Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 031 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Selecting the median

Dorit Dor* Uri Zwick *

June 25, 1995

Abstract

Improving a long standing result of Schonhage, Paterson and Pippenger we show that the median of a
set containing n elements can always be found using at most 2.95n comparisons.

1 Introduction

The selection problem is defined as follows: Given a set X containing n distinct elements drawn from a
totally ordered domain, and given a number 1 < i < n, find the i-th order statistic of X, i.e., the element
of X larger than exactly ¢ — 1 elements of X and smaller than the other n — ¢ elements of X. The median
of X is the [n/2]-th order statistic of X.

The selection problem is one of the most fundamental problems of computer science and it has been
extensively studied. Selection is used as a building block in the solution of other fundamental problems
such as sorting and finding convex hulls. It is somewhat surprising therefore that only in the early 70’s,
it was shown, by Blum, Floyd, Pratt, Rivest and Tarjan [BFP*73], that the selection problem can be
solved in O(n) time. As Q(n) time is clearly needed to solve the selection problem, the work of Blum et
al. completely solves the problem. Or does it?

A very natural setting for the selection problem is the comparison model. An algorithm in this model can
access the input elements only by performing pairwise comparisons between them. The algorithm is only
charged for these comparisons. All other operations are free. The comparison model is one of the few
models in which ezact complexity results may be obtained. What is then the exact comparison complexity
of finding the median?

The comparison complexity of many comparison problems is exactly known. It is clear, for example, that
exactly n — 1 comparisons are needed, in the worst case, to find the maximum or minimum of n elements.
Exactly n 4+ [logn] — 2 comparisons are needed to find the second largest (or second smallest) element
(Schreier [Sch32], Kislitsyn [Kis64]). Exactly [3n/2] —2 comparisons are needed to find both the maximum
and the minimum of n elements (Pohl [Poh72]). Exactly 2n—1 comparisons are needed to merge two sorted
lists each of length n (Stockmeyer and Yao [SY80]). Finally, nlogn 4+ O(n) comparisons are needed to
sort n elements (e.g., Ford and Johnson [FJ59]).

A relatively large gap, considering the fundamental nature of the problem, still remains however between
the known lower and upper bounds on the exact complexity of finding the median. After presenting a basic
scheme by which an O(n) selection algorithm can be obtained, Blum et al. [BFP*73] try to optimise their
algorithm and present a selection algorithm that performs at most 5.43n comparisons. They also obtain

*Department of Computer Science, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL. E-mail addresses: {ddorit,zwick}@math.tau.ac.il.

the first non-trivial lower bound and show that 1.5n comparisons are required, in the worst case, to find
the median. The result of Blum et al. is subsequently improved by Schénhage, Paterson and Pippenger
[SPPT76] who present a beautiful algorithm for the selection of the median, or any other element, using at
most 3n 4 o(n) comparisons. In this work we improve the long standing result of Schonhage et al. and
present a selection algorithm that uses at most 2.95n comparisons.

Bent and John [BJ85] (see also John [Joh88]), improving previous results of Kirkpatrick [Kir81], Munro
and Poblete [MP82] and Fussenegger and Gabow [FFGT78], obtained a (1 + H(a)):-n — o(n) lower bound
on the number of comparisons needed to select the an-th element of a set of n elements, where H(a) =
alog L + (1 - a)log L is the binary entropy function (all logarithms in this paper are taken to base 2).
We have shown recently [DZ95a] (using somewhat different methods from the ones used here) that the
an-th element can be selected using at most (1+ alog L + O(aloglog L))-n comparisons. This for small
values of a is almost optimal. The bound of Bent and John gives in particular a 2n — o(n) lower bound on
the number of comparisons needed to find the median.

Our work slightly narrows the gap between the best known lower and upper bounds on the comparison
complexity of the median problem. Though our improvement is quite modest, many new ideas were required
to obtain it. These new ideas shed some more light on the intricacy of the median finding problem.

Algorithms for selecting the i-th element for small values of i were obtained by Hadian and Sobel [HS69],
Hyafil [Hya76], Yap [Yap76], Ramanan and Hyafil [RH84]. See also Aigner [Aig82] and Eusterbrock [Eus93].

All the results mentioned so far deal with the number of comparisons needed in the worst case. Floyd
and Rivest [FR75] showed that the i-th element can be found using an ezpected number of n + ¢ + o(n)
comparisons. Cunto and Munro [CM89] had shown that the bound of Floyd and Rivest is tight.

The central idea used by Schonhage et al. in their 3n 4 o(n) median algorithm is the idea of factories.
Schonhage et al. use factories for the mass production of certain partial orders at a much reduced cost. To
obtain our results we extend the notion of factories. We introduce green factories and perform an amortised
analysis of their production costs. We obtain improved green factories using which we can improve the
3n + o(n) result of Schénhage, Paterson and Pippenger.

The performance of a green factory is mainly characterised by two parameters uy and uy (the upper and
lower element costs). Using a green factory with parameters ug and uq we obtain an algorithm for the
selection of the an-th element using at most (upa+ uq1(1 —a))-n+ o(n) comparisons. To select the median,
we use a factory with wug, u; & 2.95. Actually, there is a tradeoff between the lower and upper costs of a
factory. For every 0 < a < 1/2 we may choose a factory that minimises uga 4+ u1(1 — @). We can select
the n/4-th element, for example, using at most 2.69n comparisons, by using a factory with uy &~ 4 and
up & 2.25. In this paper, we concentrate on factories for median selection. It is easy to verify that the
algorithm described here, as the median finding algorithms of both Blum et al. and Schénhage et al., can
be implemented in linear time in the RAM model.

The best green factories that we have explicitly constructed have lower and upper element costs ug, uq ~
2.942, yielding a median selection algorithm that uses at most 2.942n comparisons. These factories are
extremely complicated. They employ in particular sixteen different sub-factories (sub-factories are intro-
duced in Section 5). A full description of these factories is too long for a journal paper. A full description of
them can be found in [Dor95]. We describe instead a simpler construction, though still quite complicated,
that uses only four different sub-factories and has wg, u; ~ 2.956. This simpler construction depicts all the
ideas used in the construction of the more complicated factories. After describing these simpler factories
in full, we give a partial description of the more complicated factories.

A preliminary version of this paper appeared in [DZ95b]. There we sketched the construction of a factory
that uses only two sub-factories and achieves ug, uq ~ 2.968. These are about the simplest factories using
which the 3n median algorithm of Schonhage et al. can be improved. They do not demonstrate however

ooo

Figure 1: The partial order 57"°.

all the ideas required to obtain the wug,uq ~ 2.956 and ug, u; ~ 2.942 factories.

We believe that further small improvements can be obtained by building more complicated factories that
use even more sub-factories. It seems however that new ideas will be needed to obtain a more substantial
improvement (see in particular the comments at the end of Section 9).

In the next section we describe in more detail the concept of factory production and introduce our notion
of a green factory. We also state the properties of the improved factories that we obtain. In Section 3 we
explain the way in which green factories are used to obtain efficient selection algorithms. The selection
algorithm that we describe is a generalisation of the median algorithm of Schénhage et al. [SPP76] and is
similar to the selection algorithm that we describe in [DZ95a]. The subsequent sections are then devoted
to the construction of our improved green factories. We end with some concluding remarks and open
problems.

2 Factory production

Denote by 57" a partial order composed of a centre element, m elements larger than the centre and &
elements smaller than the centre (see Fig. 1). An 57" is sometimes referred to as a spider. Schénhage et al.
[SPP76] show that producing [/ disjoint copies of 57" usually requires fewer comparisons than / times the
number of comparisons required to produce a single 57*. The best way, prior to this work, of producing
a single S}j, for example, requires about 6k comparisons (find the median of 2k + 1 elements using the
3n + o(n) median algorithm). The cost per copy can be cut by almost a half if the S,]j’s are mass produced
using factories.

A factory for a partial order P is a comparison algorithm with continual input and output streams. The
input stream of a simple factory consists of single elements. When enough elements are fed into the factory,
a new disjoint copy of P is produced. A factory is characterised by the following quantities: the initial
cost I, which is the number of comparisons needed to initialise the factory; the unit cost U, which is the
number of comparisons needed to generate each copy of P; and finally the production residue R, which
is the maximal number of elements that can remain in the factory when lack of inputs stops production.
For every [> 0, the cost of generating [disjoint copies of P is at most [+[-U. Schénhage et al. [SPP76]
construct factories with the following characteristics:

Theorem 2.1 There is a factory F} for S,’j with initial cost Iy, unit cost Uy and production residue Ry,
satisfying: Uy ~ 3.5k, I, = O(k?), R = O(k?).

The notation Uy ~ 3.5k here means that U, = 3.5k 4+ o(k). Schonhage et al. also show that if there exist
factories Fy, for S}’s, satisfying Uy ~ Ak, for some A > 0, and Iy, Ry = O(k?), then the median of n

elements can be found using at most An 4 o(n) comparisons. The above theorem immediately implies
therefore the existence of a 3.5n + o(n) median algorithm.

The way factories are used by selection algorithms is described in the next section. For now, we just
mention that most S7*’s generated by a factory employed by a selection algorithm are eventually broken,
with either their upper elements eliminated and their lower elements returned to the factory or vice versa.
While constructing an S7*, a factory may have compared elements that turned out to be on the same side
of the centre. If such elements are ever returned to the factory, the known relations among them may
save the factory some of the comparisons it has to perform. To capture this, we extend the definition of
factories and define green factories (factories that support the recycling of known relations). This extension
is implicit in the work of Schonhage et al. [SPP76]. Making this notion explicit simplifies the analysis of
our factories. The 3n + o(n) median algorithm of Schénhage et al. is in fact obtained by replacing the
factory Fj of Theorem 2.1 by a simple green factory.

A green factory for S7"’s is mainly characterised by the following two quantities: the lower element cost ug
and the upper element cost uy. Using these quantities, the amortised production costs of the factory can
be calculated as follows: The amortised production cost of an S7* whose upper m elements are eventually
returned (together) to the factory is k-up. The amortised production cost of an 5] whose lower k elements
are eventually returned (together) to the factory is m-u;. The amortised production cost of an 5" such
that none of its elements is returned to the factory is k-ug + m-uy. Note that in this accounting scheme we
attribute all the production cost to elements that are not returned to the factory. The initial cost I and
the production residue R of a green factory are defined as before. A somewhat different definition of green
factory was given by us in [DZ95a]. The definition given here uses amortised costs per element where as
our previous definition used amortised costs per partial order. A green factory does not know in advance
whether the lower or upper part of a generated 5" will be recycled. This is set by an adversary. Though
not stated explicitly, the following result is implicit in [SPP76].

Theorem 2.2 There is a green factory Gy for S,]C“ with lower and upper element costs ug,uy; ~ 3, initial
cost Iy = O(k?) and production residue Ry = O(k?).

The notation ug, u; ~ 3 here means that ug, w1 = 3 + o(1) where the o(1) is with respect to k.

We shall see in the next section that a green factory for SF with lower and upper element costs ug and u;
yields a (uo 4 u1)/2:n+ o(1) median algorithm. To improve the algorithm of Schénhage et al. it is enough
therefore to construct an Sf factory with (ug + u;)/2 < 3. Unfortunately, we are not able to construct
such a factory.

However, we are able to reduce the upper and lower element costs if we allow variation among the partial
orders generated by the factory. Let Sf = {S,’C“,” tk <k <2k, k <EK'"<2k}. We construct improved green
factories that generate partial orders that are members of S~,]§ These factories can be easily incorporated
into the selection algorithm described in the next section. To obtain our 2.95n median algorithm we use
green Sllj factories G with the following characteristics:

Theorem 2.3 There is a green 8§ factory Gy with ug,uy ~ 2.942, I, = O(k?), Ry = O(k?).
An outline of the ideas used to construct the factories G is given in Section 5. The full details are then

given in Sections 6 to 9.

3 Selection algorithms

In this section we describe our selection algorithm. This algorithm uses an 3}; factory. The complexity
of the algorithm is completely determined by the characteristics of the factory used. This algorithm is a

Eliminated

A

%

FEliminated

Figure 2: The ordered list of Sf’s.

generalisation of the median algorithm of Schonhage et al. and a slight variation of the selection algorithm
that we describe in [DZ95a).

Theorem 3.1 lLet 0 < a < 1/2. Let Fi be an 3}; factory with lower element cost ug, upper element
cost uq, initial cost Iy = O(k?*) and production residue Ry = O(k?*). Then, the an-th smallest element,
among n elements, can be selected using at most (a-ug+ (1 — a)-uq)-n + o(n) comparisons.

Proof: We refer to the an-th smallest element among the n input elements as the percentile element.
The algorithm uses the factory Fp where k = Ln]/ﬂ. The n input elements are fed into this factory, as
singletons, and the production of partial orders § € Sllj commences. The centres of the generated $S’s
are inserted, using binary insertion, into an ordered list L, as shown in Fig. 2. When the list L is long
enough we either know, as we shall soon show, that the centre of the upper (i.e., last) S in L and the
elements above it are too large to be the percentile element, or that the centre of the lower (i.e., first) §
and the elements below it are too small to be the percentile element. Elements too large or too small to
be the percentile element are eliminated. The lower elements of the upper S, and the upper elements of
the lower S are returned to the factory for recycling.

Let t be the current length of the list I, and let r be the number of elements currently in the factory. The
number of elements that have not yet been eliminated is therefore N = O(k)-t + r. Let ¢ be the rank of
the percentile element among the non-eliminated elements. Initially N = n and ¢ = [an].

The number of elements in the list known to be smaller or equal to the centre of the upper S of the list is
No = O(k)-t. The number of elements known to be greater or equal to the centre of the lowest S of the
list is Ny = O(k)-t. Note that Nog+ Ny = N 4+t — r as the centres of all the S’s in the list satisfy both
these criteria, the r elements are currently in the factory satisfy neither, and all the other non-eliminated
elements satisfy exactly one of these criteria.

The algorithm consists of the following interconnected processes:
(i) Whenever sufficiently many elements are supplied to the factory Fi, a new partial order S € SN;C“ is
produced and its centre is inserted into the list L using binary insertion.

i henever Ny > i, the centre of the upper partial order § € SF in the list and the elements above i
i) Wk Ng > i, tl tre of the upper partial order § € SF in the list and the el ts ab t
are eliminated, as they are too big to be the percentile element. The lower elements of S are recycled.

(iii) Whenever Ny > N — i+ 1, the centre of the lowest partial order 5 € 3,’; in the list and the elements
below it are eliminated, as they are too small to be the percentile element. T'he upper elements of S
are recycled. The value of ¢ is updated accordingly, i.e., 7 is decremented by the number of elements
in the lower part of S (including the centre).

If (ii) and (iii) are not applicable then Ny <iand Ny < N —i+4+1. Thus N+t—r = No+ N; < N +1 and
t —1 < r. If (i) is not applicable then by the factory definition we have r < Ri. When no one of (i),(ii)
and (i) can be applied we get that t — 1 < r < Ry, = O(k?). At this stage N = O(k®), which is O(n3/%),
and the i-th element among the surviving elements is found using any linear selection algorithm.

We now analyze the comparison complexity of the algorithm. Whenever (ii) is performed, the upper partial
order § € S llj of the list is broken. Its centre and upper elements are eliminated and its lower elements are
returned to the factory. The amortised production cost of the partial order S is at most u; comparisons
per each element above the centre.

Whenever (iii) is performed, the lowest partial order § € S~]]§ of the list is broken. Its centre and lower
elements are eliminated and its upper elements are returned to the factory. The amortised production cost
of the partial order S is at most uy comparisons per each element below the centre.

The algorithm can eliminate at most (1 — a)n elements larger than the percentile element and at most an
elements smaller than the percentile element. The total production cost of all partial orders 5" € g}f that
are eventually broken is therefore at most (aug + (1 — @)uy)-n + o(n). At most O(k?) generated partial
orders § € S are not broken. Their total production cost is O(k®). The initial production cost is O(k?).
The total number of comparisons performed by the factory is therefore (aug + (1 — a)uy)-n + o(n).

Let ¢* be the final length of the list . (when none of (i),(ii) and (iii) is applicable). The total number
of partial orders generated by Fj is at most n/k + t*, as at least k elements are eliminated whenever
a partial order is removed from L. The total cost of the binary insertions into the list L is at most
O((n/k +t*)-logn) = O((n/k + k?)logn) which is o(n). The total number of comparisons performed by
the algorithm is therefore at most (aug + (1 — @)uq)-n+ o(n), as required.]

Using the factories of Theorem 2.3, we obtain our main result:

Theorem 3.2 Any element, among n elements, can be selected using at most 2.942n + o(n) comparisons.

4 Basic principles of factory design

In this section we give some of the basic principles used to construct efficient factories. The section is
divided into three subsections. In the first subsection we remind the reader what hyperpairs are and what
their pruning cost is. In the second subsection we describe the notion of grafting. In the third subsection
we sketch the construction of the SF factories of Schonhage et al. [SPP76]. These factories are briefly
described to illustrate the basic design principles. All the results of this section, except for Theorems 4.5
and 4.6, which are new, are essentially taken from [SPP76]. Some of the proofs are therefore omitted.

Before going into details, we describe a clever accounting principle introduced by Schonhage et al. to
simplify the complexity analysis of factories. The information we care to remember on the elements that
pass through the factory can always be described using a Hasse diagram. Each comparison made by the
algorithm adds an edge to the diagram and possibly deletes some edges that become redundant. At some
stages we may decide to ‘forget’ the result of some comparisons and the edges that correspond to them are
removed from the diagram. Schonhage et al. noticed that instead of counting the number of comparisons
made, we can count the number of edges cut! To this we should add the number of edges in the eliminated
parts of the partial orders as well as the edges that remain in the factory when the production stops. The

Figure 3: Some small hyperpairs (Hy = Po1, Ha = Po110 and Hg = Po11010)-

second number, in our factories, is at most a constant times the production residue of the factory and it
can be attributed to the initial cost.

4.1 Hyperpairs

A factory usually starts the production of a partial order from Sllj by producing a large partial order, a
hyperpair, that contains a partial order from S,’j

Definition 4.1 An hyperpair P, where w is a binary string, is a finite partial order with a distinguished
element, the centre, defined recursively by (i) Py is a single element (X here stands for the empty string).
(ii) Py is obtained from two disjoint P,’s by comparing their centres and taking the larger as the new
centre. P,y is obtained in the same way but taking the smaller of the two centres as the new centre.

The Hasse diagrams of some small hyperpairs are shown in Fig. 3 (the meaning of the notation H, will
become clear later). Some basic properties of hyperpairs are given in the following LLemma.

Lemma 4.2 Let ¢ be the centre of a hyperpair P,. Let w; be the prefix of w of length ©. Let hy be the
number of 0°s in w and hy be the number of 1°s in w. Then:

1. The centre c together with the elements greater than it form a Py, with centre c. The elements

greater than ¢ form a disjoint set of hyperpairs Py, Py, ... , Pyno—1. The centre c together with the
elements smaller than it form a Pyn, with centre c. The elements smaller than ¢ form a disjoint set
of hyperpairs Py, Py, ... , Pn 1.

2. The hyperpair Py, can be parsed into its centre ¢ and a disjoint set {P,, | 0 < i < |w|} of smaller
hyperpairs. Moreover, the centre of P, is above ¢ if w11 ends with 0, and below ¢ if w;;q1 ends
with 1.

The Lemma can be easily proved by induction. Note, in particular, that if m < 2% and k < 2" then P,
contains an S7'. No edges are cut during the construction of hyperpairs. But, before outputting an S7"
contained in a hyperpair, all the edges connecting the elements of this S7* with elements not contained in
this S7* have to be cut. This rather costly operation is referred to as pruning.

The downward pruning of a hyperpair P, is the operation of removing from the hyperpair all the elements
that are not known to be smaller or equal to its centre ¢. The downward pruning cost PRy(w) of a hyperpair
P,, is the cost of this operation. This cost is equal to the number of edges of the hyperpair that connect the
centre of P, and the elements below it to the other elements of £,,. The upward pruning and the upward
pruning cost PRy(w) of a hyperpair P, are defined analogously. Let w be a binary string and let hg and
hy be the number of 0’s and 1’s in it. The pruning costs can be computed using the following recursive
relations.

Lemma 4.3 (i) PRo(A)=0 , PRo(w0)= PRy(w)+1 , PRo(wl)=2PRy(w)

Proof: A P,y is composed of two P,’s and an edge connecting their two centres. If ¢; and ¢y are the
centres of these P,’s and ¢; < ¢y then ¢; is the centre of the hyperpair FP,y. To downward prune the
hyperpair P,q, all we have to do is to downward prune the hyperpair P, whose centre is ¢; and the cut
the edge between ¢, and ¢g. The cost of this operation is therefore PRy(w)+ 1. The other cases are proved
similarly. O

We also define the amortised, per element, pruning costs of a hyperpair P,. Let hg and Ay be the number
of 0’s and 1’s in w and let h = hy + hy. We define pro(w) = PRo(w)/th and pri(w) = PRl(w)/QhU to be
the lower element pruning cost and the upper element pruning cost of w. An immediate consequence of
Lemma 4.3 is the following Lemma which is easily proved by induction.

Lemma 4.4 Let w = 172 ...74 be a binary string, let w; be the prefix of w of length i, and let ho(w;) and
hi(w;) be the number of 0’s and 1’s, respectively, in w;. Then,

pro(w) = Y7 27 pry(w) = 37 27l

7| =0 t|yi=1

Note, in particular, that if w; is a prefix of w then pro(w;) < pro(w) and pri(w;) < pri(w).

Usually, especially if grafting processes are also used, we do not want to prune all the elements above or
below the centre ¢ of a hyperpair P,. We next estimate the cost of pruning k£ elements below or above
the centre of a hyperpair P,, i.e., the cost of pruning the hyperpair P, so that all that remains of it is
its centre and k elements either above or below the centre. We show that the cost of pruning & elements
below the centre of P, is at most k-pro(w)+ h while the cost of pruning k elements above the centre of P,
is at most k-pri(w)+ h, where h is the length of w. Note that h is also the number of edges connected to
the centre ¢ of the hyperpair P,. The h terms in the above estimates will usually be negligible compared
to the other terms.

By Lemma 4.2, a hyperpair P, with centre ¢ can be parsed into hy hyperpairs {P! | 0 < i < hg — 1} whose
centres are above ¢ and hy hyperpairs {P? | 0 < i < hy — 1} whose centres are below c¢. It is easy to check
that the number of elements in P! which are above the centre of this P!, and the number of elements in P?
which are below the centre of this P?, are both 2 (this follows from the fact that the string corresponding
to the hyperpair P! contains exactly 7 0’s and that the string corresponding to the hyperpair P? contains
exactly i 1’s). To upward prune k = ko2° + k12" + -+ 4 k12"~ elements from P,,, we upward prune
all P1’s for which k; = 1 and cut the edges connecting ¢ with the centres of all the other hyperpairs. As
the string corresponding to P! is a prefix of w, the cost of upward pruning P! is at most Qi-pﬁ(w). The
cost of cutting the other edges is at most h. Thus, the cost of pruning & elements above the centre ¢ is at
most 7 =1 2Lpry(w) + h = k-pri(w) + h. All the ‘wastes’ of this process are hyperpairs whose strings are
prefixes of w and they can be used therefore for the construction of the next P,. The cost of pruning &
elements below the centre is estimated in the same way.

To produce partial orders from S~f for larger and larger values of k, we have to construct larger and larger
hyperpairs. When we design a family {F;}72, of factories, we usually choose a (semi) infinite binary
string W and in each member Fj of this family we construct a hyperpair whose string is a long enough
prefix of W. Let w; be the finite prefix of W of length . The lower and upper element pruning costs of an
infinite string W are defined as the limits pro(W) = lim ;_. pro(w;) and pri(W) = lim ;o pri(w;). We
will see in a minute that these limits do exist (they may be +o0).

Let W = 4772 ... be an infinite binary string. As before, let w; = ;1 ...7; be the prefix of W of length 7, and
let ho(w;) and hy(w;) be the number of 0’s and 1’s in w;, respectively. It is easy to check that Lemma 4.4
holds also for infinite strings.

Schénhage et al. base their factories on the infinite string W = 01(10)“ for which, as can be easily verified,
pro(W) = pri(W) = 1.5. (Here and in what follows, we let 2“ denote the infinite string obtained by
concatenating an infinite number of copies of the string z, and X“ denote the set of infinite strings
obtained by concatenating an infinite number of strings from the set X.) In our factories, we also need
hyperpairs with cheaper lower element pruning cost and, alas, more expensive upper element pruning cost,
or vice versa. For an infinite binary string W, we let pr(W) = pro(W) + pri(W). The next theorem shows
that for every string W we have pr(W) > 3. Theorem 4.6 then shows that for any real number 1 < a < 2,
there exists an infinite string W for which pro(W) = @ and pry(W) =3 — a.

Theorem 4.5 For any W € {0, 1} we have pr(W) > 3 with equality holding if and only if W € {01,10}“.

Proof: Let W be an infinite string. As before, we let w; stand for the prefix of W of length 7. If W
contains only a finite number of 0’s or a finite number of 1’s, then pr(W) = +00. Assume therefore that W
contains an infinite number of 0’s and an infinite number of 1’s. Using Lemma 4.4 we get that

p,r(w) — Z 2—h1(wi) + Z Q—ho(u}g‘) — iQ—hl(wz‘) _I_ iQ—ho(wi) _ 2 ,
t]y;=0]y =1 =1 =1

a8) ilyi=1 2= ha(ws) = 2 iyi=0 2~ho(:) = 1. Tet 2; be the index of the i-th 0 in W and let % be the index
of the ¢-th 1in W. Also let 29 = yo = 1. It is easy to check that

ZQ—hO(wi) = ZQ_i($i+1 — ‘Ii) = ZQ_imi -1.
=1 1=0 i=1

A similar relation holds of course for 3752, 2=m(%) As a consequence we get that
pr(W) = Z 27, + Z 270y — 4

This expression is clearly minimised when for every 1 < ¢ < j we have z;,y; < z;,y;. As all the elements
in the sequences {z;} and {y;} are integral and distinct, we get that the minimum is attained when for
every i > 1, either z; = 2i — 1 and y; = 2i or vice versa. This corresponds to strings from {01,10}“. It is
easy to check that for a string W € {01,10}* we have pr(W) = 3. O

Theorem 4.6 For any real number 1 < a < 2 there exists a binary sequence W € {01,10}* for which
pro(W) = a and priy(W) = 3 — a.

Proof: Let 0.a7as... be the binary representation of ¢ — 1. Let W = @jaj@asy ..., where @ is the
complement of the bit a. Using Lemma 4.4, we get that

proW)=3"270=0) =397l S 9o 1y (a-1)=a.
=1 =1

ta;=1

As W € {01,10}*, we get using the previous theorem that pry(W) =3 — a. O

Note, as an example, that if = 1.5 then a — 1 is either 0.1000...0r 0.0111...and both W = 01(10)* and
W =10(01)“ satisfy pro(W) = pri(W) = 1.5.

We are already in a position to describe a simple but complete S,];" factory. Select a string W. Construct
a hyperpair P, that contains the partial order S,]j, where w is a long enough prefix of W. Prune &
elements above and k elements below the centre of this P,. These 2k + 1 elements form a copy of § ,]j By
Lemma 4.2(ii), the remaining elements of P, form a disjoint collection of partial orders each of the form
P,,;, where w; is some prefix of w. These partial orders are used to construct a new copy of P, that will
be used to construct the next S,’;. Before we output an S,’g, we cut the 2k edges it contains. When some
part of an SF generated by the factory is recycled, the elements returned to the factory (as singletons) are
used again for the construction of hyperpairs. It is easy to check that the lower and upper element costs
of this simple factory are both ug, uy ~ pro(W)+ pri(W) +2 = pr(W) + 2. For any W € {01,10}* we get
that the lower and upper element costs are ug, uy; ~ 5.

The above factory can be turned into a green factory by noticing that the elements can be returned to
the factory as pairs and not as singletons. The edges of a generated Sf are not cut when this Sf leaves
the factory. Instead, we wait until the elements on one of the sides of this S,]C“ are eliminated by the
selection algorithm. We then cut the k edges connecting the eliminated elements to the centre. By cutting
about £/2 edges we can break the k£ non-eliminated elements into about /2 pairs which we then return
to the S}C‘“ factory. These pairs can be used for the construction of the next large hyperpair. The lower and
upper element costs of this simple green factory are ug,u; ~ pr(W) + 1.5. For any W € {01,10}* we get
ug, uy ~ 4.5. A slightly more careful consideration shows that the elements of one of the sides can actually
be recycled as quartets (Pyo’s or Pi1’s) thus cutting only k/4 edges. This gives us ug ~ 4.25 and uy ~ 4.5
or Vvice versa.

4.2 Grafting

The costs of the simple factories described above can be significantly improved using grafting. We can
cheaply find elements that are smaller than the centre, or elements that are larger than the centre (but
not both usually). The process of finding such elements is called grafting. Pruning is then used to obtain
elements on the opposite side.

We demonstrate this notion using a simple example, the grafting of singletons. Take an element z, not
contained in the hyperpair, and compare it to the centre ¢ of the hyperpair. Continue is this way, comparing
new elements to the centre, until either k& elements above the centre, or k£ elements below the centre are
found. Note that no edges are cut in this process. All the grafted elements are put in the output partial
order. The pruning process is then used to complete the partial order into an S¥. Adding this process to our
simple factory for S¥, the upper and lower element costs are reduced to: u;, ug ~ max{pro(W), pri(W)} +2
(note that now we have to prune elements from at most one side). Thus ug, u; ~ 3.5 if we take W = 01(10)*
or W = 10(01)“. This supplies a proof to Theorem 2.1. Note that the obtained factory is a degenerate
green factory as no relations are recycled. At least one side of each generated SF is composed of singletons,
and if this side is recycled, no comparisons can be reused.

4.3 The factories of Schonhage, Paterson and Pippenger

We now sketch the operation of the green factories GG obtained by Schénhage et al. [SPP76]. These
factories improve upon the simple factories described above by grafting and recycling pairs. They are
described here using a new terminology that we also use in the next sections to describe our improved
factories.

10

The factories of Schonhage et al. use two simple pair grafting processes to which we refer as the Py and P,
grafting processes. The two processes are mirror images of each other.

We start with the description of the Py grafting process. Let 2 < y be a pair. Compare 2 with ¢, the centre
of the hyperpair. If ¢ < 2 then stop. Otherwise, compare y with ¢. The three possible outcomes of this
process are (i) ¢ < 2 < y, (ii) z < y < c and (iii) 2 < ¢ < y. These three outcomes are shown on the left of
Fig. 4 and are denoted, respectively, by X2, X9 and X]. Note that in the second case, the result z < ¢ of
the first comparison becomes redundant and the edge corresponding to it, shown dashed in the figure, is
cut. Similarly, in the third case, the relation z < y becomes redundant and the corresponding edge is cut.

The P, grafting process is, as mentioned, the mirror image of the Py grafting process. Let < y be a pair.
Compare y with ¢ and if ¢ < y also compare 2 with ¢. The three possible outcomes of this process, denoted
by Y3, V¢ and Y;' are shown on the right of Fig. 4. Note that the outcome of Y;' of the Py grafting process
is identical to the outcome X| of the Py grafting process. The outcomes Yy and X3, and Y and XZ have
the same forms but different costs are associated with them. No edges are cut while producing X2 and Y,
while a single edge is cut while producing X9 and Y.

y)
¢ | c 1
y : T % y xr
)&

T

X 11 }/02 Y11

Figure 4: Possible outcomes of the simple pair grafting processes

The costs associated with each one of the outcomes obtained by these processes are summarised in Table 1.
If X is an outcome of a grafting process then gen(X) is the number of edges cut during the generation
of X, reco(X) is the number of edges cut when the lower part of the spider to which the outcome X belongs
is recycled while the upper part is eliminated, and recy(X) is defined analogously as the number of edges
cut when the upper part of X is recycled and the lower part eliminated.

Qutcome ‘ Above ‘ Below ‘ gen ‘ recy ‘ rec, ‘

X2 Po — 0 2
X9 — P 1 1 2
X Py Py 1 2 2

Qutcome ‘ Above ‘ Below ‘ gen ‘ recy ‘ recy ‘

Yy — Py 0 1 2
Y Py — 1 2 1
Yy! Py Py 1 2 2

Table 1: The costs of the Possible outcomes of the simple pair grafting processes.

The factory G}, starts by producing hyperpairs corresponding to prefixes of the string W = 01(10)“ (the
string W = 10(01)“ could also be used). Let w; be the prefix of W of length ¢ and let H; = P,,.
Some small H;’s are shown in Fig. 3. By Lemma 4.2, an Hy,, where 7 = [log(k + 1)] contains an S}.

11

After constructing an Hy,., the factory initiates the pair grafting processes. The algorithm keeps two
counters ng and nq of the number of grafted elements already obtained above and below the centre ¢ of the
hyperpair Hy,. If ng > nq then the P; grafting process is applied. If ny < ny then the P, grafting process
is applied. The grafting continues until either ng > &k or ny > k. All the elements on at least one side of
the spider are thus obtained using grafting. Missing elements on the opposite side are then obtained using
pruning. The operation of the algorithm is summarised in Fig. 5.

Construct a hyperpair Hy,, where r = [log(k + 1)].
Inilialize ng,nq < 0.

while ng < k and ny < k do
{
if ng > nq then
{
Apply the Py grafting process on a pair z < y ;
if 2 <y <cthenmng« ng+2;(*YY*)
ifce<z<ythenng «—n +2;(FYZ*)
ifz<c<ythenmge—mg+1;n «n +1;(*Y*
}
else
{
Apply the Py grafting process on a pair z < y ;
if c<z<ythenny «— ng +2;(* X2*)
if 2 <y < cthenng < ng +2; (¥ X9 *)
ifz<c<ythenmge—mg+1;mn «—mn +1;(*X%

if ng < k then prune k — ng elements below the centre ¢ of Hy,.
if m1 < k then prune k£ — ny elements above the centre ¢ of Hy,.

Figure 5: The factory of Schonhage, Paterson and Pippenger.

The intuition behind this algorithm is simple. If we already have many grafted elements below the centre,
then by comparing ¢ with the larger element y of a pair z < y, we force the adversary to select one of
the following two options: (1) Give us another pair below the centre; (2) Give us at least one additional
element above the centre. In both cases we stand to gain. In the first case, the elements below the centre
are organized in pairs, not in singletons, and their recycling cost is therefore reduced. In the second case,
we get relatively cheap elements above the centre, in addition to cheap elements that were already obtained
below the centre.

The elements above the centre of the generated SF form a collection of disjoint Pyi’s and the elements
below the centre form a collection of disjoint P;:’s. When the lower or upper part of an § ,’: is returned
to the factory, some of the existing relations among the elements returned are utilized. The amortised
analysis of the green factory G encompasses a trade-off between the cost of generating an 5 ,]j and the
utility obtained from its lower or upper parts when these parts are recycled. Although the S,]j’s generated
by the factory of Schénhage et al. may contain FPyi’s and Py:’s, where 7 > 1, their factory is only capable of

12

utilizing pairwise disjoint relations among the elements returned to it (as their grafting processes can only
use pairs). If a Py or a Pi, with ¢ > 1, is returned to the factory, it is immediately broken into 2i=1 Py’s
or Pi’s. Note that both Py and P, simply stand for a pair of elements. It can be checked, see [SPPT76],
that the upper and lower element costs of this factory are uy,ug ~ 3. This is the best factory obtained by
Schonhage, Paterson and Pippenger.

5 Advanced principles of factory design

In this section, we outline the principles used to construct our improved factories. The first of these
principles was already mentioned.

o Allowing variations in the produced partial orders.

Our factories construct partial orders from Sf The exact proportion between the number of elements
below and above the centre of a generated partial order is not fixed in advance.

¢ Recycling larger relations.

The factories of Schonhage et al. are only capable of recycling singletons and pairs (i.e., Py’s, Py’s
and Py’s). Our factories recycle larger constructs such as quartets (Ppo’s and Pi1’s), octets (Pooo’s
and Pi11’s), 16-tuples (Pogoo’s and Py111’s) as well as pairs, singletons and other structures (e.g., I3’s,
sorted lists of three elements) which are not hyperpairs (see Fig. 13 in Section 8). The non-hyperpair
constructs are obtained by the more sophisticated grafting processes used.

As pairs can be used both as Py’s and P;’s, they can be used to construct a hyperpair P,,, no matter
what the string w is. This is one of the reasons why recycling pairs is easier than recycling larger
hyperpairs. Quartets such as Pyo’s (or their equivalent Py;’s), for example, can only be used to
construct a hyperpair P, if w starts with 0. More limitations are imposed when larger hyperpairs
are considered. Non-hyperpairs cannot be used directly for the construction of hyperpairs.

To enable the recycling of larger relations, we must be able to use them for the construction of
hyperpair-like relations. We should also be able to use them for grafting.

¢ Constructing hyper-products.

As mentioned, our factories may receive partial orders that could not be used for the construction of
hyperpairs. These partial orders are used instead for the construction of hyper-products. A hyper-
product P, o I, where [is some partial order with a distinguished element, which is again called a
centre, is a hyperpair P, that each of its elements is also the centre of a disjoint copy of the partial
order I. Hyperpairs are of course special cases of hyper-products as P, 0 Py = Py, and Py,o0 P, = Ppy,.

Some of the partial orders I used for hyper-products construction are unbalanced. To counter this,
they are composed with oppositely unbalanced hyperpairs.

¢ Grafting larger relations and mass-grafting.

The factories of Schénhage et al. use a simple pair of pair grafting processes. We use more complicated
grafting processes, even for grafting pairs. For each input construct we have several different grafting
processes. Some of our grafting processes use the technique of mass production.

Our factories apply each grafting process a certain number of times and record the number of times
each outcome is obtained. From time to time, they decide to place a combination of outcomes, that
tend to balance each other nicely, in the output partial order. The factory algorithms make sure
that for any adversary strategy, if each grafting process is applied a certain number of times, then at
least one such balanced combination can be put in output partial order. The output combinations

13

are chosen to have low ‘local’ lower and upper unit costs. The maxima of all these local upper and
lower element costs are the overall upper and lower element costs of the factory.

¢ Using sub-factories.

The factories of Schénhage et al. generate only a single family of hyperpairs (corresponding to W =
01(10)“). Our factories generate several types of hyperpairs and hyper-products, as mentioned above.
The construction of each one of these hyper-products is carried out in a separate sub-production unit
that we refer to as a sub-factory. Different sub-factories also differ in the ‘raw-materials’ that they
can process.

¢ Using credits in an amortised complexity analysis.

The last principle is an accounting principle. The different constructs recycled by our factories are
of different ‘quality’. Some of them, like pairs and I3’s (sorted lists of three elements), can be used
very efficiently for the construction of partial orders from S}j Others, like Pygo’s and Pyggg’s are not
so appropriate for this process, as they are extremely unbalanced, and using them as raw materials
for the construction of partial orders from 5}; results in a much higher production cost. To equalize
these costs, each construct used by our factories is assigned a credit, which may be either positive
or negative. The credit assigned to a construct @ is denoted by credit(Q). When a construct @ is
recycled, extra credit(()) comparisons are charged to the partial order from SNf that is being broken.
These credit()) comparisons can then be deducted from the cost of the partial order from Sllj that
will be constructed using this construct ¢). High quality materials, such as I3’s, carry negative credits.
The credit attach to Singletons (P)’s) must be zero as the singletons initially fed into the factory
carry no credit.

In the next section we describe the general framework of our improved factories. This framework combines
the principles put forth in this and in the previous sections. We also give a general description of the
complexity analysis.

6 The framework of the improved factories

A factory G of the type we are using is composed of several sub-factories ¢1,...,¢,. These sub-factories are
activated in “parallel”. Fach sub-factory is either working on the construction of a partial order from S~,]f,
or waiting for additional raw materials. Whenever the construction of a partial order from S,’j in one of sub-
factories is finished, this partial order is output and the sub-factory begins to work on the construction of
a new partial order from § £. While designing such a factory we have to make sure that if enough materials
are fed into the whole factory, then at least one of its sub-factories can make progress in constructing the
next partial order from Sllj The production residue of the factory G is the sum of the production residues
of the sub-factories ¢1,..., g,.

The operation of each sub-factory is essentially independent of the operation of the other sub-factories.
Fach sub-factory processes a specific type (or in some cases, specific types) of input constructs. There
may be, for example, a Pyy-processing sub-factory, an Is-processing sub-factory and so on. A construct
recycled to the factory G is immediately fed to an appropriate sub-factory. A @-processing sub-factory (a
() sub-factory for short) may sometimes produce, as by-products, partial orders which are not @’s. These
partial orders are immediately fed into sub-factories that can consume them.

The upper and lower element costs of G are the maxima of the (amortised) upper and lower element costs
of g1,...,¢,. The credits attached to the different constructs are used to equalise the costs of the different
sub-factories, thereby reducing their maximum. The credits selected optimise a natural tradeoff between

14

the generation cost of an output partial order that contains a partial order ¢ and the cost of utilising)
when it is recycled.

The factory G can be viewed as the ‘union’ of the sub-factories ¢1,...,9,. In the next subsection we
describe the structure of a generic sub-factory. In Subsection 6.2 we then describe the cost analysis of a
generic sub-factory.

6.1 The structure of a generic sub-factory

Each sub-factory g is composed of a hyper-product generation process, a hyper-product pruning process,
a collection Ay, Ag, ..., Ay of grafting processes, and a list Cy,Cy, ..., C,, of output combinations.

The operation of each sub-factory, like the simple factories described in Section 4, is composed of three
main phases. In the first phase a large hyper-product is constructed using the hyper-product generation
process. In the second stage the grafting processes Ay, Ay, ..., A; are activated. Whenever a combination
of outcomes from the list C,Co,...,C), is encountered, this combination is placed in the output partial
order. The process continues until at least £ grafted elements are obtained either above or below the centre ¢
of the hyper-product. An appropriate number of elements, determined by the output combinations that
were used, is then pruned using the hyper-product pruning process. The factory then outputs the partial
order generated.

The hyper-product construction process of a sub-factory must be able to use all the constructs that may
be fed into the sub-factory as inputs. For each possible input construct there should also be at least
one grafting process that can utilise it. T'ypically, a sub-factory would have more than one such grafting
process for each possible input construct. This gives the sub-factory the freedom to choose different grafting
processes in different circumstances and helps balance the upper and lower costs of the sub-factory.

Each grafting process A; has a list a;1,;,...,a;;, of possible outcomes. Let ¢1(a; ;) and ¢o(a; ;) denote
the upper and lower costs of a; ; (these costs are defined in the next subsection) and let n1(a; ;) and no(a; ;)
denote the number of elements above and below ¢, respectively, in the outcome a; ;. When applying the
grafting process A; we do not know in advance which outcome will result. This is decided by the adversary.

For the accounting purposes, it is convenient to view pruning as a special grafting process. We therefore
refer to pruning as the 0-th grafting process Ay and let agg and ay; stand for lower and upper pruned
elements. The costs ¢o(@o,0) and ¢1(ap,1) are just and lower and upper element pruning costs. This special
‘grafting’ process is different from the other grafting processes in two major respects. The first is that the
algorithm, and not the adversary, chooses the outcome. The second is that elements are not pruned one at
a time. Instead, two counters are used to maintain the number of elements that should be pruned above
and below the centre. The required numbers of elements are then pruned after all the grafting processes

have finished.

An output combination C; = (r;1 X bi1,7i2 X big, ..., 755 X bis;) is a weighted list of outcomes, where
Ti1yTi2y -+, Tis, > 0 are real numbers and each b; ; is an outcome a; ;i of one of the grafting processes Ag
and Ay,..., Ay employed by the sub-factory (the use of real numbers will be justified later). Note that Ay
is the pruning process of the sub-factory, disguised as a grafting process, and an output combination may
therefore involve elements that should be obtained by pruning. In our factories most combinations involve
only two outcomes.

For each possible outcome a; ; of the grafting processes, the sub-factory maintains a counter #(a; ;) of
the number of outcomes of type a; ; which were obtained, but not yet consumed. Initially #(a; ;) = 0 for
every i > 1 and j > 1, and #(ao ;) = 2k, for j = 0,1. Recall that ago and ag; represent pruned elements.
The initial values given to #(ag) and #(ag) reflect the fact that up to 2k elements can be pruned on
either side of the hyper-product constructed by the sub-factory. Two more counters ko and ki maintain

15

the number of elements below and above the centre ¢ that were already placed in the output partial order.
The counters kg and kq are initially set to 0.

An output combination C; = (r;1 X bi1,7i2 X bia, ..., i s X bis;) can be applied if #(b; ;) > r; ; for every
1 < j < s;. If these conditions are satisfied, then r; ; copies of outcome b; ;, for 1 < j < s;, are ‘placed’
in the output partial order and all the counters are updated accordingly. The output combination C}
contains ng(C;) = Zj’zl 75, no(b; ;) elements below the centre ¢ and n,(C;) = Zj’zl ri;-n1(b; ;) elements
above the centre ¢ of the hyper-product. All the combinations used in our factories satisfy the condition
2 < no(Ci)/n1(C;) < 2. The partial orders produced by our factories are therefore of the form Sk where
k < k' <2k and k < k" < 2k, and hence members of S};. The factor 2 used in the definition of S}CC is
arbitrary and can be increased if necessary.

The sub-factory applies each grafting process A;, where 1 < ¢ < £, sufficiently many times so that there is at
least one outcome a; ; for which #(a; ;) > quota, where quota is some sufficiently large constant. A suitable
choice for quota is the maximum max; ; 7; ; of the coefficients that appear in the output combinations of
the sub-factory. The combination list of the sub-factory should have the property that if for each 1 <17 </
there exists at least one 1 < j < [; such that #(a; ;) > quota, then at least one of the output combinations
can be applied. This ensures that the sub-factory will never get ‘stuck’, no matter what the outcomes of
the grafting processes will be.

In the above description, we spoke freely about ‘placing’ r;; copies of an outcome b;; in the output
partial order, even though r; ; was not necessarily an integer. This was only done, however, for accounting
purposes. The outcomes (or fractions of outcomes) ‘placed’ in the output partial order are the outcomes
whose cost was already accounted for. At most a fixed number of outcomes of each type are unaccounted
for by this analysis. Their contribution to the cost is, therefore, negligible. These unaccounted for outcomes
can either be placed in the output partial order or be used to construct the next output partial order.

A pseudo-code describing the operation of a generic sub-factory is given in Fig. 6.

6.2 The analysis of a generic sub-factory

We now turn to the complexity analysis of a generic sub-factory. We start by defining the lower and upper

costs of each outcome a;; of the grafting processes. Let Iy,..., I, be the input constructs consumed by
the flow of the grafting process A; that produces a; ;. Let Vi,..., Vs be the constructs above the centre ¢
of the hyper-product from which the outcome a; ; is composed and let Ay,..., A; be the constructs below
the centre ¢ from which a;; is composed. Let R;,..., R, be the leftovers of this process, i.e., the parts of

Ii,..., I, that do not become parts of either V;,...,V or Ay,..., Ay, The leftovers Ry, ..., R, are recycled
to the appropriate sub-factory.

The generation cost, gen(a;;), of an outcome a;; is the number of edges cut during the generation of
an a; ;. The lower separation cost, sepy(a;;), of an a;; is the number of edges that have to be cut to
separate the constructs Aq,..., A; from the centre ¢ of the hyper-product. The lower elimination cost,
elmo(a; ;), of an a; ; is the number of edges that have to be cut to turn all the elements of Ay,..., A; into
singletons (and disconnect them from the centre). The Hasse diagram of most outcomes is acyclic and the
lower elimination cost in such a case is just the number of elements contained in the constructs Aq,..., As.
The upper separation cost, sepy(a; ;), and the upper elimination cost, elmq(a; ;), are defined analogously.

When the lower side of an outcome a; ; is recycled, the upper side is eliminated and vice versa. Hence, we
define the lower recycling cost, reco(a;,;), of the outcome a; ; as sepo(a; ;)+ elmi(a; ;). The upper recycling
cost, reci(a; ;), of a; ; is defined analogously as sepq(a; ;) + elmo(a; ;).

Each input construct I, where 1 < [< r, used in the flow of the grafting process that generates the
outcome a; ; carries a credit of credit(I;) units. These credit units help ‘finance’ the generation of a; ;. If

16

1. Generate a hyper-product with at least 2k elements on either side of its centre c.

2. Initialise the counters:
#(a; ;) — 0 forevery 1 <i<land1<j<I;;
#(aog,j) — 2k for j=0,1;
ko, k1 < 0

3. Perform the following steps until kg > k£ and k; > k.

(a) fori < 1 toldo (* Activate grafting processes *)
while max{#(a;1),...,#(a;;)} < quota activate grafting process A;.

(b) fori < 1tomdo (% Find appropriate output combinations)
if #(b;;) > r;; for 1 < j < s; then
{
#(bij) — #(bij) —rijfor 1 <j < s
ko — ko + 32535, 7ij-no(bij) ;
kl — kl + 2?:1 Ti,j'nl(bi,j)
}

4. Let po «— 2k — #(app) and p1 — 2k — #(ap1) ;
Prune po and p; elements below and above ¢, respectively.

5. Qutput the partial order and return to 1.

Figure 6: The generic sub-factory algorithm

the lower part of the partial order generated using the outcome a; ; is eventually eliminated, and its upper
part recycled, we have to attach credit(V;) credit units to each of the constructs Vi,..., V,. If, on the other
hand, the upper part is eliminated and the lower part recycled, we have to attach credit(A;) credit units
to each of the constructs Ay,...,A;. Similarly, we have to attach credit(R;) credit units to each of the
leftover Ry,..., R,. The lower cost co(a; ;) and the upper cost ¢1(a; ;) of the outcome a; ; are thus defined
as

T s P
co(a; ;) = gen(a; ;) + recy(a; ;) — Z credit(1}) + Z credit(V;) + Z credit(R;) ,
=1 =1 =1

r 13 P
ci(a; ;) = gen(a; ;) + reco(ai ;) — Z credit(I;) + Z credit(Ar) + Z credit(R;) .
=1 =1 =1

As mentioned before, our grafting procedures may use mass production. Hence, the costs gen(a;;),
reco(a; ;) and reci(a; ;) are amortised costs and Iy,..., I, are the constructs used for the construction
of a single copy of the outcome «; ;.

Let C; = (13,1 Xbig,...,7is Xbis) be an output combination. The local upper element cost, u1(C;), and
the local lower element cost, ug(C;), of the combination C; are defined, temporarily, as:

‘UO(Cz’)=iﬁ,j'Co(bz’,j)/i:Ti,j'no(bz',l) , U1(Cz’)=i:7‘@1'61@@1)/2Tz',j'nl(bz',l)-
7=1 7=1 7=1 7=1

17

This definition, however, is not completely adequate. So far, we have attached credits to individual
constructs. We would sometimes like to attach credits to combinations of constructs. It turns out that
there are some constructs that can be more efficiently utilised when constructs of a different kind are also
available. As a concrete example, we will see in the next sections that quartets (FPoo’s and Pi1’s) can be
utilised much more efficiently if some pairs (FPy’s and P;’s) are also available. More specifically, we will be
in a situation in which credit(Py) = 0 and credit(Pyy) > 0, i.e., pairs carry no credit while each quartet
on its own should carry some positive credit. In contrast, a combination composed of a quartet and pair,
and in fact a combination composed of up to a fixed constant v > 1 of quartets and of a single pair, could
be recycled without any credit, i.e., credit(FPy,vy X Pyo) = 0. The credit that needs to be attached to a
collection of constructs may therefore be smaller than the sum of the individual credits that should be
attached to each member of this collection.

The above temporary definition of uo(C;) and u1(C;) does not take such considerations into account. It is
not enough to replace the sums Y7_; credit(V;), Y"j_; credit(A;) and 3°7_, credit(R;) in the definitions of
co(a; ;) and eq(a; ;) by credit(Vy,...,Vs), credit(Aq,...,Ay) and credit(R,,. .., Ry,), respectively, as good
combinations may be formed using constructs obtained while constructing or recycling different outcomes
that participate in the output combination. As an example, pairs are perhaps obtained when the b;,’s
outcomes that participate in the output combination are recycled while quartets are perhaps obtained
when the b; 5’s outcomes are recycled. We therefore amend the definitions of uo(C;) and u1(C;) in the
following way:

{25;1 i (gen(b; ;) + recl(bm-))] — Y 1er; credit(l) + credit(V;) + credit(R;)
>t i mo(big) ’

[Zj‘zl i (gen(b; ;) + reco(bm-))] — Y1z, credit(1) + credit(A;) + credit(R;)
>y Tiyirma(big)) ’

where Z;, A;, V; and R; are the (weighted) collections of all input constructs, recycled constructs and left-

overs involved in the generation and the recycling of all the outcomes composing the combination C;. The

terms credit(V;), credit(A;) and credit(R;) represent the credits that should be attached to the collections
V;, A; and R;.

In practice, credits are attached separately to most constructs involved in the collections 4;,V; and R;.
In the factory described in Section 8, for example, the only exception to this is the grouping of pairs and
quartets together and the formation of compound constructs of the form (Fy, vy X Poo).

uo(Ci) = (1)

ur(Cs) = (2)

In general, each factory G has a set P of both simple and compound constructs to which credits are
assigned. The set P includes all the basic constructs that can be consumed and that are recycled by the
factory. Every collection 4;,V; or R; of constructs is then treated as a combination of constructs taken
from P in a way that minimises the total credit that should be attached to the collection.

The lower and upper element costs ug(g) and uq(g) of the sub-factory g with a list Cy,...,C,, of output
combinations are defined to be

ug(g) = max uo(Cy) , wur(g) = max uy(C;).

=1 =1

We are now in a position to state the following theorem.

Theorem 6.1 If G is a factory that employs the sub-factories ¢i,4ga2,...,q, then the lower and upper
element costs of the factory G are

uo(G) ~ max wo(g;) , w(G) ~ max m(g;) .

18

Proof: Let P be the set of basic and compound constructs recycled by the factory G. We assume that
for each construct from P there is at least one sub-factory among g1, ¢9,..., g, that can consume it. We
also assume that each sub-factory g¢;, where 1 < j < r, has an adequate list of output combinations, in
the sense that if each grafting process employed by ¢; is applied sufficiently many times, then at least one
output combination can be used. We also assume that if enough input constructs are fed into the factory
then at least one sub-factory can generate a partial order from S};

Each construct from P has a specific amount of credit attached to it. The credit attached to singletons
(Py’s) is zero. The singletons that are initially fed into the factory thus carry the required amount of
credit. Whenever constructs from P are recycled, we make sure that they too carry the correct credit.
Each amount of credit used in the construction of a partial order from Sllj is therefore paid for in full during
the generation of other partial orders from § ,’;

The local upper and lower element costs of a combination C; used in one of the factories were defined as
uop(C;) = ¢o(Ci)/no(C;) and w1 (C;) = ¢1(C;)/ni(C;), where ¢o(C;) and ¢1(C;) are the amortised lower and
upper cost of the combination C; (the numerators of equations (1) and (2)), and no(C;) and ny(C;) are
the number of elements in C; above and below the centre (the denominators of equations (1) and (2)). Let
Uy = max;_, up(g;) and u; = maxj_; (g;). Tt follows that for every combination C; used in one of the
sub-factories g1, ..., g, we have ug(C;) < ug and uq(C;) < uy.

Suppose that an output partial order is generated in sub-factory g;. Suppose that C;,,C;,,...,C;, are the
output combinations that contribute to this output partial order. The total amortised cost of producing
the partial order, eliminating its lower side and recycling its upper side is > j_; ¢o(Cj,). The total number
of elements below the centre of the produced partial order is > 7_; no(C;,). The amortised, per element,

cost of the produced partial order is therefore > 7 co(Cil)/Z?“:l no(Cy,). As for each 1 < [< a we

have ¢o(C;,)/no(Cy)) < up, we get that Y, Co(Cil)/27=1 no(Cy,) < up. Similarly, we also get that the
amortised, per element, upper cost of the produced partial order is at most u;.

The above accounting did not take into account the cost of breaking the unused parts of the hyper-product.
The cost of this operation is negligible, however, compared to the generation cost of the output partial
order. It also did not take into account the generation and recycling costs of the outcomes of the grafting
processes that were not used to construct the output partial order. There may however be only a constant
number of such outcomes and the costs associated with them are therefore also negligible.

As a result, we get that ug(G) = up + o(1) and u1(G) = u1 + o(1) and the theorem is proved. O

Our concrete factories are described in Sections 8 and 9. For each one of our factories we specify the
set P of basic and compound constructs used and the credit attached to each one of its elements. We
then describe the sub-factories employed by the factory. For each sub-factory we specify the hyper-product
generation process and grafting processes used, and finally its list of output combinations. We verify that
each construct from P can indeed be consumed by at least one sub-factory and that the list of output
combinations of each sub-factory is adequate. For each output combination we then compute its local lower
and upper element costs, using the definitions given in equations (1) and (2). As implied by Theorem 6.1,
the maxima of these values are then the lower and upper element costs of the whole factory. We begin the
description of our factories by describing, in the next section, the grafting processes used by them.

7 Advanced grafting processes

In this section we describe the grafting processes used by our improved factories.

19

7.1 Recursive pair grafting

The recursive pair grafting is, as its name suggests, a recursive version of the basic pair grafting procedure
described in Subsection 4.2. There are two variants of this process depending on whether the upper
elements or lower elements of pairs are compared to the centre of the hyper-product. We describe the
variant in which lower elements are compared. The other variant is symmetric.

The recursive pair grafting recursively builds hyperpairs which are dominated by the centre ¢ of the hyper-
product. A hyperpair P = P;: with centre ¢’ is dominated by c if every element of P, except possibly for ¢/,
is known to be smaller than ¢. A dominated hyperpair P,: is said to be of level 1.

The process is composed of rounds. The i-th round receives two dominated hyperpairs P' and P? (with
centres ¢; and cg, respectively) of level i and attempts to construct a dominated hyperpair of level 7 + 1.
This is done by first comparing the centres ¢; and ¢ of these two dominated hyperpairs, thus obtaining a
hyperpair P = Pjiy1. We may assume, without loss of generality, that ¢, > ¢; and ¢y is therefore the centre
of the new hyperpair formed. We then compare ¢; (i.e., not ¢g, the centre of the hyperpair P) with ¢. The
two possible outcomes are:

(1) e1 < cand P is a dominated hyperpair of level 7 + 1.

(2) ¢1 > cand P is not dominated by ¢ (as ca > ¢1 > ¢).

If (2) occurs, the process is stopped. For the purposes of G and G}, (the factories described in Section 8
and 9) we also stop the process when a dominated hyperpair Py1; of level 3 is generated. We then separate
the generated hyperpair into two hyperpairs: A dominated hyperpair P! of level 2 and a hyperpair P? of
level 2 all whose elements are known to be below the centre. The hyperpair P? is an output of this grafting
process. The dominated hyperpair P! is used to construct the next dominated hyperpair of level 3.

As described, the two hyperpairs P! and P? fed into the 0-th round of the process are two singletons ¢
and ¢3. The 0-th round then starts by comparing these two singletons thus forming a pair. Instead of
feeding the the 0-th round of the process with singletons, we can therefore feed it with pairs and simply
skip the first comparison of this round.

The recursive pair grafting process is described schematically in Fig. 7. The dashed edges in the figure
represent edges that became redundant. The four possible outcomes of this process are denoted by UZ,
U12,17 U2, and UY. These four outcomes, as well as the four outcomes L9, Ly, LS, and L§ of the symmetic
grafting process in which upper elements are compared to the centre are shown in Fig. 8.

We now turn to the cost analysis of this grafting process. As explained, we do not count the number of
comparisons made, but rather the number edges cut. Let us analyse the number of edges cut during the
i-th round of the process. Let P! and P? be the two dominated hyperairs of level 7 fed to the i-th round,
let ¢1 and ¢g be their centres and assume, without loss of generality, that the first comparison of the round
established that ¢; < cy. It is easy to verify, using induction, that 7 edges connect ¢ with elements of P!
and that i edges connect ¢ with elements of 2. Similarly, i edges connect ¢; with other elements of P!
and i edges connect cy with other elements of P?. If the i-th round results in a dominated hyperpair of
level i +1,i.e.,if ¢; < ¢ (case (1)), then the i edges connecting ¢ with the elements of P! become redundant
and are therefore cut. If on the other hand ¢; > ¢ (case (2)), then the 27 edges connecting ¢; and ¢y with
elements of their hyperpairs become redundant and therefore cut. Finally, note that an additional edge is
cut when a dominated hyperpair Py of level 3 is separated into a dominated hyperpair of a level 2 and
to an UJ. Using these obseravtions, it is easy to verify that the generation costs of the different outcomes
shown in Fig. 8 are as shown in Table 2.

20

level 1 level 2 level 3

c

...t
r

'
'

Figure 7: The recursive pair grafting process.

Outcome ‘ Above ‘ Below ‘ gen ‘ recy ‘ recy ‘
Ug Py — 0 2 1
U12,1 Py 2% Py 2 4 3
U2 Py | 2xP\,2xPy| 6 6 7
Uy — Py 4 1 4
Outcome Above ‘ Below ‘ gen ‘ recy ‘ recy ‘
LY — Py 0 1 2
Ly 2% Py Py 2 | 3 4
LS 2x Py, 2x Py Py 6 7 6
La Pyo — 4 4 1

Table 2: The costs of the different outcomes of the recursive pair grafting processes.

7.2 Balanced quartet grafting

The balanced quartet grafting process is a very straightforward process. We describe the process that
grafts Ppp’s. A symmetric process can be used for grafting Py;’s. The grating process always consumes a
single quartet and returns one of five possible outcomes.

Let u,v,w,z be the elements of a Py, where u < » and u < w < z. Start by comparing w with c. If
w > ¢, cut the edge connecting w and u. The obtained outcome is denoted by Q2. The remaining pair is
recycled. If w < ¢ then compare » and z with ¢. The four different outcomes of these comparisons give
rise to the outcomes Qé’l, Q) and Qf depicted in Fig. 9. Dashed edges in this figure represent again edges
that became redundant during the grafting process.

The elements in a Q} outcome satisfy all the relations satisfied by the elements of a QL outcome. A Q1
outcome is therefore a special case of a) outcome and we shall not consider it separately. The generation
and recycling costs of the remaining four possibilities are given in Table 3.

21

| ‘?@C ; | |
L Ly L Ly

Figure 8: Possible outcomes of recursive pair grafting.

Q3 Q' Q4 Q4 Q4

o
183
o

w

Figure 9: Possible outcomes of balanced quartet (Pyg) grafting.

7.3 Extended balanced quartet grafting

The grafting process described in this subsection is an extension of the simple grafting process described
in the previous subsection. We again describe the process that grafts Pyy’s. A symmetric process can be
used for grafting Pyq’s.

Let u, v, w, z be the elements of a Pyg, where u < v and u < w < z. The process starts again by comapring w
and ¢. If w < ¢, continue as before, obtaining one of the outcomes Qé’l, Q31 or QYshown in Fig. 9. If,
however, w > ¢, then instead of removing the redundant pair, activate the recursive pair grafting process,
as described in Subsection 7.1, on the redundant pair u < ». The four possible outcomes of this process
are shown in Fig. 10. The outcomes @3, @5, QL% and Q3 are obtained, respectively, from the U2, fil,
UZ, and Ujoutcomes of the recursive pair grafting process. The geneation and recycling costs of all the

outcomes of this grafting process are given in Table 4.

22

‘ Outcome ‘ Above ‘ Below ‘ Leftovers ‘ gen ‘ recy ‘ recy ‘

Q3 Py — Py 1 2 1

o 2xPy | Py — 2 | 3 4
Q1 Py Wi — 1 3 5
QY — Poo — 1 2)

Table 3: The costs of the different outcomes of the balanced Fyy grafting process.

Figure 10: Possible outcomes of extended balanced grafting of Py’s.

7.4 Unbalanced quartet grafting

The unbalanced quartet grafting process is another quartet grafting process used by our factories. Most of
its outcomes are less balanced than the results obtained using the two previous quartet grafting processes.
Again we describe the version of the process that grafts Py’s. A symmetric version can be used to
graft Piq’s.

Let u,v,w, 2z be the elements of a Py, where u < » and v < w < z. The two balanced quartet grafting
processes started by comparing w with ¢, the centre of the hyper-product. The unbalanced process, on the
other hand, starts by comparing » and z to ¢. The possible outcomes are shown at the top of Figure 11.

In the first two cases, i.e., if v,2 < ¢, or if 2 < ¢ < v, the grafting process stops. The obtained outcomes
are denoted, respectively, by RY and R.. The other two cases, i.e., v < ¢ < z and ¢ < v,z are more
complicated.

If v < ¢ < z, use the pair w < z, and other pairs like it, as inputs to the recursive P, grafting process, i.e.,
the mirror image of the grafting process described in Subsection 7.1. The recursive pair grafting process

‘ Qutcome ‘ Above ‘ Below ‘ gen ‘ recy ‘ recy ‘
ot — P, 2 3 4
Q3 P W 1] 35
¢ — Poo 1 2 5
a Poo — 1 4 1
QS 3x Py 2% Py 4 8 5
&0 Bx Py | 2x Py, 2x Py | 10 | 14 | 11
Qi 2x Py Py 6 5 6

Table 4: The costs of the different outcomes of the extended balanced Py grafting process.

23

results in the creation of Ly'’s, L8’s and Li’s. These Ly"’s, 18’s and L’s are composed of w and z elements
of Pyo’s. By adding to the obtained constructs the u and the » elements of the quartets from which these w
and z elements were taken, we obtain outcomes of the forms R2, R, and R} shown in Fig. 11.

Finally, if ¢ < », 2z, then the situation is identical to the situation after the first comparion of the second
round of the recursive P, grafting. By continuing the recursive Py process from this point, possibly using
another Py for which ¢ < v, z, we obtain an L%’l, LS or an L}.

The unbalanced Py grafting has eight outcomes in total, R}, R, RZ, RS,, R} and L;’l, LS and L3. The
last three outcomes are excellent outcomes as we have been able to use quartets as if they were pairs. The
costs associated with the outcomes RS, Ri, RZ, RS,, R} are given in Table 5. The costs of the outcomes
Lé’l, 1§ and L3 are as shown in Table 2.

Figure 11: Possible outcomes of unbalanced Fyy grafting.

Qutcome Above Below ‘ gen ‘ recy ‘ rec ‘
Ry — Poo 0 2 5
R Py I T2 [4
R2 2x Py, Poo, Py 3 5 9
RS, 2x Py, 2% Py | 3x Py, Poo | 9 | 11 | 15
Rj Poo 2x Py 6 6 5
Additional outcomes: Ly', LS, L{

Table 5: The costs of the different outcomes of the unbalanced Py grafting process.

24

construct ‘ credit ‘

Py 0
Po, Py 0

Poo, P11 0.1093

Ty, My, W, 0.5000
(Po,yx Poo), (P1,7 % P11) 0

Table 6: The credits attached to the constructs used by the factory G.

8 A factory with ug, uy ~ 2.955

The construction of the factory G satisfying the conditions of Theorem 2.3 is extremely involved. In this
section we give a complete description of a simplified version G} of the factory Gy, thereby proving the the
following theorem which is only slightly weaker than Theorem 2.3.

Theorem 8.1 There is a green factory G| for S}j with wg, uq ~ 2.955.

As was the case with all the other factories we considered, the initial cost and production residues of G;
are O(k?).

The constructs processed by the factory G; are shown in Fig. 12. They are singletons P)’s, pairs Py/Py’s,
quartets Poo/Pi1’s, chains of length three I3’s, and triples W3/M3’s. The factory G; also processes com-
pound constructs of the forms (Py,y X Poo) and (Py,y X P11), where v ~ 2.6603. The credits attached to
these basic and compound constructs are given in Table 6. Note that singletons have zero credit attached
to them. Note also that quartets have a positive credit attached to them while the constructs (Py, x Poo)
and (Pp,vx P11) have zero credit attached to them. This reflects the fact that quartets can be more
efficiently utilised if pairs are also supplied with them.

T
Py Py Pog Py I3 Ws M;3

Figure 12: The basic input constructs of the factory Gj.

The factories G, are composed of the following four sub-factories:

—

. (Po, vy x Poo) sub-factory.

[\l

. (P1,7x P11) sub-factory.
3. Pyo sub-factory.

4. P;1 sub-factory.

The (Py,yx Pi1) sub-factory is the mirror image of the (Py, v X Pyo) sub-factory and the Py sub-factory is
the mirror image of the Py sub-factory. The description of the (Fy,7 x Pyo) and the Pyy sub-factories are
given in the next two subsections.

25

As singletons (Py\’s) and pairs (FPy’s) can be converted to quartets (Pyo’s) at no cost, the (Py,vyx Pi1)
sub-factory may also receive singletons and pairs.

The constructs W3, M3 and I3 cannot be utilised directly by the four sub-factories mentioned above. We
therefore use the following simple process (carried out in a workshop?) to transform two Wj’s into a Py
and a Pyy:

Let x1,y1 > z1 and z9,y2 > 22 be two W3’s. Compare x1 with z2. Assume, without loss of
generality, that 21 < z9. By removing the edge 22 > 25 we obtain the Fyy 21,91, 21, 22, where
z9 < 1 and zy < 27 < 29, and the pair zy < 9.

A single edge is cut in this process. As v > 1, a combination of a Py and a Fyo can be recycled without
attaching any credit to it. Formally, this combination may be treated as }—YX (Po, v X Poo) plus (1 — ’1_1) X Py
and both these construct carry zero credit. The credits attached to two Wj’s should therefore pay for
cutting a single edge. This is exactly the case as credit(Ws3) = 0.5.

Similarly, we can transform two M3’s into a P and a P;7. An I3 may be treated as either a W3 or a Mj.

The factory G, described in this section can be improved if instead of using the above process for converting
W3’s, M3’s and I3’s into Fy’s and Pog’s or Pi1’s, we used sub-factories that could directly consume these
constructs. The improved factory G (whose construction is sketched in the next section) includes, along
with other additions and changes, a separate I3 sub-factory. The constructs /I3’s turn out to be excellent
raw materials for the construction of Sllj’s. Each I3 carries, in Gy, a credit of —0.4213 units and the presence
of I3’s among the recycled elements becomes a boon, and not a burden as in Gj..

We now describe the (Fy,y X Pyo) sub-factory and the Py, sub-factory used by the G factory.

8.1 The (Fy,vx Py) sub-factory

The input to this sub-factory consists of costructs of the form (Py,y X Pog), where v ~ 2.6603, with zero
credit attached to each one of them. As singletons (P’s) and pairs (Fy’s) can be converted to quartets
(Poo’s) at no cost, the sub-factory may also receive singletons and pairs with no credit attached to them.
Equivalently, we can say that the input to this sub-factory consists of singletons (P\’s), pairs (Fy’s) and
quartets (FPyo’s) with no credit attached to them, subject to the condition that each quartet is accompanied
by at least 2/v elements in singletons and/or pairs. The parameter v is chosen to optimise the performence
of the factory.

The (Fy, 7 x Pyo) sub-factory can also receive quartets with no accompanying singletons or pairs, provided
that each such quartet carries a credit of 1/(1 4 2v). Such a credit can pay for breaking a quartet Py
into 2v2T X (Py, 7y X Poo) which can be accepted with no credit. In the G} factory, 0.1093 ~ credit(Py) <
1/(142v) ~ 0.1582. It is therefore cheaper to feed quartets without accompanying singletons or pairs into

the Pyg sub-factory described in the next subsection.

Quartets fed into the sub-factory are used for the construction of a hyper-product which, in this case, is
simply a hyperpair. Quartets are also grafted using the balanced quartet grafting process described in
Subsection 7.2. Pairs are grafted using the recursive pair grafting process described in Subsection 7.1.

8.1.1 The hyper-product generation process of the (Fy,vx Py) sub-factory

The hyper-products used in the (Py, v x Pyo) sub-factory are simply the balanced hyperpairs constructed
according to the string W = 01(10)“. As Pyi’s and Pyo’s are in fact the same partial order (just the centre

26

is different), Pyo’s can be used for the construction of such hyperpairs. The upper and lower element
pruning costs of these hyperpairs are pri(W) = 1.5 and pro(W) = 1.5.

When r elements below the centre of a hyperpair H; are prunned, the hyperpair H; is broken into a collection
of smaller hyperpairs. This collection includes r singletons (Py’s). All the other remaining hyperpairs are
of size at least eight. A similar thing happens when r elements above the centre of a hyperpair H; are
pruned. This time the collection of smaller hyperpairs obtained includes |r/2] pairs (FPy’s). All the other
hyperpairs are of size at least four. In both cases, when r elements are pruned, about r elements are
obtained in singletons or pairs while all the other elements are conatined in hyperpairs of size at least four.
The hyperpairs of size at least four are immediately used for the construction of the next H; hyperpairs.
The singletons and pairs are too valuable to be used for this purpose. They are recycled. Their recycling
enables the recycling of quartetes, fed to the sub-factory as parts of (Py, v x Pyo)’s constructs, without the
necessity of attaching credits to them.

Ifr= Zfzo r;, where the r;’s are distinct powers of two, then pruning r elements above the centre ¢ of a
hyperpair H; results in a collection of hyperpairs Pyr1, Pyrz, . . ., Pyre all whose centres are above ¢. Similarly,
pruning r elements below the centre ¢ of H; results in a collection of hyperpairs Pyr1, Pyrs, ..., Py all whose
centres are below c¢. All but at most three of such r pruned elements are contained in quartets (we can
also assume, if convenient, that r is divisible by four in which case all the pruned elements are contained
in quartets). All but at most seven of the pruned elements are contained in octets. The sub-factories of
the factory G, are not capable of utilising octets. When pruned elements are recycled in the sub-factories
of the factory G;., we have to break them, therefore, into a collection of quartets at a cost of 1/4-th of a
comparison per element. Some of the sub-factories of the factory G, described in the next section, are
capable of utilising 16-tuples (Pyooo’s and Pi111’s). In the sub-factories of Gy, it is therefore enough to
break recycled pruned elements into Poooo’s or Pi111’s at a cost of 1/16-th of a comparison per element.
In both cases, when these quartets or 16-tuples are recycled, an appropriate amount of credit should be
attached to them.

As was already explained, it is convenient, for accounting purposes, to consider pruning as a special grafting
process. It follows from the discussion above that we can consider the pruning process of the (Fy, v x FPoo)
sub-factory as a grafting process with the characteristics described in Table 7. The pruning processes used
in other sub-factories will have other characteristics. We denote a downward pruned element by PR, and
an upwards pruned element by PRy. This notation is used in all sub-factories.

Outcome ‘ Above ‘ Below ‘ Leftovers ‘ gen ‘ recy ‘ recy ‘

PRy — | $xPn Py 1.5 1025 | 1
PR, i¥Po | — 3xPy | 15| 1 |0.25

Table 7: The costs of the pruning process of the (FPy,v x Pog) sub-factory, viewed as a grafting process.

8.1.2 The output combinations of the (P, v X FPy) sub-factory

The list of the output combinations used by the (FPy,y x Poo) sub-factory is given in Table 8. FEach
combination involves just two outcomes. The exact proportion of the two outcomes in each combination
is chosen so that the lower and upper element costs of the combination become equal, thereby minimising
their maximum.

Before analysing the costs of these combinations, we verify that if enough outcomes of each of the three
grafting processes used by the sub-factory are available, then at least one output combination can indeed
be used. Suppose that at least one outcome of each of the two recursive pair grafting processes (i.e., at least

27

Lower and Upper

Combination FElement Cost
1| (1.xQy", 0.4639% PRy) 2.9059
2 | (1L.xUZ , 2.1995% PRy) 2.9546
30 (1.xLY , 2.1995% PR;) 2.9546
4 1 (LxLy', 0.2269%xQ%) 2.9538
5 | (1.xL§ , 2.4546xQL) 2.9499
6 | (1.xL§ , 2.0254%xQL) 2.9001
70 LxIY . 0.1134xQY) 2.9546
8 | ((1L.xL§ , 1.22711xQY) 2.9517
9 | (L.xLi , 1.0000xQ%) 2.8954
10| (L.xUP,, 0.2038xQ5) 2.9538
1| (1.xU¢ , 2.2042xQ%) 2.9483
12| (1.xUP , 1.8150xQ3%) 2.9075

Table 8: The output combinations of the (P,y x Pyo) sub-factory.

one outcome of U, U}, Ui and UY and at least one outcome of L3, Ly', IS and L3) is available and that
at least nine outcomes of the Pyo-grafting process (i.e., at least nine outcomes out of Qé’l, Q1,09 and Q3)
are available. Each of the outcomes UZ, LY and Qé’l can immediately be used in conjunction with prunned
elements (combinations 1,2 or 3), as prunned elements are always available. If none of these outcomes is
available then we have at least three outcomes of either Q3, Q% or Q§, at least one of UZ,, U¢ and UY, and
at least one of Lé’l, 1§ and Lj. If three Q1’s are available we can therefore activate one of combinations 4,5
or 6. If three QY’s are available (actually two are enough here), we can activate one of combinations 7,8 or
9. Finally, if three Qs are available, we can activate one of combinations 10,11 or 12.

We now turn to the cost analysis of these combinations. We perform explicitly the computations for
combinations 2 and 7. The other computations are similar.

o (1.xUZ2,2.1995 x PRy):

The number r ~ 2.1995 of pruned elements used in conjunction with U3 is chosen so that the lower and
upper element costs of the combination would become equal. We demostrate the computation that leads
to this optimal choice of r.

Remembering that the input to the (Py,y X Pog) sub-factory consists of (FPy,v X Poo)’s, we get that the
generation of an U2 consumes one pair P and leaves ¥ x Pyo as leftovers. Similarly, the generation of
rx PRy consumes 5x Pyo and leaves rx P\ (consult Table 7) and %x Py as leftovers. The leftover singletons

are immediately joined into pairs. The leftovers from the two processes are therefore Z(1 + %) x Py and

7% Poo. Provided that (1 4+ '17) > 1, these leftovers can be recycled without having to attach any credit to
them.

The combination (1.x Ug,rx PRy) is composed of a Py above the centre and 7X P11 below the centre. As

28

no credit is attached to the inputs, nor paid for the leftovers, the local lower and upper element costs of
this combinarions are

wo(C) = 1.x(gen(U3) + rec1(UG)) + rx (gen(PRo) + reci(PRo)) + credit(Py)
A2l 1.xno(UZ) 4 r xno(PRo) ’
1.x (gen(Ug) + reco(Ug)) + rx (gen(PRo) + reco(PRo)) + & x credit(Pry)

1.xn1(UZ) 4 r xn1(PRy)

U](CQ) =

Consulting Table 2 we get that gen(Ug) = 0,reco(U3) = 2,rec;(UF) = 1 and of course that no(U3) = 0
and nq(U$) = 2. Consulting Table 7 we get that gen(PRg) = 1.5, reco(PRo) = 0.25,reci(PRo) = 1 and
of course that no(PRy) = 1 and ny(PRo) = 0. We also have credit(Py;) = 0.1093 and credit(Fy) = 0.
Substituting these values into the above expressions and equating the two costs we obtain the equation

X0+ 1) +rx(15+1) 1.x(04+2)+rx(1.54+0.25)+ 7x0.1093
1.x04+rx1 B 1.x2+rx0 '
It is easy to check that the solution of this equation is r ~ 2.1995 and the values of both the lower and
upper element costs in this case are ug(Cy) = uq(Cy) ~ 2.9546.

o (1.xLy',0.1134%xQ9):

We again compute the lower and upper element costs of a combination (1. XL%’I, rxQ9) and choose 7 so
that both these costs would become equal. The generation of an L;’l consumes 2 X Py and leaves 2y x Py
as leftovers. The generation of r x Q$ consumes r x Pyy and leaves Z x Py as leftovers. The proportion of
quartets among the leftovers is much higher than in the previous case and they cannot all be recycled by
pairing them with pairs. The %X Py can be paired with r x Pyo of the leftovers to form %x (Po,7 X Poo)
which can be recycled without credit. Credit however should be attached to the remaining (2y — r) X Py
(assuming, as will be the case, that 2y —r > 0).

The combination (1.x Lé’l, TXQQ) is composed of 2x Py above the centre and a Py and a rx Pyo below the
centre. The lower part is recycled to the (Py, 7y X Poo) sub-factory with no attached credit, as » < . The
local lower and upper element costs of this combination are therefore

_ Lox(gen(Ly") + reci(Ly")) + rx(gen
uo(Cr) = 1xng(L1
2

D+ reci(QY)) + (27 — r) x credit(Poo)
+ X no(QY)

(@
)
1.x(gen(Ly") + reco(Ly')) + rx (gen(QY) + reco(QY)) + (27 — r) x eredit(Poo)
Loxny (L") + rxn1(Q9) '

bl

u1(C7)

Substituting the values gen(Ly') = 2,reco(Ly") = 3,reci(Ly') = 4 and ng(Ly') = my(Ly') = 2, found
in Table 2, and the values gen(Q9) = 1,reco(Q9) = 2,rec1(QF) = 5 and no(QY) = 4,71(QY) = 0, found
in Table 3, together with the value credit(Poo) = 0.1093 and equating these costs, we obtain the following

equation

X(244) +rx(1+5)+(2:2.6603 — 7)-0.1093 _ 1.x(2+3) + rx(1+2) + (2-2.6603 — r)-0.1093
1.x2+rx4 N rx041.x2 '

It is easy to check that the solution of this equation is r ~ 0.1134 and the values of both the lower and
upper element costs in this case are ug(C7) = uq(C7) ~ 2.9546.

The analysis of the other ten cases is similar. Combinations 2,3 and 7 turn out to be the worst combinations
of this sub-factory.

29

8.2 The Py, sub-factory

The input to the Fyy sub-factory consists of Fyy’s. Each Fyy fed to the sub-factory carries a credit of
credit(Poo) ~ 0.1093. The sub-factory constructs hyper-products using the process described below The
sub-facroty uses the extended balanced and the unbalanced Fyy grafting processes described in Subsec-
tions 7.3 and 7.4.

8.2.1 The hyper-product generation process of the Py, sub-factory

The hyper-products used by the Pyg sub-factory are generated according to an infinite string W/ = 011W"
where W is an infinite string with pro(W"”) ~ 1.7465 and pri(W”) ~ 1.2535. Such a string exists
according to Theorem 4.6. According to Lemma 4.4 we get that pro(WV') = 1pro(W") + 1 ~ 1.4366
and that pry(W’) = 2pri(WV") + 1 ~ 1.6268. As the string W’ begins with 01, the hyperpairs constructed
according to it are indeed hyper-products of Pyy’s. We let H! denote the hyper-product generated according
the prefix of length 7 of W'.

The generation of the hyper-products H] consumes Pyg’s. Fach such Py carries a credit of credit(Pyo) =
0.1093. As we have seen in the (FPy,7y x Pyo) sub-factory, the pruning process may be viewed as a pruning
process that receives %x Pyo and returns either %x P11 below the centre, or %x Poo above the centre, as
well as a leftover of %XPO (or a Py which can be converted into %XPO at no cost). The leftover %XPO can
be joined with 3 x Pyo from the input stream to form %X (Po,v x Poo). Such constructs can be recycled
without any credit attached to them. The cost of pruning an element can therefore be ‘subsidised’ by the
credit attached to £(1+) x Poo.

‘ Outcome ‘ Above ‘ Below ‘ gen ‘ recy ‘ recy ‘
PRy — | Ix P | 14366 | 025 | 1
PR, IXPoo | — | 1.6268| 1 |0.25

Table 9: The costs of the pruning process of the Fyg sub-factory, viewed as a grafting process.

8.2.2 The output combinations of the Fyy sub-factory

The list of the output combinations used by the Py sub-factory is given in Table 10. This list includes all
the combinations that involve the outcomes Qd, Q5 and QLY of the extended balanced Pyy grafting and the
outcomes RY, RY, R%, R{, and R} of the unbalanced Py grafting. As can be seen, each of these outcomes
can be used in conjunction with pruned elements to obtain low local lower and upper element costs. The
balanced grafting process may also produce outcomes Q;’], Q3 and @Y, and the unbalaced grafting process
may also produce outcomes L;’l, L§ and L}. These outcomes are combined using the combinations of the
(Po,7x Poo) sub-factory given in Table 8. It is easy to verify that when each of the two grafting processes
is applied a sufficient number of times, at least one output combination is applicable.

The costs of all the combinations involving Q%’l, Q?} and QY and L;’l, LS and L} are strictly smaller than
their costs in the (Py,y X Pyo) sub-factory. This is due to the fact that the input constructs to the Py
sub-factory carry (positive) credits while the inputs to the (P, x Py) sub-factory do not, and due to the
fact that the effective pruning costs pro(W’) = 1.4366 — 12 credit(Pyg) ~ 1.2366 and pri(W’) ~ 1.6268 —
2 credit(Pog) ~ 1.4267 in the Py sub-factory are lower than the pruning costs pro(W) = pri(W) = 1.5
of the (Py, v x Pyo) sub-factory.

It is therefore enough to analyse the costs of the combinations listed in Table 10. We present, as examples,
the analyses of combinations 3 and 7 which, together with combinations 2,3 and 7 of the (Fy,v x Poo)

30

Lower and Upper

Combination Flement Cost
1] (1.xRS , 4.0000x PR,) 2.9267
2 [(1.xRY , 2.0000xPR;) 2.7481
30 (1.xR: |, 3.5464x PRy) 2.9546
4| (1.xRS, , 3.5456x PRy) 2.9508
5| (1.xR: , 0.4096x PR,) 2.8972
6 (1.xQa , 4.0000x PRy) 2.7366
71 (1.xQ% , 4.0000x PRy) 2.9546
8 (1.xQ , 4.0000x PRy) 2.9509
9 (1.xQ3 , 0.4131xPRo) 2.8790

" e . 1,1 1,1 .
Additional combinations involve @y, Q3, QY, Ly, LS, L3 and pruning

Table 10: The output combinations of the Pyo sub-factory.

sub-factory, determine the worst-case behaviour of the whole factory. The analysis of all the other cases is
similar.

o (1.x R%, 3.5464 x PRy):

The local lower and upper element costs of the combination (1.x RZ,rx PR,) are

up(Cs) = 1.x (gen(RE) + reci(RZ)) + v x(gen(PR1) + reci(PR1)) — (2 + 5(1 + 7)) credit(Poo)
o(C3) = 1. xng(RE) + rxno(PR1) 7

ur(Cy) = 1.x(gen(RE) + reco(RE)) + rx (gen(PRy) + reco(PR1)) — (2 + g1+ 7)) eredit(Foo)
1(C3) = L.xni(RE) + rXno(PRy) ’

No credits should be attached to recycled elements, assuming that 7 < 7, as the proportion of quartets
among the recycled elements is low enough. Solving the equation

1. (34 9) + 7% (1.6268+ 0.25) — (2 + Z(1 + 2.6603))-0.1093
1.x6+ rx0
1.x(345) + 7% (1.6268+ 1) — (2 + (1 + 2.6603))-0.1093
1.x24rx1
we get thet r ~ 3.5464 and uo(C3) = u1(C3) ~ 2.9546.

e (1.xQ5,4.0000 x PRy):

The local lower and upper element costs of the combination (1.xQ$, r x PRg) are

uo(Cr) = 1.x(gen(QS) + reci(QS)) + rx (gen(PRo) + reci(PRo)) — (24 5(1 + 7)) credit(Poo)
olCr) = T x10(Q5) + r X no(PRRo) !

n(C) = L.x(gen(Q8) + reco(Q%)) + r < (gen(PRy) 4 reco(PRo)) — (2 + 5(1 + 7)) credit(Py)
I 1.xn1(Q8) + rx no(PRo) '

31

Again, no credits should be attached to recycled elements, assuming that 7 < 7. Solving the equation

Lx (44 5)+ rx(1.4366 + 1) — (2 + (1 + 2.6603))-0.1093
1.x2+rx1
1.3 (44 8) + rx (1.4366 + 0.25) — (2 + Z(1 4 2.6603))-0.1093

1.x6+ rx0
we get thet r ~ 4.0000 and uo(C7) = u1(C7) ~ 2.9546.

This completes the description and the analysis of the factory g..

9 A factory with wug, u; ~ 2.942

In this section we sketch the construction of factories G with lower and upper element costs ug, uq ~ 2.942
whose existence was claimed in Theorem 2.3. A complete description of the factories G could be found in

[Dor95].

The general structure of the factories G is similar to the structure of the factories g,g described in the
previous section. The Gy factories recycle however many more constructs. The structures recycled by the
factories G, are the structures shown in Fig. 13 and their mirror images (compare this to the much smaller
set of constructs recycled by the factories G;, shown in Fig. 12).

The factory Gy, is composed of thirteen sub-factories: a (Fp, X Py) sub-factory, a (P, yXx Py1) sub-factory,
a Pyg sub-factory, a P;; sub-factory, a Pygg sub-factory, a P11 sub-factory, a Pygoo sub-factory, a P17 sub-
factory, a (P, Po, 3 X Pooo) sub-factory, a (Py, P1, 8 x Pi11) sub-factory, a I3 sub-factory, a /4 sub-factory
and a I5 sub-factory, where 3 ~ 1.6500 and v ~ 2.0500.

The credits attached to the basic and compound constracts are credit(P\) = 0, credit(Py) = 0, credit(Po, vx
Poo) = 0, credit(Poy) = 0.1330, credit(Pooo) = 0.8630, credit(Poooo) = 2.4847, credit(l3) = —0.4213,
credit(14) = —0.9230, credit(15) = —1.2000, credit(Ws) = 0.5000 and credit(Py, Py, fX Pooo) = 1.2259. The
credit attached to a construct is equal to the credit attached to its mirror image.

The first four sub-factories employed by G are essentially identical to the corresponding sub-factories used
by G. The main difference is that different parameters are used and that pruned elements are recycled
as 16-tuples (i.e., Pyooo’s or Pi111’s) and not as quartets. The value of the parameter v is decreased to
v =~ 2.0500. The credit attached to a quartet is increased to credit(Pyo) ~ 0.1330. These changes change
the costs of these sub-factories but the analysis is very similar to the one carried out in the previous section.
The other nine sub-factories are new.

As can be seen, there is no W3 sub-factory. As before, a workshop is used to convert two W3’s into a P
and a Py at the price of cutting a single edge.

The second output combination of the (Py,y x Pyy) sub-factory is again one of the worst cases of the
factories Gi. We describe the analysis of this case and compare it to the analysis of the same case in the
G, factories.

o (1.xU2,2.2613x PRy):

The local lower and upper element costs of the combination (1.x Ug,rx PRy) are

1.x (gen(U3) + reci(U3)) + rx (gen(PRo) + reci(PRo)) + credit(Py)
1.xno(UZ) 4+ r x no(PRo) ’
1.x (gen(UE) + reco(UZ)) + r x (gen(PRo) + reco(PRo)) + = X eredit(Poooo)
1.xn1(UZ) 4+ rxn1(PRo) .

uo(Cy)

U1(02) =

32

Py Py Pog Poago Poaoo
¢ !]%IJ

z

e Y
z

Y z
2 Y

Y z w
z

z w u

W3 I3 n Iy

Figure 13: The basic input constructs of the factory Gy.

The expression for uo(C?y) is identical to the expression for ug(Cy) in G;. The expression for u;(Cy) differs
from the corresponding expression in G, as prunned elements are now recycled as Pj111’s. The recycling
costs of prunned element are now reco(PRo) = 0.0625 and reci(PRg) = 1. Each recycled Pj111 should
carry a credit of credit(Poooo) ~ 2.4847. Substituting these updated values into the above expressions and
equating the two costs we obtain the equation

Lx(04+1)4+rx(1.54+1) 1.x(0+2)+rx(1.540.0625) + 5 x 2.4847
Lx0+rx1 B 1.x2+rx0 '
It is easy to check that the solution of this equation is r ~ 2.2613 and the values of both the lower and

upper element costs in this case are ug(C3) = uq(Cy) ~ 2.9422.

We believe that it is possible to obtain further small improvements by recycling more and yet larger
constructs and by designing a new sub-factory for each such construct or combination of constructs. The
(Po, 7y X Poo) sub-factory serves as a keystone in all our factories and in all such possible extensions. Recall
that one of the worst cases of the (P, X Pyg) sub-factory is the combination of U¢ and pruning. The
lower part of an output partial order generated using this combination is essentially a hyperpair of the
form P/, where k < k' < 2k. It is not hard to verify that even if we could recycle such a large hyperpair
without attaching any credit to it, the lower and upper element costs of this combination would still be
about ug(Cy) = u1(Cy) ~ 2.895. It seems, therefore, that some new ideas are required to obtain a major
improvement to our median selection algorithm.

10 Concluding remarks and open problems

We have improved the result of Schénhage, Paterson and Pippenger [SPP76] and obtained an algorithm
for the selection of the median that uses slightly less than 3n comparisons. Our algorithm is much more

33

complicated than the algorithm of Schénhage et al. and it is perhaps a bit disappointing that the improve-
ment obtained is so small. As mentioned at the end of the previous section, further small improvements
are possible but it seems that new ideas are required to obtain a more substantial improvement.

Further narrowing the gap between the known upper and lower bounds on the number of comparisons
needed to select the median remains a challenging open problem. Mike Paterson (personal communication)
conjectures that the number of comparisons required for selecting the median, in the worst case, is about
logy/32:n ~ 2.41n.

Schénhage, Paterson and Pippenger [SPP76] show that a conjecture of Yao [Yao74] implies the existence
of a median finding algorithm that uses at most 2.5n 4+ o(n) comparisons. Proving or disproving Yao’s
conjecture is also a challenging open problem.

The factories constructed in this paper are Sllj factories and not Sllj factories, as were the factories of
Schonhage, Paterson and Pippenger. Is it possible to improve the S}C‘“ factories of Schénhage et al. and
obtain S,]j factories whose lower and upper element costs are below 37

Schénhage et al. [SPPT76] describe non-green SF factories with unit cost Uy ~ 3.5k. Is it possible to improve
this result?

Acknowledgement

The authors would like to thank Mike Paterson for some helpful discussions and for his comments on an
earlier version of this paper.

References

[Aig82] M. Aigner. Selecting the top three elements. Discrete Applied Mathematics, 4:247-267, 1982.

[BEP*73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448-461, 1973.

[BJ85] S.W. Bent and J.W. John. Finding the median requires 2n comparisons. In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, pages
213-216, 1985.

[CM89] W. Cunto and J.I. Munro. Average case selection. Journal of the ACM, 36(2):270-279, April
1989.

[Dor95] D. Dor. Selection algorithms. PhD thesis, Department of Computer Science, Tel Aviv University,
1995.

[DZ95a] D. Dor and U. Zwick. Finding percentile elements. In Proceedings of the 3rd Israel Symposium
on Theory and Computing systems, Tel Aviv, Israel, pages 88-97, 1995. Journal version to
appear in Combinatorica.

[DZ95b] D. Dor and U. Zwick. Selecting the median. In Proceedings of the 6rd Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, California, pages 28-37, 1995.

[Eus93] J. Eusterbrock. Errata to “Selecting the top three elements” by M. Aigner: A result of a
computer-assisted proof search. Discrete Applied Mathematics, 41:131-137, 1993.

34

[FGT8)]

[FJ59]

[FR75]

[HS69]

[Hya76]
[Joh88]

[Kir81]

[Kis64]

[MP82]

[Poh72]
[RH84]

[Sch32]
[SPP76]

[SYS0]

[YaoT74]

[Yap76]

F. Fussenegger and H.N. Gabow. A counting approach to lower bounds for selection problems.

Journal of the ACM, 26(2):227-238, April 1978.

L.R. Ford and S.M. Johnson. A tournament problem. American Mathematical Monthly, 66:387—
389, 1959.

R.W. Floyd and R.L. Rivest. Expected time bounds for selection. Communication of the ACM,
18:165-173, 1975.

A. Hadian and M. Sobel. Selecting the ¢-th largest using binary errorless comparisons. Colloguia
Mathematica Societatis Jdnos Bolyai, 4:585-599, 1969.

L. Hyafil. Bounds for selection. STAM Journal on Computing, 5:109-114, 1976.

J.W. John. A new lower bound for the set-partition problem. STAM Journal on Computing,
17(4):640-647, August 1988.

D.G. Kirkpatrick. A unified lower bound for selection and set partitioning problems. Journal

of the ACM, 28:150-165, 1981.

S.S. Kislitsyn. On the selection of the k-th element of an ordered set by pairwise comparisons.

Sibirsk. Mat. Zh., 5:557-564, 1964.

[. Munro and P.V. Poblete. A lower bound for determining the median. Technical Report
Research Report CS-82-21, University of Waterloo, 1982.

I. Pohl. A sorting problem and its complexity. Communication of the ACM, 15:462-464, 1972.

P.V. Ramanan and L. Hyafil. New algorithms for selection. Journal of Algorithms, 5:557-578,
1984.

J. Schreier. On tournament elimination systems. Mathesis Polska, 7:154-160, 1932. (in Polish).

A. Schonhage, M. Paterson, and N. Pippenger. Finding the median. Journal of Computer and
System Sciences, 13:184-199, 1976.

P. Stockmeyer and F.F. Yao. On the optimality of linear merge. STAM Journal on Computing,
9:85-90, 1980.

F. Yao. On lower bounds for selection problems. Technical Report MAC TR-121, Mass. Inst.
of Technology, 1974.

C.K. Yap. New upper bounds for selection. Communication of the ACM, 19(9):501-508, Septem-
ber 1976.

35

