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Corollary 23 If A is covered by a martingale
d(w), and a there is a function d,(w) such that
|d(w) - d.(w)] < 1/r? and the i*® bit of d,(w) can
be computed on input i, then A has an ezactly-
computed null cover whose value is output in bi-
nary.

Proof. Such a machine can output the polylog
bits in the cover of Theorem 22. |

Corollary 24 Fiz a base p. If A has a martingale
d with a computation d, such that |d — dr| <1/r?
and the i*h base-p digit of d, can be computed on
input i, then A has a base-two cover.

Proof. For each of polylog positions ¢ in Theo-
rem 22, we can compute the 3** bit of the binary
representation of d(w). |

The situation is similar for density systems, but
the density system notation makes the situation
appear worse. Since martingales are normalized
in the sense that d(A) = 1, when we claim that
|d(w) — d,(w)| < f(r) we are really giving a rela-
tive error. To get comparable results for density
systems, it seems we need a computation dkir('w)
with |dy(w) — dg,(w)| < 27%/7% (exponential in
k but a power in r). But relaxing the preci-
sion of a computation of a density system from
1/2" to 1/2*r? is no big feat, since given a com-
putation satisfying the latter, it’s easy to get a
computation satsifying the former: Jk+r,r satisfies
|dy,(w) — d»(w)| < 27", Next, while a martingale
can easily output 1 in binary, a density function
dj, cannot output 2~% in binary in polylog time,
which would be analogous. Therefore density sys-
tems must settle for scientific notation. We omit
the density-system analogs of the above corollar-
ies.

6 Conclusions

The study of resource-bounded measure is still
new, and it is useful to note that the definitions
presented in [L92] have evolved slightly over time.
Still, a large and growing body of results have
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shown that resource-bounded measure is a use-
ful tool providing surprising connections to other
questions in computer science [RSC].

The extension of this notion to small classes
such as P is a much newer notion, and although
the results of [AS] have shown that interesting
results can be obtained using one definition of a
measure on P, we should not be surprised if this
notion evolves as further experience is gained.

This paper represents the next step of such an
evolution. Although we were able to show here
that the measure of [AS] is robust under many
changes to the details of the definition, we have
learned the surprising fact that one can obtain
strictly more measurable sets by considering bet-
ting strategies that throw away information peri-
odically.
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covers at least the same set as d. Also, £ and d
and therefore d' can be computed by a I''(P) ma-
chine. (At first, the division might make it seem
as though a I'(P) machine would have trouble
computing this. However, without loss of gener-
ality Jo()\) = 2 (since this approximates d(A) = 1
within 1/(0% 4 1)). Thus this is division by 23,
which is easy in this model.) Finally,

d(w) = dp)(w)+ E(lw])
1
> dw)- ———+E
> dw) = g + B
d(w0) 4 d(wl) 1
> -
o Guoi(w0) — 1/(jwol* + 1)
- 2
Gy (w1) — 1/(lwlf* +1)
2
ey + Bl
[wl*> +1
dw w0 +cfw wl
5 4 of( )2 | )+E(|w|+1)
_ d'(w0) + d'(wl)
B 2
so d' obeys the average law (without conserva-
tion). |
As in Sect. 3, we have to treat conservative

martingales specially:

Theorem 20 Under the hypotheses of Theorem
19, if d is conservative then d' of the conclusion
can be made conservative.

Proof. Note the d’' constructed in Theorem 19 is
generally not conservative.

We will parallel Theorem 4, by construct-
ing a slothful two-sided quasipolynomially pre-
cise cover. The construction of a conservative
cover from a slothful cover preserves two-sided
quasipolynomially precision.

We assume powers of two are in the depen-
dency sets. Paralleling Theorem 4, put 3
ma‘XGinHvaH N {0,...,|w|}. We note that ex-

cept on a set of polylog size, J|w|(w) makes
changes of size at most 1/(]w|? + 1). In Theorem
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4 these small changes were absorbed by adding
327" to dfju(w[0..4]); here we add E(3). |

Next we observe that these martingales can’t
grow too quickly:

Theorem 21 Let d be a computable martingale.
Then d(w) < 2polos(iwl)

Proof. We give the proof for exactly-computed
d; the general case is similar. Let ¢ < j be consec-
utive elements of G4 |,,|- Then by definition of de-
pendency set, d(z) = d(2') if |z| = |Z/| = 7 < |w],
and z agrees with 2z’ on bits 0,...,7 and on bit
j. By the average law, d(wl0, .. .?]) is at least the
average of d(z) over all z of length j and extend-
ing w0, ...1]. There are only two values these z’s
can take, depending on z[j]. Since we can’t have
half the z’s be greater than twice the average, we
conclude that d(w[0,...,7]) < 2d(w[0,...,1]), so
d changes, and at most doubles, on a dependency
set. |

Combining the last two theorems, we get

Theorem 22 If A is covered by a (conserva-
tive) martingale d, then A is covered by a (con-
servative) martingale with at most polylog-many
nonzero bits on either side of the radiz point.

Proof. By Theorem 21, d has at most polylog-
many bits to the left of the radix point.

As for the right of the radix point, we must
consider conservative and nonconservative mar-
tingales separately. If d is nonconservative, we as-
sume by Theorem 19 that d is exactly computed,
truncate d after bit 2logr, getting d within 1/r2
of d, then add E(|w|) ~ 4/|w| (from the proof of
Theorem 19) to restore the average inequality.

Finally, if d is conservative, we make a
slothful-but-not-necessarily-conservative martin-
gale as above. At this stage we truncate to poly-
nomial precision, and add a slothful variant of
E(|w|) to restore the (nonconservative) average
inequality. Finally, construct a conservative mar-
tingale from the slothful martingale by the con-
struction of Theorem 5, preserving the number of
significant bits. |



approaches fail, and a new model of computation
would be needed. Such a model would likely be
quite complicated, however, in regards to giving
the machine the length of its input: ur/(pspack)
machines get the exact length of their input
and make good use of this information, whereas
L& PspAcE) machines must not be given their ex-
act input length. (This is so that M(z) and M (w)
are initially the same computation for z C w and
approximately the same length, which guarantees
that a PSPACE machine can diagonalize against
M. See [M].)

5 Quasipolynomial Precision

A cover d is required to have a computation d,
such that for all w we have |d(w) — d,(w)| < 277,
and in Theorem 2, we showed that a set A has
such a cover iff A has an exactly computable
cover. In this section, we first show how to
weaken the hypothesis to |d(w) — d,(w)| < 5
(one could substitute any reasonable function
f(r) such that > 72, f(r) is finite). Next, we ob-
serve that dp(w) < gpolylog(k + |w|)dk(/\), since
di(w[0..5]) < 2d(w]0..7]), where 7 and j are con-
secutive elements of G|, . From this it follows
that two-sided quasipolynomial precision suffices
for our machines, i.e., our machines need only out-
put a polylog number of significant bits to either
side of the radix point. We draw two important
corollaries:

e The usual way that sublinear-time machines
compute functions is to output the * bit as
a function of 7. The most natural way is to
output the value in binary. In [AS] functions
output “differences of formal sums of powers
of two.” Now, since two-sided quasipolyon-
mial precision suffices, we see that all three
conventions are equivalent.

o If a set A has a cover d with approximation
d, such that |d—d,| < % and d is computable
if output is expressed as a “differences of for-
mal sums of powers of p” for p # 2, then A
also has a base-two cover. (Essentially, this is
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because two-sided quasipolynomial precision
is a concept independent of base.)

The results of this section hold for both I'(P)-
and I'(P)- martingales.

The following is similar to Theorem 2, but ex-
ponentially better, in the sense that the assump-
tion about the goodness of approximation has
been relaxed:

Theorem 19 Let A be a set for which there ez-
ists a martingale d and a computable ]function
d.(w) such that for all w we have |d(w)—d,(w)| <

T?lﬁ. Then A has an ezactly computed martingale

Proof. We reprove theorem 2, using an approx-
imation to 4/r ~ Y % instead of 27" & 327",
The martingale d obeys the average inequality, so
cz|w|(w) is close to obeying the average inequality.
We add to ¢i|w|(w) a decreasing function E(|w)|),
which obeys the average inequality “with room
to spare:” enough room to absorb the average in-
equality error (dj,o|(w0) + djyy1)(w1))/2 — djy)(w).
We define

43 r|=2r
E(r):{ ) [r1?

Note that E(r) = 4/r if r is a power of 2, and
E(r) is linear between powers of 2, so E(r) > 4/
there. Intuitively,

r>0
r=20

E(r)—E(r+1) ~ 4/r—4/(r+1)

~ 4/r
> 2|d - ‘ir|
Formally, one easily verifies that E(r) = E(r +
1) +2/|r)? for » > 0, and in any case
B(r)— - L > B(rt1)
" (r+1)2+17~ r '
Put

_ djyy)(w) + E(|w])
do(\) + E(0)

Note that the normalizing denominator JO(A) +
E(0) is constant, and E(|w|) is positive, so d’

d(w)




falls by at least 22+2I"1="d(w[0..2" — 1]). For these
j’s we give up on a match but make sure d de-
creases. But there are other j’s such that no y
makes d drop much, and so by Markov’s inequal-
ity most y’s make d drop or rise by very little.
Combining this with the last paragraph, we’ve
found a j and a y such that w[R),] = y allows
C and w[R},] = y makes d not rise much. We’ve
found our match; fill in the other bits according
to the path of decreasing d.

Now more formally and quantitatively:

Let D be the value of d(w[0..2" — 1]). (That is,
D is the value of d after treating the previous n.)

Consider only the C’s that are reached by
at least 1/n? of their fair share of w’s (e.g., if
there are 27" C’s, only the C’s reached by at
least 22" 7' /(27" n?) of the 22"™" w’s). Note this
leaves at least one C. Also, it leaves at least
(1—1/n?) of the w’s, so the average, over remain-
ing w’s, of d(w) is at most (1 + 2/n?)D. Fix one
of the remaining C’s with d(C) < (1 + 2/n?)D.
Let W = {w : C is reached by w}; note that
W[ > 22" /(27" n2).

Initialize j to 0, and initialize S to the empty
string. (In general, as j changes, S will contain
the bits in positions Rj,, U---U R} ; ). We will
talk about d(CS), and mean d(zS) where z is
any string that takes the machine computing d to
configuration C.

For half of the 27—2l7l=1 j’s at least the frac-
tion 3/4 of the y’s at j allow C. Otherwise, if
a < 272In1=2 of the j’s have this property, then

3

W< ()T )

(3/4)7e+2" " @22
(3/4)2n—2|n|—2 (22n—1)
227 /(2" n?),

<
<

a contradiction. Let A be the set of j’s such that
3/4 of the y’s at j allow C.

Consider the j’s in increasing order. If j ¢
A then reset S « Sy, for y along the path of
decreasing d. If j € A, then if there’s a setting j of
w[R} ] with d(CSy) < d(CS)—23+2n=" D, reset
S « Sy. After considering 2n=2In1=3 of the j’s in
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A (i.e., less than half the j’s in A), either the value
of d(C'S) has decreased to zero or we’ve found a
j such that for all y we have d(CSy) > d(C'S) —
23+2Inl=n D Then, by Markov, at least 3/4 of the
y’s make d(CSy) < d(CS) + 25+2I"="D_ Since
j € A, 3/4 of the y’s at j allow C, so 1/2 of the
y’s satisfy both

o w[RY,] =y allows C
e d(CSy) < d(C5S) + 25+2Inl-n D,

Fix one of these y’s, extend S « Sy, find a set-
ting of w[®?] witnessing that y at j allows C, and
finally set w[RY;, ] along the path of decreasing
d.

We have d(w[0.2"*! — 1]) < d(C) +
25+2lnl-np < (1 4+ O(1)/n?)D, which was our
goal.

It remains to modify the above proof to pro-
duce a language in PSPACE.

Instead of finding C' with d(C) < (1 + 2/n%)D
reached by 1—1/n? of the w’s, find C with d(C) <
(1 + 2/n2)D such that for half of the j’s as least
3/4 of the y’s at j allow C (such a C exists by
the previous argument). This can be done by
cycling through all j’s (counting as we go), for
each j cycling through the y’s, and for each (j,y)
using a Savitch divide-and-conquer technique to
determine if y at j allows C. Later, as we consider
the j’s in turn, instead of maintaining S, maintain
only the configuration of S. The rest of the proof
is similar. |

To cover ODD a martingale needs to look at all
its input, whereas to cover DOUBLE a martingale
needs to be able to look at input in a dynamically-
determined order. In this regard these examples
are complementary, and we see that the two mea-
sures are very different.

We’ve shown our notion of measure on
PSPACE is incomparable to that of [M]. One
might ask about a join, a measure on PSPACE
strictly richer than both, and one might hope
that a join can be constructed without defining
a new model of computation (say by adding a
I'(PSPACE) martingale to a $(PSPACE) mar-
tingale.) It seems, however, that “clean-hands”



Definition 15 Let MATCH be the set of se-
quences w such that for almost all n there exists
7 with w[R?,n] = w[R;n].

Note even the infinitely-many-n version of
MATCH has Lebesgue measure zero, which
is shown by using the Borel-Cantelli lemma:
MATCH is the limsup of n-sections having mea-
sure

1\ 2"—2ln/-1 e
1—<1—2?> ~1—e2 )

. _n2 . _ n—n2 —n2
Since 2™ is small we have e™2 ~R1-2n"m

_2n—n2

and so (1 — e ) = 27" is exponentially
2

small. Since 3(1—e2"™" ) < co, we can apply the

Borel-Cantelli lemma and conclude that MATCH

has measure zero.

Theorem 16 The set has

I'(PSPACE)-measure zero.

MATCH

Proof. Similar to Theorem 11 above (this actu-
ally covers the infinitely-many-n version).

The desired martingale bets evenhandedly
through first phases. Let Rj enumerate all the
R} .’s,s0 k < 2". On input w, if s,,| € R}, = R},
then d bets all 1/k? of its capital that w[R], ]
w[R) ;]. Since w[R}, ] = w[R} ;] with probabil-
ity 2 < 1/k®, when this event occurs d wins
k® per unit bet, ie., k®/k* = k /' oco. Since
S 1/k? < 00, d never runs out of money. n

Theorem 17 The set MATCH N PSPACE does

not have /J‘<I>(PSPACE) -measure zZero.

Proof. First, notation and an overview:

We will concentrate on one n at a time for
the bulk of the proof. The variable y, |y| = n?
will denote a setting of some R%,n' The variable
w, |w| = 2"~ will denote a setting of 2. A con-
figuration will mean a configuration of the ma-
chine after reading through bit 2™ + 2771 (i.e.,
just after reading the last bit of 2 and before
reading the first bit of 3}).

We are given a conservative martingale d com-
puted by a logk(n)-space-bounded online Turing
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machine, which we may assume works in the limit
(see [M]): w will is covered by d if lim,,_, o w[1..n]
exists and is infinite. Therefore, for a counterex-
ample it suffices to construct a sequence w with
{d(w][2"]) : n € N} bounded. We will let d in-
crease by a factor of 14 O(1/n?) at the nth stage,
and, since [J(1 + ¢/n?) < 0o, d will be bounded.

We will use the following form of Markov’s in-
equality:

Lemma 18 If the average over a multiset A of
reals is at most 1, and all elements of A are
greater than 1 — €, then for all a > 1 at least
1—1/a of the elements are < 1 + «a.

Proof. Otherwise, if more than 1/a of the ele-
ments are more than 1+ ea, then even if the other
(1 — 1/a) elements are all the minimum value of
1 — ¢, that gives an average value of

(1/a)(14+ea)+ (1=1/a)(1—¢)
14+ (1/a)ea— (1 —1/a)e
l+e—€e+¢/a

> 1.

&

Now, the overview. There may be a config-
uration reached by only one string w of length
2"~1, From that configuration, a martingale is
prepared to make many successful bets on the
second phase. So we will begin by excluding from
consideration for our language the configurations
reached by too few w’s. This leaves at least one
configuration, since some configuration is reached
by the average number of w’s. Also, the remain-
ing configurations are reached by most of the w’s,
so the average of d over the remaining configura-
tions is not too large. Thus there is some config-
uration C reached by a large number of w’s and
with d(C') not rising much. (These comments will
be made quantitative below.)

If C is reached by many w’s, then for many
j there are many settings y of w[R), ] that are
consistent with C' (“w[R,] = y allows C”).

For at most half of the j’s (i.e., 2n=2In=2 of the
j’s) can there be a setting y of w[R}, ] in which d



polynomial in n, and with dependency set R; of
size nZ.

In a setting having at least exponential re-
sources, our desired martingale would be 3" d; /2.
In our subexponential setting we do not have
enough time to compute an approximation to

> d;/j%, so instead we do the following:

e Make sure (inductively) we have 1/(7 — 1)
capital available before starting to bet on R;.

e Bet on R; using strategy d;/j2, risking just
1/42 of our capital but winning j3-1/j% = j
for infinitely many j’s.

o Before starting to bet on R;;,, “throw away”
the potential winnings of j, and assume we
have only 1/(j — 1) — 1/5% > 1/j, enough to
continue inductively.

Continuing in this way our winnings will be un-
bounded, yet we will be able to keep dependency
sets small.

Define d(w) as follows. Determine j =~
|w|/ log |w| such that s, € R;. Put

We verify that this is a (nonconservative) martin-
gale by checking that if s,,| is the last word of R;
then 5,3 € Rj41, s0

d(w) > 1/j > 1/(j+1)+1/(j+1)* = avg(d(wb)).

The dependency set G4 |, = R;, and |R;| = n? ~
log? |w|. Finally, let L be a language of density less
than €. Then the density of L is less than € on R;
for infinitely-many j’s, and for such 7 d climbs to
d;/j* = j along L. |

In [AS] it is noted that the set of languages
with density n* (fixed k) is T'(P)-null, whereas all
of SPARSE is not. Thus [AS] presents a thresh-
old density for I'(P)-measure. Theorem 11 shows
that I''(P)-measure is significantly stronger in this
regard.

4.2 Space

Now we compare our PSPACE measure to that of
[M]. We will exhibit two sets, ODD and MATCH,
such that ODD is measurable by [M] but not by
our measure, and MATCH is measurable by our
measure by not by [M].

Definition 12 Let ODD denote the set of lan-
guages L such that for each n, L has an odd num-
ber of words of length n.

Note that ODD has Lebesgue measure zero.

Theorem 13 The set ODD has pgPspacE)-
measure zero.

Proof. Immediate; also see [M]. n

Theorem 14 The set ODD NPSPACE does not

have #I"(PSPACE) -measure zero.

Proof. Let d be a I'(PSPACE)-martingale. We
will construct a language L € ODD N PSPACE
such that d is bounded along L.

We will define L for all words of length n at
once. Suppose L is defined for all words of length
less than n. First extend according to the path
of decreasing d, as in the proof of Theorem 4
of [AS]; call this extended language L’. Thus d’
is bounded along L’. For all large n, let @ be
the lexicographically largest string of length n
such that pos(z) ¢ Gpos(1n). Note that (by tran-
sitivity) for all m € (pos(z),pos(1™)] we have
pos(z) ¢ Gp,. Define L = L’ except that € L
when that makes L odd. Then d(w) < 2d(w’)
whenever w and w’ are equal-length prefixes of L
and L' respectively. Also, the possible final par-
ity fix leaves d(L[1..m]) = d(L'[1..m]) for all other
m < pos(1™), so d obeys twice the bound on L
that it obeys on L’. |

We now present a set measurable in the sense
of [AS] but not in the sense of [M].

Partition X* as follows. Write ¥™ as two phases
30 U &L, where &, consists of words of length n
beginning with 7 (so 0 consists of the words in
positions 2™ through 2" + 2”_1). Partition each
$¢ into 2n=2Inl~1 regions R;’,n of 22 > n? lexi-
cographically consecutive words.



Given the monotone, exactly computed cover d,

on input w put i = maxGy ) N 1{0,...,|wl},
and put d'(w) = d(wl0,...,7]). Since d’' changes
only on a dependency set, it is slothful. |

In summary:

Theorem 9 All sets with covers have ezxactly
computed covers. A set is covered by a density
system iff it is covered by a martingale. If a set
is covered by a conservative, monotone, reqular,
or limit cover, then it is covered by an ezactly-
computed, conservative, monotone, reqular den-
sity system and covered in the limit by an ezactly-
computed, conservative, monotone martingale.

The reader is invited to convert a conservative
density system into a martingale of the desired
form by tracing the entire Fig. 1. We know of no
way to do this other than using all of theorems 4
through 8.

3.3 Space

The notion of measure of [AS] can be defined
for space as well as time. We conclude this sec-
tion by comparing our conservative measure on
PSPACE, denoted puppspack), With the measure
of [M], here denoted pg@PpspacE)-

Theorem 10 If a set has a prpspacg) cover,
than it also has a pg(PSPACE) COVeEr.

Proof. It is sufficient to give a polylogspace on-
line algorithm for the given cover d which, by the
results of the previous section, can be assumed to
be monotone.

On input w, a polylogspace online machine is
furnished with the available workspace. From
this it can compute log|w| and [|w|] even be-
fore it sees input. The machine will first compute
G4 fjw)]- As the input is read, the machine can
cache the bits in positions in Gy f|,,[], then com-
pute d(w) from the cached bits alone. |

In [AS] it is shown that SPARSE does not have
KT(PSPACE) measure zero. It is easy to see that
SPARSE does have pgpspacg) measure zero, so
the measure of [M] is strictly richer.

4 Inequivalence

Henceforth we will denote the conservative mea-
sure by ur(c) and the nonconservative measure by
pri(c)- In this section we show that the two mea-
sures differ almost exponentially in the largest
f such that {L : L has density at most f} has
measure zero. In the previous section we showed

KT(PSPACE) is strictly weaker than pgpspack);
here we show that ur/(pspacg) is incomparable

with pgpspacE)-

4.1 Conservative versus Nonconserva-
tive measure

In [AS] it was shown that SPARSE, the set of lan-
guages with at most polynomially many words
of a given length, does not have an exactly-
computable conservative cover. The theorems of
the last section show that SPARSE has no con-
servative cover at all. In this section we show
that SPARSE does have a nonconservative cover
(which is not monotone, not regular if a den-
sity system, and not limit if a martingale). We
also show that there are sets A and B such that

pripspace)(4) = 0 but pgpspace)(4) # 0 and
pr/(pspAcE)(B) # 0 but ugpspace)(B) = 0, so
the nonconservative version Of our measure on
PSPACE is incomparable with that of [M].

Theorem 11 The set of languages with density
less than € < 1/2 is pp(py-null.

Proof.

Partition ¥* into consecutive re-
gions Rg, Rq,... as follows. Ry = {w : |w| < 16},
and for n > 16 the 2™ strings of length n are di-
vided up into 272" blocks of 22I"l > n? lexico-
graphically consecutive words. Thus R; consists
of words of length n, for some n > logj.

Let X; denote the languages with density less

than ¢ on the jth region. By the Chernoff in-

equality, for some ¢ that depends on e,
—cn? —3n 1

WX < e <27t g

J

It is straightforward to construct a martingale d;
that climbs from 1 to j3 on X;, works in time



as a conservative cover. Similarly, one can fix
regularity, because if there is some prefix z C w
such that di(z) > 1, we simply find the first such
z and set di(w) = di(z). Our sloth condition
insures there are only polylog-many z’s to check,
so we can do this using the allowable resources. B

Theorems 4 and 5 together give us an ex-
act computation lemma for conservative covers:
Given a conservative cover make a slothful cover
by theorem 4, then make a conservative, slothful
(and hence exactly computed) cover by theorem
5.

Next, continuing around the square of Fig. 1,
we mention a key relationship between density
systems and martingales, mostly unchanged from
the setting of Lutz:

Theorem 6 ([JLM]) If a set is covered by a
reqular density system, then it is covered in the
limit by a martingale.

Proof. We have d'(w) = Y72, dor(w) is a limit
martingale with computation Ef:(()leT) dhzky,,.(w).
|

Next, the up-arrow:

Theorem 7 If a set is covered in the limit by a
martingale, then it has a limit, monotone cover.
This construction preserves sloth and conserva-
tion.

Proof. Let d be a limit martingale covering a set
A. We will construct a martingale d’ and mono-
tone dependency sets G/, ,,. By Theorem 2, as-
sume that d is exactly cc;mputed and that the
powers of 2 are in the dependency sets Gy ,,. Put

U Gd,21 )

j<log [n]

Gépyn:{O...,n}ﬂ

and put d'(w) = d(w[l..maxG:i,le]). Note that
the G"’s are monotonic.

Since d is limit, we conclude that for L € A we
have lim,,_,,, d'(w) = .

We need to check that d’ satisfies the average
law. We need only check where d’ changes, i.e.,
for |w| € Gld’,|w|’ we need to check that d'(w_) >

ﬂﬂ;ud/ﬂ, where w_ denotes w with the last
bit dropped, and w’ denotes w with the last bit
flipped.

Suppose |w| € Gy |- Then d'(w) = d(w) and
d'(w') = d(w'). If |w_| is a power of 2, then
|lw_| € Ggy_|, s0 d' agrees with d on {w_,w,w'},
and the average law is satisfied. Therefore we
may assume |w_| is not a power of 2, so that
[lw-|] = [|wl]]. Let & = max{1..|w_|} N Gq [jw_|,
so d'(w_) = d(w[L..k]). Since [w| € G} ||, by def-
inition of G’ we have |w| € G4 .1, and by tran-
sitivity of dependency sets, Gy, C G [w)] =
Ga,[jw_|- We conclude that there is exactly one
element of G4, that is strictly bigger than &k,
and that is |w|. It follows that d(z) = d(w) for
any z with |z| = |w| and z differing from w only
in bits after the k** and before the last. We con-
clude that

d'(w)+d'(w) _  d(w)+dw)
2 2
= avgd(z)
< d(w[l..k])
= d'(w-),

where the average is over z of length |w| extend-
ing w[l..k]. (If d is conservative, then avgd(z) =
d(w[l..k]) and thus d’ is conservative as well.) B

Finally, the left-arrow:

Theorem 8 If a set has a monotone cover, then
it has a slothful, monotone cover. This construc-
tion preserves all other properties.

Proof. Using Theorem 2, we may assume the
cover is monotone and exactly computed.

Fix w, let 7 be the largest element of Gg |y,
let 7 satisfy ¢ < j < |w|, and let w’ extend
w(0,. .., with |w’| = |w|. By definition of depen-
dency set, d(w) = d(w’). Since the dependency
sets are monotone, 7 is also the largest element
of G4 ;, so d(wl0,...,j]) = d(w'[0,...,j]). By the
average law, d(w[0,...,7]) > d(w[0,...,5']) for
1 < j <j' < |w|. (That is, d is constant on levels,
and nonincreasing from level to level.)

Without loss of generality, assume all small
enough powers of 2 are in the dependency set.



Figure 2: Tree in Theorem 4
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Fix w = w;, and let wy = w[0..7] (see Fig.
2). Let T be the complete tree at wy of height
|w1| — 7; we will show that d is constant on 7T'. By
definition of dependency set, d is constant on the
set of leaves of T', and for any w3 J ws with |w;| <
|w1|, by the average law at ws and succeeding
nodes, we conclude that d(ws) equals the common
leaf value of d.

Since Gg; C Ggy|, it is now easy to see that
for all j ¢ Gg ||, d(w[0..5 = 1]) = d(w[0..5]).

&

Now we turn to not-necessarily-exactly-
computed martingales. The idea is that an ap-
proximation cz|w|('w) is close to the martingale, so
that the above proof shows the martingale is close
to slothful, i.e., except on a set of size polylog, the
martingale makes changes of size at most 2%l
These changes are small enough that by increas-
ing the martingale slightly we can absorb them.

Fix w, and consider the computable function
J|w|(w). As above, assume max(G; 1) < |w], and
note that by definition of dependency set, for all
w’ with |w’| = |w| such that w[0..7] = w’[0..7], we
have J|w/|('w’) = J|w|(w). Since d is a computa-
tion, |d(w') — J|w|(w)| < 27Iwl: je., d varies by
at most 2 - 271l on a level. Let ¢ be the max-
imal element of G4 ,|. By the conservation law,

|d(w[0...7]) — J|w|(w)| < 271wl and as above the

complete tree at w[0. . .%] of height |w|—7is within
2~ lwl of J|w|(w).

Without loss of generality, assume that all pow-
ers of 2 at most n are in G4 ,,. This means take the
original dependency set, throw in the appropriate
powers of 2, and take the transitive closure.

Given a conservative martingale d, we con-
struct a slothful martingale d’ as follows. On
input w, put ¢ = maXGci,Hwﬂ,Hwﬂ nA{0,...,|w|}

(recall tpat d, has a subscript, so the dependency
set for d,(z) has the form G; 12 ,)- Put

d(w) = § (dgon(el0,.., ) +3-277)

Then clearly d’ is computable. As in Theorem 2,
d' satisfies the average law (but without equality),
and d' > d/4 so d' covers the same set as d. Fi-
nally, note that both ciﬂw” (wl0,...,i]) and 3-27*
are slothful, so their sum is slothful as well. The
factor of 411 merely maintains the property that
d(A)=d(A) = 1.

[ |

Next we assume sloth and prove conservation
and regularity at once.

Theorem 5 If a set is covered by a slothful null
density system, then it is covered by a conser-
vative, slothful, reqular null density system. If
a set is covered by a slothful martingale, then
it is covered by a conservative, slothful martin-
gale. This construction preserves monotonicity
and limit coverage (for martingales).

Proof. The proof is the same for martingales and
density systems.

Note that a slothful density system d is exactly
computed, by definition. We produce a density
system d’ of the desired form.

We handle conservation and regularity at once.
In the setting of Lutz et al, the covers have
at least linear time. It has been shown [JLM]
that one can take an exactly-computed but not-
necessarily-conservative cover d(w), check the lin-
early many prefixes z C w where d may fail to be
conservative, and fix each one, that is, output

d(w) + Z (d(z) B d(20) -; d(zl))

zCw



SO

d(w) > d(w)+2-27
L d(w0) -4 2ol
= 2
d'(wl) — 4 - 2~ w0l
L (wD)
2
12. 9= lwl
_ d(w0) + d'(wl)
B 2

It is clear that coverage in the limit is pre-
served; it remains to show that monotonicity is
preserved. So assume Ggp,r C Ggp, for all 7

and for m < n. Then, for all m < n we have

Gd’,m Gd,m,m

Gdmn by Lemma 1

N 1N

G4nn by hypothesis
Gd’,n

Finally we show that for nonconservative cov-
ers the density system and martingale formula-
tions coincide.

Theorem 3 A set covered by a density system is
covered by a nonconservative martingale,

Proof. Given a density system di, note that
2%dyy, is a density system unbounded on any set
covered by di, so the “sparse sum” d = Y, 22kd2_2k
is a martingale covering the same set. If Jk,,, is a
computation for di, then, as in [AS], the martin-
gale d has computation

log(r+|w|)

koA
Z 2? 3. ry2.20(W).
k=0

d.(w) =

This construction destroys conservation, so one
cannot use it to convert a conservative density
system into a conservative martingale. The entire
next subsection is devoted to this conversion.

Figure 1: Order of constructions

conservative < slothful <« monotone

! T

regular — limit

3.2 Equivalence of Niceness conditions

In this subsection we show the niceness conditions
are equivalent. Requiring any one of the niceness
conditions places a severe restriction on the mea-
sure, as is discussed in the next section.

We prove the equivalence according to Fig. 1.
The reader is cautioned that some of the con-
structions destroy some properties. Fig. 1 is used
as follows:

¢ Given a martingale or density system cov-
ering a set A and satisfying any of the five
properties in Fig. 1, one can construct a limit
martingale and a monotone density system
covering A.

¢ Given a limit martingale one can make the
martingale in turn monotone, slothful and
conservative, and these properties accumu-
late.

e Given a monotone density system one can
make the density system in turn slothful, reg-
ular and conservative, and these properties
accumulate.

We recall that regularity is predicated of den-
sity systems and limit coverage is predicated of
martingales.

Theorem 4 If a set is covered by a conservative
cover, then it is covered by a slothful cover.

Proof. We will give the proof for increasingly
general cases. First we review an argument in
[AS] for exactly computed martingales, then give
the proof for martingales that are not exactly
computed. Density systems are handled similarly.
We show that for any n, if 7 is the maximum
element of G4, and |w| = n, then d(w[0..7]) =
d(w[0..5]) for any j in the range ¢ < j < n.



e d is conservative if d(w) = w. (A
function satisfying
d(w0) + d(wl)
2

but not necessarily with equality is some-
times called a supermartingale.)

d(w) >

e d is monotone if G4, C Gy, for m < n.

o d is slothful if (1) d is exactly computed,
and (2) given input (n,k), we can com-
pute in time polylog in n + k a list of in-
dices from {0, ...,n} such that, if ¢ is not in
this list, then for any string w of length n,
di(w[0..2 — 1]) = di(w[0..7]). (If d is a mar-
tingale disregard k.) The condition of sloth
is merely a technical notion that is useful in
our proofs.

In subsequent sections we will prove that with-
out loss of generality one may assume that the
density systems come from martingales, i.e., dy =
27*d for a martingale d, and that d and d;, are ex-
actly computable. We will also show, curiously,
that if one assumes any of the other niceness con-
ditions above, then all the others follow.

3 Equivalence

First we discuss several simplifications that are
possible without assuming the niceness condi-
tions. Later we discuss the equivalence of the
niceness conditions.

3.1 General Equivalence

Lemma 1 Let GJ| be dependency sets for a
X Sl
computation d,(w). Without loss of generality we

may assume Grfylwlﬂ" C GJ,|w|,s for r <.

Proof. We note that without loss of generality
we can replace d, with JW , since the latter is just
as computable and gives a better approximation.
Next, we can replace G d ] with

U Gd,|w|,zn

i<logr

since, as required, this set is transitively closed
under input querying, and is polylog-sized.
Thus, without loss of generality, we can assume
G C Gy for r < s. |

d,|wl,r s|wl,s

While the observation of Lemma 1 is immedi-
ate, it is important for the constructions in this
paper, as well as for Theorem 4 in [AS]. ([AS]
was somewhat unclear on this point.) The reader
should not confuse monotonicity in » (which is
always possible and henceforth always assumed)
with the niceness property “monotonicity” (i.e.,
monotonicity in |w|).

Next we give an exact computation lemma for
martingales and density systems in our setting.
The reader should also see Theorem 19 for an ex-
ponentially better exact-computation lemma for
martingales in both our setting and Lutz’s set-
ting.

Theorem 2 Given any cover d, one can con-
struct an exactly-computed cover d' covering the
same sets. This construction preserves coverage
in the limit and monotonicity, (but may destroy
conservation).

Proof. We give the proof for martingales; a sim-
ilar proof works for density systems. Given a
martingale d(w) with computation d,(w), define
d’(w) = J|w|(w) +3- 2—|w|‘

First, we show that d’ has dependency set
G = Gipnn: One can compute d’(z) using only
the bits in G,/ |,. Suppose m € Gg ), \ {]2|};
then Gy |, C Gg,z|,-| by definition of depen-
dency set, and we have

Gd’,m Gd,m,m

N 1N

Il

D
&
E]

Also, note that d’' is dyadic, d’ is computable
using the allowable resources, and since d' > d
we have that d’ covers the same set as d. An easy
induction shows

dw)+2-27" < d'(w) < d(w) + 4 - 2711,



the delicate definition in [AS] was not done in
vain. In order that the notion of measure be a
“reasonable” notion of big and small, certain ax-
ioms have to be satisfied, and this is most easily
done in the delicate formulation of [AS], which
involves output as differences of formal sums of
powers of two, and martingales whose values are
approximated rather than computed exactly.

In nearly all cases, the arguments here also ap-
ply to the measures of [L92] and [M]. Thus this
paper gives a unified treatment of the robustness
theorems.

2 Definitions

First we review the measure defined in [AS]. The
definitions given there were designed to facilitate
proving basic properties of the measure, and so
the definitions were in some cases more restric-
tive and in other cases more general than what is
“natural.” In this paper we show that in almost
all regards (with one important exception), the
alternate formulations are all equivalent.

We state the results here for measure on P but
note that the results hold for measure on any class
DTIME(C) (or DSPACE(C)) with C closed under
squaring. We equate a language L with its char-
acteristic sequence xr. Given a string w (or a
sequence w) we use w(i..j| (w[i..7]) to denote the
string occupying positions ¢ through j of w(w).
We write w C z to denote that w is a prefix of z.

Now we present a key notion that is essential
to defining the measure in [AS]. Given a natu-
ral number n and a Turing machine M having
random access to its input, define a dependency
set Gppn C {0,...,n} to be a set such that for
each ¢ € Gy U {n}, and each word w of length
n, M can compute M (w[0..7]) querying only in-
put bits in Gpr,, N {0,1,2,...7}. Note that for all
M and n, there is a unique minimal dependency
set for M and mn, which can easily be computed
by expanding the tree of queries that one obtains
by assuming both possible values for each queried
bit.

A T(P) machine (I'(PSPACE) machine) M is
such that M runs in time (space) log®™ n and

has dependency sets Gy || € {0, ..., n} with size
bounded by logo(l)n. The machine M is given
the length of its input. The output of M is a
rational number represented as the difference of
formal sums of powers of 2. By convention, nu-
merical arguments are passed to M in both unary
and binary (so M has time polylog in the value
of such arguments, which is enough time to read
the binary form of the argument). If M com-
putes a function with numerical arguments then
the dependency sets have subscripts to match:
If M computes d,(w) then M has dependency
sets Gy |w|,» that must be polylog in |w| + r. We
will sometimes write Gy | » for Gz || » When M
computes d.

A set is said to be I'(C)-null if it is covered
by a density system d, with dp(\) < 27%, and
d is approximated by a I'(C) machine M in the
sense that |dp(w) — My,(w)| < 277. If in fact
dr(w) is equal to My(w) (instead of merely be-
ing approximated) then we say that d is ezactly
computed. The approximation to d computed by

M is denoted by d. A priori we require only
di(w) > M“’—O%w—ll, not equality.

2.1 Niceness Properties

A cover will refer to either a density system or
a martingale. Unless specified otherwise, a result
for a “cover” is claimed to hold for either mar-
tingales or density systems. Note one can build
a density system from a martingale by defining
dr(w) to be 27*d(w), and this preserves all the
properties discussed below that hold for both no-
tions of cover.

We have already defined what it means for a
cover to be exactly computed. Below, we define
the other “niceness” properties that will be con-
sidered.

Definitions: Consider a cover d with depen-
dency set G4.

e A martingale d covering set A is a limit mar-
tingale if d has a limit of infinity (and not
just a lim sup) along languages in A.

e A density system d is regularif di(z) > 1 and
z C w imply dp(w) > 1 for all k.



obtained by putting limits on the com-
plexity of the function d. (Details may
be found in Section 2.)

In later work [L93|, Lutz defines his measure
equivalently using the notion of a “martingale”.
This is a “betting strategy” that starts with some
fixed amount of money and, for each input se-
quence w, “bets” a fraction of the money it cur-
rently has on what the next bit of the sequence
will be. It is known that a set S has measure
zero if and only if there is a martingale that “suc-
ceeds” (i.e., is unbounded) on all sequences in
S. (In the setting of resource-unbounded mea-
sure, see [Schn]; for the resource-bounded case,
see [JL, M].)

In Lutz’s setting, and in Mayordomo’s setting
(as in Lebesgue measure), the class of measure-
zero sets one obtains is the same, regardless of
which of the following choices one picks in making
the definitions:

1. The martingale succeeds on sequence w if (1)
it is unbounded on w (i.e., the lim sup is infi-
nite), or (2) it succeeds only if it has a limit
of infinity on w.

2. The martingale either (1) must be “conser-
vative” in the sense that the amounts of
money after w0 and wl exactly average to
the amount of money after w, or (2) it can
“throw money away” by having the average
after w0 and w1 be less than the amount af-
ter w.

(Depending on what one is trying to prove, it can
be more convenient to choose more stringent or
more lenient conditions.)

In this paper, we show that the class of measure
zero sets one obtains using the definition of [AS]
is the same as that one obtains by formulating
the definition in terms of conservative martingales
(both in the lim sup sense and in the limit sense)
and it is also equivalent to being covered in the
limit sense by a martingale that is not assumed
to be conservative.

However, to our surprise (and in contrast to the
case for Lebesgue measure and for Lutz’s or May-
ordomo’s notions of measure), one obtains strictly

more measurable sets in our setting, if one con-
siders covering sets in the lim sup sense by non-
conservative martingales. Furthermore, some of
the classes one is able to cover in this sense are
fairly interesting and natural. For instance, us-
ing the definition presented in [AS], we showed
that the class of sparse sets does not have mea-
sure zero in P. However, using the more generous
notion of measure (non-conservative martingales)
we show here that the class of all sets that are not
exponentially dense has measure zero in P.

Our previous paper [AS] provided a notion of
measure not only for P (and other time-bounded
classes), but also for PSPACE (and other space-
bounded classes). The measure on PSPACE pre-
sented in [AS] provides strictly fewer measurable
sets than the measure of [M]|. However, if one
defines a measure on PSPACE using the non-
conservative, lim sup notion, we show here that
one obtains a notion that is incomparable with
that of [M].

Thus we now have two notions of measure on
P: a conservative measure and a non-conservative
one. One might now worry that any of a num-
ber of other slight modifications to the technical
aspects of our definitions could lead to other dis-
tinct notions of measure. One goal of the current
paper is to demonstrate that this is not the case.
In fact, as the following paragraph tries to ex-
plain, we find it surprising that the class of sets
that are covered by martingales is so robust to
the details of how the martingales are computed.

The reason this strikes us as surprising is that
one of the technical difficulties that had to be
overcome in defining the measure in [AS] was that
an appropriate representation for numerical out-
puts had to be found that could be represented
in a small number of bits, but still would allow
efficient arithmetic operations. (In [AS], we rep-
resented numbers as the difference of two sums of
powers of two. Thus we can write 2™ + 27" — 2™
in log nrm bits.) However, we have been able to
show that, at least in the martingale formulation,
one can use the more natural binary notation, and
obtain the same class of measure zero sets.

Note that the work performed in formulating
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Abstract

In [AS], we defined a notion of measure on the
complexity class P (in the spirit of the work of
Lutz [L92] that provides a notion of measure on
complexity classes at least as large as E, and the
work of Mayordomo [M] that provides a measure
on PSPACE). In this paper, we show that several
other ways of defining measure in terms of covers
and martingales yield precisely the same notion as
in [AS]. (Similar “robustness” results have been
obtained previously for the notions of measure
defined by [L92] and [M], but — for reasons that
will become apparent below — different proofs are
required in our setting.)

To our surprise, and in contrast to the mea-
sures of Lutz [L92] and Mayordomo [M], one ob-
tains strictly more measurable sets if one consid-
ers “nonconservative” martingales that succeed
merely in the lim sup rather than having a limit of
infinity. For example, it is shown in [AS] that the
class of sparse sets does not have measure zero in
P, whereas here we show that using the “noncon-
servative” measure, the class of sparse sets (and
in fact the class of sets with density € < 1/2)
does have measure zero. We also show that our
“nonconservative” measure on PSPACE is incom-
parable with that of [M].

*A paper announcing these results appears in the pro-
ceedings of the 1995 International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’95).

tResearch supported by NSF grant CCR-9204874.

1 Introduction

Our purpose in this paper is to prove additional
basic properties of the notions of measure on P
and PSPACE that were defined in our earlier pa-
per [AS], and to clarify the relationship between
our measure on PSPACE and the measure that
was presented by Mayordomo in [M]. (Both the
notion of measure presented in [AS] and the no-
tion presented in [M] coincide with that of [L92]
whenever Lutz’s measure is defined. There is
by now a large body of interesting work demon-
strating the utility and importance of resource-
bounded measure; we refer the reader to [AS, L93]
for pointers to this material.)

Our definition of a measure on P in [AS] shares
the following aspects of the definition of [L92]:

A null cover of a set S of languages is a
function d : N x ¥* — R (where d(k, w)
is denoted by di(w)) such that

o di(\) < 1/2%
o di(w) = avg{dr(w0), dr(wl)}

e For every sequence w € S there
is some prefix w of w such that
dk(w) > 1.

A function of this sort is called a “den-
sity system.” Note that any such dj, cor-
responds to covering S by a sequence of
intervals whose sizes sum to 1/2%. Mea-
sures on specific complexity classes are



