immediate.

Theorem 5 Fiz any natural number g and let N be any positive natural number.
Let p: {0,1}Y — Z be a polynomial over the Boolean variables xy, ..., N with integer
coefficients, and let m € N be such that g and m are relatively prime. Suppose that
for some integer 0 < r < g —1, for any x1,...,xn it holds that,

in =r (¢) = p(z1,...,2x) =0 (m),

i=1

and that p is not a constant function mod m. Then the degree of p is at least \_Q(qj\il)j.

1This is the simplest approach, although it should be pointed out that it is possible to work in
the finite ring Z[(]/mZ[(]. See section 7 for a brief discussion.



Proof:  The result is trivial if N < 2(¢ — 1), so suppose wlog that N > 2(¢ — 1).
Let d be the degree of the polynomial p. Suppose d < \_%j Then we will show
that, under the given hypotheses, p is always zero mod m.

Define {, D,V as in the discussion above. Exactly as in [BS], we restrict the
input settings so that p can be regarded as a polynomial over inputs in D. For this
purpose, assume wlog that (¢ — 1)|N; other values of N can be reduced to this by
restricting < ¢ — 1 of the inputs to 1 (this is the origin of the floor in the degree lower
bound). Let n = q—l1 Group the N inputs into n sets of size ¢ — 1, each of the form
{2 (g=1)it15 s T(g=1)iq—1} With 0 <4 < n — 1. Let y1,...,y, be n inputs each taking
on values in D. Define the polynomials mentioned in [BS] (though not written down

explicitly),
15
Z Z C—zl 3
1=0 =541

forye Dand 1 <3 <¢g—1. Writing y = (°, with 1 < s < ¢, it is easy to verify
that u;(y) = 0if y > s and u;(y) = 1 if 7 < s. Thus uy(y)ua(y)...us—1(y), regarded
as a string of bits, is 1°71077%. Restricting the input settings appropriately, we can
then encode y; as the string z(,_1)ip1%(g—1)i42---T(g=1)itq—1 DYy setting

T(g-1)i4j = Ui (Yi+1)
for0<:<n—1land 1<y <g—1. Writing y; = (* for 1 <1 < n, note that,
1

T(g-1)i+j = Si — 1,
1

q

J

and therefore,

Sw=rle) i Ys-D=r (@) if [u=c, 3

Up to this point, the argument has followed the one given in [BS]. However we
must now remember that we are working in Z/mZ, while the polynomials u; have
coefficients which are not necessarily integers. Therefore instead of computing the
polynomial p(zq,...,zxy) mod mZ, we compute it mod m. Since p(zq,...,zy) =
0 (mZ)iff p(zq,...,25) =0 (m€Q), we lose no generality in doing this. Recall from
the proof of Lemma 4 that ¢ has an inverse in Q/m. Thus, working in Q/mQ,
we regard u; as a polynomial of degree at most ¢ — 1 (and weight at most 1) with
algebraic integer coefficients. Using the u;’s we can define a polynomial ¢ : D" — Z
with coefficients in £ which agrees with p when the z;’s encode y;’s according to the
above scheme:

Y1y oo Yn) = plur (Y1), ooy g1 (Y1), e ur(Yn) s ooy tgo1(yn))  (mQ).



Note that by the construction of ¢ and relation (3),

ﬁyi =" = (Y1, yn) =0 (MQ). (4)

=1

It is easy to see that the weight of any monomial in ¢ is at most d, the degree of p.

Note that d < |5 N_| = |2] and hence d < 2. Thus ¢ fulfills the requirements of
(q—lf) 2 . 2

Lemma 4. We solve for the coefficients c¢e of ¢ by that lemma:

ce = H Uit Y1y oo Un) Y ngr (MAY).

1€ESe

By implication (4), every term on the right hand side is zero. Hence for
any e, ce = 0 (m), from which we conclude that for any yq,...,y, € D,
HY1s s Yn) 0 (mQ) and therefore, since t(y1,...,y,) is an integer, t(y1,...,Yn)
=0 (mZ). This immediately implies that p(z,...,zx) =0 (m) for those ¢" input
settings of the z;’s that encode y;’s. By re-labeling the z;’s and repeating the argu-
ment for each re-labeling we conclude that p(x1,...,2x) =0 (m) for all 2V settings

of the z;’s. 1

Corollary 6 [Tsai] Suppose m is fired and is not a prime power, and let q°,  be the
largest prime power dividing m. Then any polynomial which m-represents —Mod,,

must have degree at least \_2(1? |-

max

Proof: Let p be a polynomial of degree less than | | which m-represents

29rmax
—Mod,,. For any prime factor s of m, let e(s) = ords(m), i.e., e(s) is the greatest
integer such that s°¢*) divides m. Let r, s be two distinct prime factors of m. Since

S xi Z0 (m) = p(z1,...,2,) =0 (m), it follows that,
in ~/i— 0 (55(5)> f— p($17 ,.In> = 0 (T.B(T))_
=1

Since the degree of p is less than | ;5 |, it follows from Theorem 5 that p is the zero
function mod r°"). As this holds for any prime divisor r of m, we conclude that p is
identically zero mod m, which is a contradiction. |

4 Simulations and Lower Bounds for Exact-of-
Mod; Circuits

Let p be a prime. The main result of this section is that the negation of any exact-
of—Mod; circuit of size 2"° (with ¢ < 1) can be p*-represented, for some s € N,
by a polynomial of sub-linear degree. By Theorem 1, such a polynomial cannot p*-
represent Mod, , or “Mod, , if ¢ is a prime # p. Hence exact—of—Mod;' circuits of size
2™ cannot compute these functions.



Theorem 7 Fiz any real number ¢ < 1. Let {C,} be a family of exact-of-Mod,-of-
AND circuils of size less than 2™ and with botlom fan-in o(n'~%). Then for suffi-
ciently large n, for some s € N, =C,, can be p°-represented by a polynomial of degree

o(n).

Proof: (Sketch): We follow the proof of the second part of Toda’s theorem, as
applied to circuits as in [BT]. Apply the degree O(n) “Toda polynomial” Q. (see
[BT]) to the Mod,-of-AND subcircuits (it is here we use the primality of p). This
amplifies the modulus for the Mod,-of-AND functions sufficiently that we can write
down a polynomial of degree O(n°) - o(n'~) = o(n) which p™ -represents —=C,. |1

Corollary 8 Lel p,q be distinct primes and ¢ < 1. No family of exact-of-Mod;'
circuils of size 2" can compute the functions Mod,, or =Mod,,.

We also make an easy observation here that was mentioned in the introduction.
Proposition 9 The Mod-degree of the AND function is n.

Proof:  This is immediate from a result of Tarui [Ta] (viz. proposition 1 in that
reference). |

Applying Theorem 7, it follows that,

Corollary 10 For any prime p and ¢ < 1, no family of exact-of-Mod; circuits of
size 2" can compute the OR function.

5 Approximating Parity with Exact-of-ACC(p)
Circuits

In this section another application of the main theorem is presented. We show that
a circuit consisting of an exact gate over bounded-depth circuits with AND, OR and
Mod, gates (for odd prime p) can agree with parity for at most a fraction 1/2 + o(1)
of all input settings, unless it is of exponential size. The machinery of Smolensky’s is
not sufficient to prove this because, once again, we need to deal with variable powers
of the prime p. Unfortunately the current technique does not seem to be sufficiently
powerful to handle the case of Mod, versus exact-of-ACC(p) for any two distinct
primes q, p.

We begin by showing, for any odd prime p, that a polynomial of degree o(+/n)
can p*-represent parity for at most a fraction 1/2 + o(1) of the input settings. Fur-
thermore, this holds for & depending on the number of inputs in an arbitrary manner
(it is this case that generalizes Smolensky’s theorem). It would be most satisfying
to be able to prove this theorem with the p* replaced by m where m is any odd

10



number. But as will be clear from the proof, we make essential use of the fact that
the modulus is a prime power.

Since we are proving lower bounds for parity, there is no need for using complex
inputs; we can work directly with the parity basis, in which the inputs y;, 1 <1 < n,
take on the values {—1, 1}, and the degree of a polynomial is identical with its weight.
The proof of the theorem is similar in spirit to that of Aspnes et al. [ABFR] (for
parity versus perceptrons). A key difference is that we are working in a finite ring
(Z/p*Z) with divisors of zero, and this requires much greater care in solving the
linear equations as in the proof of [ABFR]. But the main idea is the same: we show
that if we can “approximately” p*-represent parity well with a low-degree polynomial
t, then we can weakly p*-represent it with a polynomial of degree less than n/2. By
the main theorem (with ¢=2), this is a contradiction.

The theorem described above is given after the following analogue of Lemma 2.1
of [ABFR]. The lemma is used to construct a polynomial which is zero on all the
points of disagreement between parity and ¢.

Lemma 11 Let m be any odd number. Let S C {—1,1}" be such that ||S|| <
S, (7;) where | < n/2. Then there is a degree | integer polynomial w : {—1,1}" — Z
obeying the following properties:

(i) For anyy € S, we have w(y) = 0.
(it) Thereis ay € {—1,1}" with [T'=; yi = —1, such that w(y) £ 0 (m).

Proof:  Write down an arbitrary degree [ polynomial wy with rational coefficients.
The number of coefficients in w, is one more than the upper bound on [|S||. Thus,
for each y € S, we can set wi(y) = 0 (note that here we are using equality over
the rationals), and regard this as a set of linear homogeneous equations for the
coefficients of w;. There is a non-trivial solution for the coefficients, since there are
more “variables” than equations. Since the equations are homogeneous, we can find
an inleger solution wq(y) by multiplying w; times a least common denominator. For
the same reason we can divide wy by a greatest common divisor to obtain the degree [
integer polynomial w(y). We now prove that w has the desired properties. Property
(1) is obvious. For property (ii), first note that some coefficient of w(y) is not divisible
by m, since we have divided by a GCD. We claim that this implies property (ii). For
suppose property (ii) did not hold, that is for every y with [T, y; = —1, we have
w(y) = 0 (m). Since w has degree < n/2, by Lemma 4 (with ¢ = 2 and r = 1), we
conclude that all the coefficients of w are zero mod m, which is a contradiction. |

Theorem 12 Lel p be an odd prime, and let t : {—1,1}" — Z be an integer polyno-
mial of degree o(y/n). Then for sufficiently large n, for any integer k,

ly € (=1 TTw=—1 i 1) #0 (EHI < 2°(5 + of1)).
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Proof: Let A denote the set of “disagreements” between ¢ and parity:

n

A={ye{-1,1Y"|(Jyi=-1 AND t(y)=0 (")

- OR
(TIw=1 AND ty)#0 ()}

It suffices to show that [|Al] is “large,” that is, at least a fraction 1/2 — o(1) of all
input settings. Let d denote the degree of ¢ (by hypothesis, d = o(y/n)). Suppose

A< () 5)

=1

By Lemma 11, there is a degree n/2 — d — 1 polynomial w such that for each y € A,
w(y) = 0 (p*), but there is some y with [T"_, y; = —1 such that w(y) # 0 (p). Since,
by the definition of A, we set w(y) = 0 for any odd-parity y with ¢(y) = 0 (p*), it
follows that [T7, y; = —1 and w(y) £ 0 (p) implies t(y) #Z 0 (p*). We know that
a 'y exists with [Ty, = —1 and w(y) #Z 0 (p). For such a y, it is easy to see
that t(y)w(y) #Z 0 (p¥). (It is worth pointing out that the previous sentence is the
one point in the proof where we use the fact that we are working modulo a prime
power!) Thus the integer polynomial ¢(y)w(y) has degree n/2 — 1, it is not the zero
function mod p*, but it is 0 mod p* whenever [T, y; = 1. In other words, it weakly
pF-represents the parity function and has degree < n/2. By Theorem 5, this is a
contradiction. Thus [|A]| cannot obey (5). Using the fact that d = o(y/n), it is easy
to show that this implies that ||A|| > 2"(1/2 — o(1)), which proves the theorem. 1

To obtain the lower bound for exact-of-ACC(p) circuits, we need the part of
Smolensky’s theorem [Sm] that shows how to approximate an ACC(p) circuit with a
low-degree polynomial mod p. This is given in the following version of this lemma,
which is easily seen to follow from the proof of lemma 2 in [Sm] (the statement below
follows more closely that of lemma VIII.3.3 in [Str]).

Lemma 13 (Smolensky): Let p be prime, and let r : N — N be such thal r(n) =
o(n'/*). Let {C,} denote a family of Boolean functions computed by ACC(p)-type
circuits of depth d and size 27" . Then there exists a family of polynomials t, over
Z/pZ such that the degree of 1, is o(n'/*), and t,(y) = C.(y) (p) for a sel of
y € {—1,1}" of cardinalily at least 2"(1 — 27"(").

The lower bound for exact-of-ACC(p) circuits is expressed in terms of a tradeoff
between the number of ACC(p) subcircuits and the size of those subcircuits. The
theorem says that if both the number of subcircuits and the size of the subcircuits
are too small, than the exact-of-ACC(p) circuits cannot compute parity (and indeed
cannot even approximate it).
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Theorem 14 Fiz any integer d, any real number 0 < e < 1/4d, and any odd prime
p. Let v : N — N be such that r(n) = o(n'/*?). Consider a family {Cy,} of exact-of-
ACC(p) circuils of depth d + 1, where for each n the number of ACC(p) subcircuits
in Cp is < 270" and the size of each ACC(p) subcircuit is < 27" Then, for all
sufficiently large n, C, agrees with parity for at most a fraction 1/2 + o(1) of the
input settings.

Proof:  Let ¢;, 1 < i < 270"~ denote the ACC(p) subcircuits of C,. Since ¢
has depth d and size less than 2"(") where r(n) = 0(n1/4d), it follows from Lemma 13
that for some polynomial ¢; : {—1,1}" — Z of degree 0(n1/4), ci(y) # ti(y) (p) for at
most 277" many y’s. It is convenient to express this as a probability over y chosen
uniformally at random from {—1,1}":

Prie(y) £ L(y) () < 270,

Since there are < 27"~ subcircuits, it follows that,

€

r(n)=n
Pr((3i)ei(y) # t(y) (p)) < QW)

= o(l).
So for at least 2"(1 — o(1)) input settings, all subcircuits ¢; agree with their poly-
nomials #;. On these input settings, (), can be simulated by an exact-of-Mod,-of-

AND circuit with 2r")=n Mod,-of-AND subcircuits whose bottom fan-in is 0(n1/4)
(corresponding to the degree of t;). We now apply the method of Theorem 7. Com-

pose each polynomial ¢; with the Toda polynomial @),1/4a. This gives a polynomial
th = Qa0 t; of degree n'/4. o(n'/*) = o(,/n) which equals ¢; modulo p”]/m. Since
or(n)—n® — 0(p”1/4d), we can add up the #/’s to obtain a polynomial ¢ of degree o(/n)
which p”]/4d—represents C, on 2"(1 — o(1)) input settings. But such a polynomial
cannot agree with parity on more than 2"(1/2 + o(1)) settings, by Theorem 12. A
simple probabilistic argument shows that this implies that ), can agree with parity
on at most 2"(1/2 + o(1)) settings. 1

It is certainly natural to conjecture that Theorem 14 holds for Mod, versus exact-
of-ACC(p) circuits, where ¢ and p are any two distinct primes (or even relatively
prime). However, the current technique does seem to single out ¢ = 2 as being
special, and this requires a bit of explanation. The problem is in proving a good
lower bound on the number of disagreements, which in the case of ¢ = 2 is the
quantity on the right hand side of equation 5. It is critical that approximately 1/2
(or, at any rate, a constant fraction) of the binomial coefficients are summed. For
g = 2 it is fortunate that the lower bound we have on the weak degree is about n/2.
Since n/2 also happens to be the average weight of a monomial, the lower bound
on ||A|| is close to half the sum of the binomial distribution over randomly chosen
monomials. However, with Mod, (for odd prime ¢) the situation is very different. In
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this case (for N Boolean inputs) we can do no better than sum (J:Z) up to the weak

rp-Mod-degree, approximately N/2(¢—1). But this is well below the average weight,
which, for N Boolean inputs, is still N/2. That is, the best lower bound we can get

on ||A]| is at most,
N/2(9-1) (N
=0 Z ) ’
which, by the Chernoff bound, is exponentially smaller than 2V. It is not possible to
get around this problem by obtaining a better lower bound on the rp-Mod-degree.

The lower bound obtained in this paper is fairly tight, as is evident from the following
upper bound.

Proposition 15 The rp-Mod-degree of the Mod, function is at most [N/q| + 1.

Proof: Let x = YN, z;, and let

[N/
(g, .y ay) = ]___[ (x —7q),
7=0
which is obviously of the degree given in the proposition. Choose m relatively prime
to g such that for any z1, ..., zn, |[t(21, ..., 2n5)| < m. Then clearly t(z4,...,2x) =0 ()
if and only if z =0 (¢). 1

6 The Classes M_P, and Oracle Separations of
C:PMoqu

In [GKRST], the “Middle-Bit” class MP was defined. One way of defining it is as

follows.

Definition 16 A language [ is in MP if there exists a #P function f and a

polynomial-time computable function g such that for all z, z € L & f(z) mod 20(=) >
29(@)=1,

One way of varying the definition, of course, is to formulate it in other bases:
Replacing the “2”7 in the definition with a prime “p”, we thus obtain a family of
classes MP, (so MP=MP,). The question of whether MP is robust under such
changes of base, i.e., whether MP=MP, for all prime p relative to all oracles, may
be very difficult. If it isn’t robust in this sense, to prove it one would need lower
bounds for ACC, by the results of [GKRST]. If we weaken the definition by replacing
the “>” with an “=", we obtain a family of complexity classes which, in certain
ways, is probably much weaker than MP, but is nevertheless polynomial-time Turing-
equivalent to it. Using the techniques of this paper, in contrast to MP,, it is now

possible to separate these classes.
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Definition 17 A language L is in M=P,, where p is prime, if there exists a
GapP [FFK] function f and a polynomial-time computable function g such that
forall z, € L & f(z) =0 (p*®).

Since f(z) is bounded by 24(#D) for some polynomial ¢, we may without loss of
generality assume that ¢ is bounded by a polynomial. Note that the definitions
of M_P, and MP, bear the same relation that that of C_-P bears to that of PP.
However, although C=P and PP are not polynomial-time Turing equivalent relative

to all oracles ([Gre 93], [Ta]), M—P, and MP (and PP) are.
Proposition 18 PMF = PPP = PM=Ps for any prime p.

Proof:  The value of a #P function f can be computed in polynomial time with
queries to an M_P, set. For any z, the digits of f(z) in base p are computed
adaptively, from right to left. |

Note that one hint of the weakness of M_P, lies in the fact that the value of a
#P function is computable with non-adaptive queries to MP [GKRST]. But since
the bits are computed from right to left, M_P, captures a kind of counting strategy
which complements that of PP (which amounts to binary search, extracting the bits
from left to right). Also, M_P, and PP are probably incomparable for any p since
trivially co-Mod,P C M_P,. Moreover, we have

Theorem 19 For any prime p, Mod,P is low for M_P,, that is, M:P?)/["df’P =
M_P,.

Proof:  The idea of the proof is identical to that of Theorem 7, translated into the
context of polynomial-time bounded Turing machines. The only difference is that
the base M_P, machine corresponds to an output gate which is a Mod-gate with the
variable modulus p* for some k. |

We now have a convenient notation for expressing the oracle separations.

Theorem 20 For any pair of distinct primes q,p, there is an oracle A such that

Mod,P* ¢ M_P/.

Proof:  (Sketch): We use a standard reduction of the oracle separation problem
to a circuit problem [FSS]. To construct the oracle it is sufficient that the Mod,
function cannot be p®-represented for any s by a polynomial of small degree. But
this follows from Theorem 1. |

Corollary 21 For any pair of distinct primes q,p, there is an oracle A such that
Mod,P#4 ¢ C_pModP?,
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Proof:  Obviously, relative to any oracle B, C_P? C M:PE. Hence, for any A,
applying Theorem 19 (which relativizes), C_pMed,P* Mng/IOdPPA = MszA. Let
A be the oracle of Theorem 20. One could also argue directly from Corollary 8. |

We remark that Toda’s theorem PH C PP®F cannot be improved to PH C C_P®F
relative to all oracles:

Proposition 22 There is an oracle A such that NP ¢ M_P/', and hence NP4 ¢
CzPMOdPPA, for all prime p.

Proof: This follows via standard techniques (as in Theorem 20) and Corollary 10.
|

Finally, the results of section 5 yield random oracle results. From Theorem 12
and standard techniques [BG], we find,

Theorem 23 Relative to a random oracle A, for any odd prime p, P4 ¢ M:PpA
and hence GPA ¢ C_PModP?,

It is known that relative to a random A, ModpPPHA C Mod,P# [Ta]. Using this,
the above theorem gives the following stronger result (another proof follows from
Theorem 14). Let Mod,PH denote the closure of P under the operations C — NP©
and C +— Mod,P¢, which is the polynomial-time analogue of ACC(p).

Theorem 24 Relative to a random oracle A, for any odd prime p, ®P* ¢
Mng/IOdPPHA and hence &P ¢ C_PMod,PHY

7 Discussion and Open Problems

The most important contribution of this paper has been to extend existing techniques
and develop new ones for proving lower bounds on the degree of polynomials, over
Z/mZ where m is not a prime power, representing modular functions. Such lower
bounds can be used to obtain lower bounds on circuit size, as is well known and is
illustrated here in the results of section 5.

Once the problem was translated into the appropriate algebraic language, the
proof of the main theorem was surprisingly simple: compute the Fourier transform
of the polynomial assuming it has small degree, and find that the coefficients are
zero (contradiction). Most of the necessary work was in arriving at the appropriate
algebraic setting. In this instance, the appropriate setting was the ring of polynomials
over the algebraic integers ).

It should be noted that very few properties of () were used. Algebraic integers are
most useful when computing with polynomials in different roots of unity, while here
we only needed one ({ was fixed throughout section 3). As mentioned in a footnote,
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it would have been sufficient to extend to Z[(] (the ring of integer polynomials in
() rather than Q, since the coefficients that arise in encoding the roots of unity as
Boolean inputs are all in Z[¢]. In this sense, Lemma 4 is stonger than is necessary
(in particular, the stronger hypothesis ce € Z[(] would suffice). This suggests that
further investigation of the properties of polynomials in rings of algebraic integers
may be fruitful.

The open problems which seem most amenable to attack are related to the power
of exact-of-ACC(p) circuits. General exact-of-ACC circuits have been considered pre-
viously by Beigel, Tarui and Toda [BTT], who show that probabilistic exact-of-ACC
circuits of quasipolynomial size can be simulated by circuits consisting of a symmet-
ric gate over polylog fan-in AND’s (called SYM™ circuits). Thus any lower bounds
for SYM™ circuits are at least as hard as for probabilistic exact-of-ACC circuits. We
conjecture that for any pair of distinct primes ¢, p, the Mod, function requires expo-
nential size exact-of-ACC(p) circuits. From the proof of Theorem 14, it would suffice
to show that the Mod, function cannot be well-approximated by an exact—of—Mod;
circuit. This problem, in turn, reduces to showing that the Mod, function cannot
be approximately pf-represented by a low-degree polynomial. More generally, we
conjecture that if ¢ and m are relatively prime, Mod, cannot be m-represented by
a low-degree polynomial for any more than a certain constant fraction of the inputs
(note rn is permitted to vary with the number of inputs; for constant m, the conjec-
ture is proved [Bei 93]). In this paper we have succeeded in proving this only in the
special case of ¢ = 2 and even then it was necessary to assume m is a prime power.
While many of these problems may appear to be of a technical nature, we believe
that their resolution will reveal more widely applicable lower bound techniques for
modular functions.
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