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Abstract

We prove that any monotone boolean function has most of its power spectrum on its Fourier
coefficients of “degree” at most O(y/n) under any product distribution. This is similar to a result
of Linial, Mansour and Nisan [LMN93] which showed that AC? functions have almost all of its
power spectrum on the coefficients of degree at most logo(l) n under the uniform distribution.
As a consequence of our result we obtain the following two corollaries:

e For any constant ¢, monotone boolean functions are PAC learnable with error € under

product distributions in time 20(vn),

e Any monotone boolean function can be approximated within ¢ under any product distri-

. . . . A(¢ 1 =
bution by a boolean circuit of size 20(ev™) and depth O(%\/ﬁ)
The learning algorithm that we present is subexponential as long as the required error is greater
than Q(1/+/n). This bound is tight in the sense that for any algorithm that runs in subexpo-
nential time, there is a monotone function that this algorithm cannot approximate with error
better than O(l/\/ﬁ) We also obtain similar learning results under any distribution D that
has subexponential “convex dimension” which is defined as the minimal number of product
distributions which contains D in their convex space.

We apply the above results for other problems in learning and complexity theory. In learning
theory we provide polynomial-time algorithms for learning some classes of monotone boolean
functions such as boolean functions with ON(log2 n) relevant variables. In complexity theory we
apply the results to some monotone NP-complete problems.

1 Introduction

In recent years, the discrete Fourier transform has emerged as one of the most versatile tools
in theoretical computer science. This technique has found various applications in areas such as
circuit complexity [KKL88, BS92], computational learning theory [LMN93, FJS91, KM91, AM91,
B92, M92, BFJ+, J94], cryptography [CKM93] and others. The first paper which introduced
the transform to the learning community was the paper of Linial, Mansour and Nisan [LMN93].
Among other results, they proved that AC? functions are PAC learnable in time n?°?(°8”) under the
uniform distribution and they showed that any AC® functions has almost all of its power spectrum
on the Fourier coefficients of polylogarithmic degree.

We prove that any monotone boolean function has most of its power spectrum on its Fourier
coefficients of degree at most O(y/n) under any product distribution. Our spectral result on mono-
tone functions implies the following two corollaries, one in learning theory and another in circuit
complexity.



e For any constant € and any product distribution, the class of monotone boolean functions is
PAC learnable with error ¢ in time 200V,

e For any constant ¢, any product distribution, and any monotone function, there exists a
boolean circuit of size 29(<V™) and depth O(y/n) that e-approximates the function.

Note that the learning complexity of our algorithm is subexponential as long as € = O~(n‘1/2).
Moreover we also show that this is the best possible error rate for any subexponential time algo-
rithm. The learning result above is the first subexponential PAC learning algorithm for monotone
boolean functions (even for monotone functions which have exponential circuit size). The second
result is the the first approximation result for monotone boolean functions using non-monotone
boolean circuit of subexponential size and sublinear depth.

We also introduce a new measure of complexity for distributions called the convex dimension
of a distribution. We prove that if a concept class is learnable under a collection of distributions
then it is also learnable under any distribution that lies in the convex space of that collection. The
convex dimension cdim(D) of a distribution D is the minimal number of product distributions such
that D is in their convex linear combination. We note that our previous results hold also for any
distribution D modulo a complexity factor of ecdim(D) and in particular, our learning algorithm is
subexponential for any distribution D with a subexponential convex dimension.

Furthermore we provide some improvements on two polynomial time monotone learning al-
gorithms. Some of our motivation for this work was Kearns and Valiant’s result on the % + i
weak learnability of any monotone function under the uniform distribution. Using a result of Kahn
et al. [KKL88], we found a weak learning algorithm under the uniform distribution with error
% — Q(lﬂf—”) Under any product distribution, we found a weak learning algorithm with error %— Z,
for any constant c.

Sakai and Maruoka [SM94] have recently shown that monotone O(logn)-term DNF is PAC
learnable under the uniform distribution. We improve their result in two ways. First we prove that
their result extends to any constant-bounded product distribution and then we give an extension to a
more general concept class. In particular, let A(k) be the class of functions of the form f(T%,...,T})
where f is a monotone function on & inputs and each T; is a monotone conjunction or disjunction.
Our theorem states that there are PAC learning algorithms for A(logn), for A(O(log®n)) and for
monotone functions which depend on O(log2 n) variables (the last two results require constant ¢).

Aiello and Mihail [AM91] proved that a convex combination of functions with bounded Fourier
spectrum is PAC learnable under the uniform distribution. We prove a similar statement by showing
that a convex combination of monotone functions is weakly PAC learnable.

We also apply some of our results to monotone graph properties. We show that there is a

boolean circuit of size 20(¥V"(") and depth O(%\/r(n)) that e-approximates any monotone graph

property with a threshold function of r(n). For example, there is a boolean circuit of size pO(+V/10gn)
that e-approximates the Hamiltonian property on random graphs G(n, p), for any p.

The impact of the discrete Fourier transform on learning theory cannot be underestimated
judging from the sequence of papers that followed the paper [LMN93]. This technique alone has
made some outstanding results possible in recent years culminating in Jackson’s result [J94] on
the PAC learnability of DNF formulas under the uniform distribution with membership queries.
As a final remark, we mention that the previous works of Kahn, Kalai and Linial [KKL88] on
coin-flipping protocols and Hancock and Mansour [HM91] on learning read-k formulas have also
considered monotone functions in relation with the Fourier transform.



2 The Learning Model

The learning model considered in this paper is the PAC model [V84] along with its weak variant
[KV8&9]. Let ), be a class of boolean functions over n variables, D, be a distribution over {0, 1}",
and f € C,. The learning algorithm has access to an example oracle FXp ;() which generates
labeled examples (a, f(a)), where a € {0,1}" is drawn according the distribution D. Given any
positive € and 4, after observing some examples, the learning algorithm must output a hypothesis
h that satisfies

Pr[D(AASf) <€ >1-34.

The running time of the learner should be polynomial in n,1/¢,In(1/6) and the size s(f) of f
(under some predetermined representation). If there is such a learning algorithm that succeeds for
all f € C, then C), is PAC learnable under distribution D. If e = 1/2 — 1/poly(n, s(f)), then C,, is
weakly PAC learnable under distribution D.

3 Preliminaries

In this section we review some notation and some standard facts about the discrete Fourier trans-
form of boolean functions.

The notation H(z) will be reserved for the binary entropy function H(z) = —zlogz — (1 —
z)log(l — z). We use the shorthand [n] for the set {1,2,...,n} and the Iversonian I[statement]
to mean 1 if the statement is true and 0 otherwise. For a € {0,1}", let a; denote the i-th bit of
a. The vector e; € {0,1}" denotes the vector with all zeros except for the i-th bit which is 1. The
Hamming weight of @, i.e. the number of ones in «a, is denoted by |a|.

Let f :{0,1}* — {—1,41} be a boolean function. Let D be a product distribution over
{0,1}* with Pr[z; = 1] = u;. Thus for @ € {0,1}” we have the distribution of « is D(a) =
[Ta,=1 #i [Ta,=0(1 = ;). The distribution D is called constant bounded if there exists a constant
¢ € (0,1) independent of n such that for all ¢ we have u; € [¢,1 — ¢].

The influence of variable z; on f (see [HM91, KKL88]) over a product distribution D is defined
as the probability that f(z) differs from f(z(")) when 2 is chosen according to D. Here 2(¥) means
z with its ¢-th bit flipped. We will use the notation Ip ;(f) to denote the above probability. Often
we will use the restriction notation of functions, fy = fl|,,—o and fi = f|,,_1. With this notation

Ini(f) = P;r[fo(y) # fi(y)]-
Notice that for any boolean function
1 2
Ini(f) = yEpl(fi = fo)],
and for any monotone boolean function
1
Ini(f) = §ED[f1 - fol-

The Fourier transform of boolean functions over product distribution is defined as follows (see
[FJS91]). First we define the inner product:

(f,9)p =)_ D(z)f(2)g(z) = Ep[fg).



Now let z;(z) = (u; — x;)/0; where ¢? = Var[z;] = p;(1 — p;). Note that z; has mean zero and
variance one (i.e. it is standard normal). Next we define the basis function

¢a(z) = [] z(2).

a;=1
These basis functions satisfy the following properties.
1. decomposable : ¢ (zy) = ¢u(z)Ps(y).
2. orthonormal :

(qba,m)D:{ a7l

otherwise

Given the orthonormality of ¢, we get the Fourier representation of any boolean function f as

=" fla)éu,

where f(a) = (f, ¢a)p = Ep[fda]. Also because of orthonormality we have Parseval’s equation:

1= B[/ = Y ().

Finally note f(On) = Ep[f], where 0,, is the n-bit all-zero vector.

For the case of D being the uniform distribution, the following notations are used: x, in place
of ¢, and f(a) in place of f(a). Note that in this case, u; = 0; = 1/2, for all .

To facilitate stating our main results we introduce the following notion of influence norm Ip (f)
of f with respect to a product distribution D:

In(/) = Ji(%ﬂm(f))?-

i=1

We will observe that in some sense the influence norm of a function determines the algorithmic
learning complexity of the standard low-degree Fourier algorithm of Linial et al [LMN93].

4 Spectral lemmas

We are now ready to a lemma which relates the influence and the Fourier transform of boolean
functions. The next lemma is a folklore result whose proof we include for completeness.

Lemma 1 For any boolean function f, for any product distribution D and for any 1 € [n],

40llp(f) = Z [ (a).

a:a;=1

Proof Without loss of generality, let + = 1. First recall that Ip 1 (f) = 1Ep[(fo — f1)?]. Applying
Parseval to the right hand side gives

b=t Y TR m=1 T Go- s

be{0,1}n—1 be{0,1}n—1



We now find some relation for fy and f;. Recall that

= 32 J(@)ou(z) = 2 FO0D)6 () + 3 F(10)n() =

g1

The last step uses the decomposable property of ¢,. From this we will get

fo=floco=Y (f(%) + %f(lb)) 61 (y).

b

and
(1

£ = Sl = 5 (700 - L2220 ) ).
This implies
Jo(b) = J(ob) + %f(lb), and  Ji(b) = J(0b) — @fub).

2]

So continuing with Ip ;(f).

In.(f) =

= ]

2]

<Ll)) (1) = ;(201)2

Let D be a product distribution. We define the Weight of @ € {0,1}” under D to be

|lal| = log H —

a—l

Z
Z( J(ob) +“1f(1b) f(Ob)Jer(lb)f
2

E

O

Note that ||a|| = |a| under the uniform distribution and that ||a|| > |a| for any (nonuniform)
product distribution.

Theorem 4.1 For any product distribution D, for any boolean function f,

> ) < ;Ip(f)di@logg%y

lal| >k

A
|

Proof Note that from Lemma 1

2402»2]1)71-(]‘) logo7t = Z Z log o7t f*(a)

i=1 a:a;=1

= > la ) > logo;!

aE{O 1}n ira;=1
= > llall*(a).
ae{0,1}»



Recall that the Cauchy-Schwartz inequality is

(£es) = (£4) (£9).

and now we let a; = 20;1p ;(f) and b; = 20; log o7 to get
ID(f)2 = 240'?][)72'(]0)2
i=1

(i, 40t p,i(f) logar )’
4570 (O'Z- log Ui_l)2
- ! 7 (Enanﬂ@)

450 (UZ' log o
2
1 ~,
> — s |k Y [a)
437 (oilogo; ) ( llall> %

which proves the first inequality. The second inequality can be seen using simple calculus since
(zlogz=1)* < e~2loge < 0.2817 for all z € [0,1/2]. O

, by Cauchy-Schwartz

5 Learning boolean functions

We recall the following connection between Fourier transform and learning (see [M94]).

Fact 1 Let D be a product distribution and let f € {—1,+1} be a boolean function. Suppose that
for some A C {0,1}" the function g salisfies g =3 ,., f(a)¢,. Then

Pr[f # sgn(g)] < Ep[(f - 9)*1 = Y_ [*(a).

ag A

Using this fact, boolean functions can be learned by collecting the Fourier coeflicients f(a)
for all @ € A. This can be done by finding an \/e/(2[A])-approximation h, of Ep[f¢.] = f(a)
with confidence 1 — 6/|A|, for every a € A. Then we define the hypothesis h = Y, 4 hacpo. This
hypothesis will be an (3,4, fz(a)—i—é)—approximation of f with probability at least 1—6 (see [M94]).
Now if 3~ .q 4 f2(a) < €/2 then the hypothesis h is an e-approximation to f. To approximate the
Fourier coeflicients we use sampling to find E[f¢,] for all @ € A. By the Hoeffding bound, if
| fdal = |¢a| < B then we will need a sample of size at least

4B%|Al, A
—— In —.
€ 0

(1)

When A is the set of all assignments of Hamming weight less than or equal to k, the above
algorithm is called the k-lowdegree Fourier algorithm. In this case

A = Xj; (7;) < (%)k (2)

The following theorem shows that the influence norm can be used to prove PAC learnability of
boolean functions under product distributions.



Theorem 5.1 For any ¢,8 > 0, any boolean function f is PAC learnable under any product dis-
tribution with error € and confidence 1 — § in time
9O (VAT 2255) 100 L.
§
Proof In Theorem 4.1, to get an error of at most €¢/2 using the hypothesis h = 2 llali<k ha®a We
must have k = 2 X 1.062Ip(f)y/n/e. Since ||a|| > |a|, we have that {a : ||a|] < k} C {a:|a| < k}

and hence we can use the k-lowdegree Fourier algorithm. From the definitions of ||a|| and ¢, we
get that

6ol = |T] 5

a;=1 o

IT (ui = 23)

a;=1

< 2"=B.

gllall

We may assume without loss of generality that all the y;’s are known (via sampling). Now by
(1),(2) and the above, the algorithm outputs a hypothesis that is an e-approximation of f with
sample size and time complexity of

VRIp() | /e 1
O( I f)]nID(f))logg. (3)

6 Learning monotone functions

In this section we apply the previous results to learning monotone boolean functions and prove
several lower bounds.

We first establish a connection between the influence and the Fourier coefficients at the unit
vectors.

Lemma 2 For any monotone boolean function f, for any product distribution D,
.f(ei) = —20:1p(f)

Proof Let D; be the induced distribution over all the variables except z;. We have the following
derivation.

fles) = Eplfo.]

= FEp FE.[fz]
— Ep, [(1 - ui)’;—jfo + ’“U: 1f1]
_ 5, [7‘“(1 - B (g, - fﬁ]

= oibp.[fo - fi].

Now recall that for monotone boolean functions 2Ip ;(f) = Ep,[fi — fo]. O



Theorem 6.1 For anye¢,d > 0, any monotone boolean function is PAC learnable under any product
distribution with error ¢ and confidence 1 — § in time

O(2/log(e/m)
Proof By Lemma 2, we note that I (f) < 1 for any monotone function f, because }_;(20,1p ; (f))2

S f(ei)2 <1 (by Parseval’s). Now we use Theorem 5.1. Since Ip(f) < 1 we have I} (f) log —— i (f) <
1, and therefore

+Ip(f) log(ev/n)

Tp(f)log = Ip(f) 1ogl,%(f)

= O(log(ey/n)).
a

Remark. Note that using our algorithm with subexponential time, the best achievable error rate
is € = ﬁ In the next theorem we show that this is the best possible error rate up to a O(log2 n)
factor.

Theorem 6.2 Any algorithm which approximates any monotone boolean function under the uni-
form distribution and which runs in subexponential time (even with time 2", for any ¢ < 1) will

output an approzimation with an error of at least 2 (m)

Proof There are at least m(n) = 2(72) > 292"V® ‘monotone boolean functions over n variables, for
some constant d < 1 (see [W87]). Suppose A is the e-approximation algorithm for any monotone
boolean function. If A outputs a hypothesis i then h can e-approximate at most

2" n
k(n) — Z ( . ) S 22 elog(e/e€)
i<e2™

boolean functions. Assuming A runs in time 2°*, for some constant ¢ < 1, then A can output at
most 227 possible hypotheses. Therefore we must have 227" k(n) > m(n) which implies

d2"
v

2" + €2" log ¢ >
€

This implies € = 2 (\/mlogn). O

The next theorem shows that there is a specific monotone function for which the low-degree
algorithm requires subexponential time to obtain an error that is at most O(1/y/n).

Theorem 6.3 The majorily function f satisfies 37,5 a(/m) fQ(a) > Q(1/y/n).

Proof Let f=MAJ(z) =1I[}.;_, z; > n/2]. Since f is a symmetric function, the influence of all
variables are equal. From the first equality in the proof of Theorem 4.1 we have

Z|a|f2 ZI ) =nli(f).



To get a bound on I;(MAJ), note that

L(MAJ) > 27" (n/Q)

v

for some constant c.

evn < Y lalf(a)?
= Y Jadf@*+ > lalf(a)

la|> g/ la]< §+/n
<n Y f(a)2+§ﬁ.
Jal> 5V
Thus we have
S fla
la|>$/n \/ﬁ

The next theorem proves the existence of a monotone function whose power spectrum is highly
concentrated in the ©(n) region.

Theorem 6.4 For any constant ¢ < 1 there is a monotone boolean function f which satisfies

Y ) za(m)

la|>en

Proof Assume for contradiction that there is some constant ¢ < 1 such that for any monotone

function f
p 1
@ <0 ().
|a§n (e) Vnlogn
But this implies that the low-degree algorithm which searches all coefficients of degree at most
cn will approximate f within an error of O(1/(y/nlogn)). This contradicts Theorem 6.2 modulo
constant factors. O

In the following we consider some lower bounds in the learning complexity for monotone boolean
functions. First, we note an application of the Vapnik-Chernovenkis dimension. Recall that if C' is
a class of boolean functions then C shatters A C {0, 1}" if for every boolean function g : A — {0, 1}
there exists a boolean function f € C such that f|4, = g. The Vapnik-Chernovenkis dimension of
C, VCdim(C), is the cardinality of the largest subset A which is shattered by C. Ehrenfeucht et
al. [EHKVS88] proved a sample complexity lower bound of

Q (1 In+ 4 lVcdz‘m(C))
€ O €

for PAC learning any class C' with error € and confidence 4. It is easy to see that the VC-dimension
of monotone functions is at least ( ,) ~ 2" /y/n. Hence we get the following easy corollary.

Corollary 1 Any PAC learning algorithm for monotone boolean functions under an arbitrary dis-
tribution with error € requires at least €2 ( e Lln ) examples.



For learning under the uniform distribution we observe the following. Note that Theorem 6.1
a subexponential PAC learning as long as the error ¢ satisfies € > n=/2. We wish to show that for
¢ € n~'? we must allow exponential running time.

Theorem 6.5 Any PAC learning algorithm for monotone boolean functlions under the uniform
distribution with error e < n='/? requires a running time of at least T'(n) = 7—;
Proof Omitted. O

Theorem 6.6 Any learning algorithm for monotone functions with a running time bounded by 2V™
cannol achieve an error smaller than Q(n=/%).

Proof Let f(n) be the smallest achievable error for learning monotone functions over n variables.
We note that with n2~¢ variables, the allowable running time is 27 ~*"* (which is subexponential).
So by Theorem 6.2, f(n>~) > Q(n~'/?). Hence, by substituting n for n°~¢, we get that f(n) >
Q(n~Y%). O

7 Approximating Monotone Boolean Functions with Circuits

In this section we study the circuit complexity of approximating monotone boolean functions using
boolean circuits (non-monotone). We show that any monotone boolean function can be approxi-
mated by a non-monotone boolean circuit of subexponential size and sublinear depth. This result
is a consequence of Theorem 4.1.

Theorem 7.1 For any monotone boolean function f on n variables and for any constant ¢ > 0,
there is a boolean circuit of size 2°0<V™1°67) and depth O(y/n) which approzimates [ to within €.

Proof Note that the low-degree algorithm outputs a hypothesis

hz)= > caxal(®),

la]<O(+/n)

where ¢, ~ E[f¢,]. Note that each ¢, can be at most 2°(=V™) bits. So essentially we need to add
m number each being m bits, where m(n) = 2°(:¥™), This problem is doable in bounded fan-in
logarithmic depth and polynomial size in the size of the input (i.e. NC*, see [BCP83]), and hence
the claim. O

8 Convexity results

In this section we describe two results with a convexity flavour. The first one states that learnability
over a collection of distributions {D;} implies the learnability over any distribution in the convex
space of {D;}. The second result claims that the weak learnability of functions which are convex
combinations of monotone boolean functions.

In the following we introduce the notion of a convex dimension of a distribution in terms of
product distributions.

10



Definition 1 Let D = {D;};c; be the set of all product distributions over {0,1}". Consider a
distribution D of the form

i=1
where each A\; € [0,1] and 5_7-, A; = 1. We call D the convex linear combination of distributions
D, ..., D,,. The convex dimension cdim(D) of D is the least m such that D can be represented as

a convex linear combination of m product distributions.

Fact 2 Any distribution D is a convex linear combination of at most 2"~ product distributions.
The convex dimension of any distribution is at least 1 and at most 2",

Lemma 3 Lel 7,...,7, € {—1,1} and d;,...,d,, € R*. If 5", d;7; < 0 then
1
> -
T;1 dl 2 zz:;dZ
Proof Since Y% dimy =3, _ydi — >, __1d; <0, wehave > __d; >3 _d;. Y __,d; <
(di+---+dy) then 3 _ d; < $(dy+---+dy,) and

d1+...+dmzzdi+ Z dy <dy+--+d,.

T;=1 T;=—1

O

Theorem 8.1 Let C be a class that is PAC learnable over the set {D;}, of distributions. Then
C' is learnable over any distribution thatl is a convezx linear combination of the D;’s.

Proof Suppose Y.y Ay = T and D = 372, \;D;. Let h; be a hypothesis over distribution D;
satisfying Prp,[hi(z) # f(z)] < €/2. Define the hypothesis H € {—1,+41} over D to be
H(z) = sign <Z )\ZDZ(m)hZ(a:)) .
i=1

Define an indicator random variable A(z) = I[H(z) = +1]. Then
P (@) # [@)] = PrY-ADi(a)hi(a) f(a) < O

= Z i AiD;(z)

z:A(z) i=1

< Z E 2X\;D;(z), by Lemma 3
2 A(e) i (o)1 ()
< 2 ) ADi(2)

T i:hi(z)Z2f(z)

= Qi Z AiD;(z)

i=1 z:h; #f(z)
Therefore, Prp[H(z) # f(z)] <e. O

Remark. We note that it is enough for a distribution D to be close to another distribution with
small convex dimension to afford a learnability result.

11



Theorem 8.2 Lel {g;}icr be a collection of monotone boolean functions and suppose 3 ;c; A =1
with A; > 0 for all i € I. Then the function g(x) = Y., Aigi(x), is weakly learnable under any
product distribution.

Proof We prove the result for uniform distribution since the proof is similar. Note that by linearity
of the Fourier transform we have g(a) = Y,.; Aifi(a). To get a handle on )77_, j(e;)* we consider
>i—1 g(e;) since by Cauchy-Schwartz we have 37_, g(e;)* > +(327_; g(e;))*. So we have

— n

Zfl(ej) = ZZAiﬁ(ej)zz/\i 2 files)
= AL =AY Y S

Taking absolute values will allow us to lower bound the above by

Yo lalfi@)? = D lal Y Aifi(a)?
iel a a i€l

S M) = NS i)

j=1 el iel  j=1

v

Now since each f; is monotone, ) 7_; fi(e;)? is large and hence > i-19(e;) is large. O

Remark. Previously Aiello and Mihail [AM91] has considered the problem of learning a convex
mixture of functions with bounded spectrum. It is interesting to note that while they require an
upper bound on the low-order spectrum, we require a lower bound on the spectrum of the unit
vectors.

9 Learning in polynomial time

Kearns and Valiant [KV89] proved that monotone boolean functions are weakly learnable under the
uniform distribution with error 1/2 —1/cn, for some constant ¢ > 1. In the following we manage to
improve slightly upon their result. In particular, there is a weak learner with error 1/2 —log” n/n in
the uniform distribution and there are weak learners with error 1/2 —¢/n, for any constant ¢, under
any product distribution. For learning under the uniform distribution we will use the following
result of Kahn et al.

Lemma 4 [KKL88] Let f € {0,1} be a boolean function with p = Pr[f(z) = 1] < 1/2. Then
S L(f)? > ep*(logn)?/n, where ¢ is an absolute constant (¢ = 1/5 works).

Remark. The restriction that Pr[f(z) = 1] < 1/2 is not a problem by a result of Ben-Or and
Linial [BL89]. They proved that for any boolean function f there is a monotone boolean function
g such that Pr[f(z) = 1] = Pr[g(z) = 1] and I(f) > I;(g), for all i € [n]. So given a monotone
function f with Pr[f(z) = 1] > 1/2, we consider its negation ¢ = —f and apply Ben-Or and Linial’s
result to g.

Theorem 9.1 There is a (1/2 + log® n/n) weak PAC learner for any monotone boolean function
under the uniform distribution.

12



Proof Since I;(f)? = f*(e;) and using Lemma 4, S27_, f*(e;) > ep*log” n/n. Combining this with
Fact 1 with A = {e; : ¢ € [n]}, we get a weak learner with the claimed accuracy. O

Theorem 9.2 For any constant k there is a weak approzimator with error ¢ = 1/2 — k/32n for
monotone boolean functions under any product distribution.

Proof By Theorem 4.1, if 37, 5% fz(a) < 1/2 then we get a 1/4-approximator by the standard
low-degree algorithm (using again the fact that ||a|| > |a|) and after appealing to the randomiz-
ing hypothesis in [BFJ4]. Otherwise 3, f%(e;) > L1/16. In this case we get a (1/2 — k/32n)-
approximator. O

A variable z; is relevant for f if there are a,b € {0,1}" with « = b @ ¢; (here & means the
bitwise exclusive OR of vectors) and f(a) # f(b). Note that z; is relevant if and only if ;(f) > 0.
The next theorem is a generalization of the recent result of Sakai and Maruoka [SM94]. Let A(k)
be the class of functions of the form f(7,...,T;), where f is an arbitrary monotone function on k
inputs and each T; is a monotone conjunction or disjunction over n variables.

Theorem 9.3 The class A(logn) is PAC learnable under constant bounded product distributions.

Proof We prove the claim for DNF under the uniform distribution since the proof for the general
case is almost identical.

Let f be a (clogn)-term DNF. We build a (4clogn)-depth decision tree T which contains
relevant variables. The first relevant variable, say z;, is found by searching a parity on a single
variable with high correlation to f. This will be the root of the decision tree. Its subtrees are
constructed recursively by applying the same idea to f|,,_o and f|,,_1.

Since each variable appearing in T has positive influence, they all appear in some term of f.
For a uniformly chosen a € {0,1}", with probability 1/2, a walk down eliminates a term of f. So
after t = 4clogn steps, by Chernoff bounds

Pr[f # constant] < exp(—t/64) = n~,

for some a > 0. This implies that after depth 4clogn, f has no more relevant variables since it is
constant.

The tree T has size at most s = n*°. So given ¢,d > 0, we search for an relevant variable with
accuracy €/s and confidence 1 — §/s. In total we suffer only a final error of € with probability at
least 1 — 4. O

Remark.  The proof of the above previous theorem can be compared to Quinlan’s induction
method of building decision trees [Q86].

Theorem 9.4 For any constant €, the class of monotone functions which depend on O (%)

variables is PAC learnable with error € under constant bounded product distributions.

Proof By the assumption, there are at most m(n) = ﬁg% variables having nonzero influence.
Note that we may ignore all the variables with zero influence since we are dealing with constant
bounded product distributions. So we can apply the low-degree algorithm which will run in time

gvmimlogm(n) — O modulo the constant e. O

Theorem 9.5 For any constant €, the class A (F;,g%) ts PAC learnable with error € under

constant bounded product distributions.
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Proof First, we claim that any term with size Q(loglogn) may be ignored without incurring an error
of more than O(1). Now observe that with this simplification, there are at most log” n/(loglogn)?
variables. This problem reduces to Theorem 9.4. O

Remark. The learning algorithms discussed so far fit into the statistical query learning model
[K93]. Hence by Kearns’ results, these algorithms are robust agains classification noise in the
example oracle.

Remark. So far we have considered monotone boolean functions. The results actually hold for
monotone functions ranging over a linear order. We only sketch the idea in the following. Let
L ={ay <a; <...<ap_1} be a linear order of size m and let f : {0,1}* — L be a monotone
function over L. For i = 1,2,...,1, where [ = [logm], let by, by,...,b; € {0,1} be bit values. Set
t= (23:1 b;277 4 27 +D)m. We will use the notation bin(i) to denote the binary representation
of 7. For ¢ > 0, define inductively the following set of boolean functions

Jorva 50(2) = sign [ fo0, 0.(z) =+1 and f(z) < a,]

Jorto i (@) = sign[fo,p, 5. () =41 and f(z) > a4

For the base case, let fi(z) = 41 be the constant function +1, where A is the empty string. Now
note the following disjoint sum.

m

[(z) = Zaﬂ[fbin(i/m)(ﬂﬁ) = +1].

i=1

So to learn f we learn each boolean function f,, for all @ € {0,1}<' (for which there are at most
2m of them). Since each f, is boolean we can apply the low-degree algorithm with error ¢/logm
and confidence §/2m to get a total error of € and a total confidence of § by the union bound.

10 Monotone graph properties

In this section we consider some monotone graph properties on the random graph G(n, p), where
n is the number of vertices of G and p is the edge existence probability. Some well-known graph
properties are monotone: the clique function C'LIQU E}} which is one iff the graph has a clique
of size at least k, the hamiltonicity function HAM, which is one iff the graph has a Hamiltonian
cycle, the planarity function PLAN AR, which is one iff the graph is planar etc. We investigate
the problem of learning these monotone graph-theoretic functions.

We adopt the probabilistic model of the random graph on n vertices (see [S94] for other models).
The random graph G = G/(n, p) is a probability distribution on the edges of the complete graph K,
on n vertices, where each edge exists independently with probability p € [0, 1]. A boolean function
[ on the edge set E(G) is called a monotone graph property if f is a monotone (or antimonotone)
boolean function over F(G).

Any monotone graph property exhibits a threshold phenomena (see [B85, S94]). Let f be a
monotone graph property on G(n,p). A function r(n) is called a threshold function for f if it
satisfies

1. if lim, o %% =0 then lim, ., Pr[f(G(n,p)) = 1] = 0.

2. if lim, i% =1 then lim, ., Pr[f(G(n,p)) =1] = 1.
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Theorem 10.1 Let f be a monotone graph property with a threshold function of r(n) (the number
of inputs to f is m = (7)). Then there is an algorithm which approximates f to within error ¢ and
which runs in time 2°CV™ ™) The error probability here is with respect to inputs x € {0,1}™ of
f generated according to G(n,p) (p might depend on n).

Remark. In the statement in the above theorem we have abused the O notation. The exponent
actually contains a factor of O(logn) which should remain even when r(n) = o(n).

Proof Note first that if lim,,_, p(n)/r(n) = 0 then the function f is either 0 or 1. So we consider
only cases where lim,,_.., p(n)/r(n) = 1.

The distribution G(n,r) is a product distribution on the inputs of f. In particular, using the
terminology from the previous sections, we have u; = r for all edges ¢ € [m]. From Theorem 4.1 we
get that

> Pl < 2o oga),

lal| >k

where 0 = r(1 —r). If lim 7 = constant then the claim is trivially true. So suppose lim,_ ., r(n) =
0 or 1. Then we may assume that \/r(1 —r) ~ 4/r and ignore the logarithmic factors. Hence to
obtain an error of ¢, we set k = @ This implies the claim modulo logarithmic factors. O

In a similar manner as in Theorem 7.1 we know that there exists a circuit of size 20(sV/mr(n))
and depth O(%\/mr(n)) which approximates any monotone graph property with threshold r(n)
under the random graph distribution G'(n, r(n)).

Next we consider two monotone graph properties which are NP-complete: CLIQU E(n, k) and
HAM (n). The clique function has a threshold of r(rn) = n=2/(*=1 while the Hamiltonicity function
has a threshold of r(n) =Inn/n.

Corollary 2 For any e, there are algorithms which approximates CLIQU E}Y and HAM,, to within
error ¢ and runs in time 200377 TY) gpd 20(+Vnn ) respectively.
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