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Abstract. We investigate the probabilistic communication complexity
(more exactly, the majority communication complexity,) of the graph ac-
cessibility problem GAP and its counting versions MOD-GAP, k& > 2.
Due to arguments concerning matrix variation ranks and certain projec-
tion reductions, we prove that, for any partition of the input variables,
GAP and MOD,,,-GAP have majority communication complexity §2(n),
where n denotes the number of nodes of the graph under consideration.
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tocols, Majority Accepting Mode, Projection Reductions, GAP, M ODy-
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Introduction

The graph accessibility problem GAP = (GAP,),en consists in the decision
whether there is a path in a given directed, acyclic n-node graph G = (V, E), V =
{1,...,n} and E C V x V, that leads from vertex 1 to vertex n. As usual, let G
be given by its adjacency matrix G = (a;;)1<i j<n,iz; With

1 if (4,§) € E;
0 otherwise.

GAP, : {0,1}"" — {0, 1}, is defined by

aij = (1(2,_]) =

(aij) — 1 if there is a path in the graph described by (a;;) from 1 to n;
ks 0 otherwise.

The major property of GAP is the following one.

Theorem 1. GAP is complete for the complexity class NL of languages accept-
able by nondeterministic logarithmic space-bounded Turing machines via logspace
reductions (see [15]), via projection translations (see [6]), and via p-projection
reductions for nonuniform NL (see [8]). D

Soon it was realized (see, e.g.,[9]) that certain modified GAPs, denoted by
MODg-GAP, k > 2, have similar properties for the complexity classes MOD—
I., defined by logarithmic space-bounded Turing machines equipped with the



counting acceptation mode MODy. Here, an input is accepted, if and only if the
number of accepting computations is not congruent 0 modulo &.

MOD;-GAP,, : {0,1}*" — {0, 1}, is defined by

(aij) — 1 the number of paths in (a;;) from 1 to n is not divisible by ;
" 0 otherwise.

A generalization of Theorem 1 yields the following theorem which is true for
the various reduction notions. (For a proof, e.g. of the p-projection completeness,
we refer to [10].)

Theorem 2. MODy-GAP s complete for MODy -1, k> 2. O

From Theorems 1 and 2 it becomes clear why it is an important goal in
complexity theory to characterize the complexity of graph accessibility prob-
lems. In [17], Yao started the study of the communication complexity of graph
problems. In [5], the deterministic communciation complexity of connectivity
and s-t-connectivity (for undirected graphs) was investigated. There the prob-
lem of proving lower bounds on the probabilistic communication complezity of
graph problems was raised. In the following we contribute to the solution of this
problem by investigating the majority communication complezity of the graph
accessibility problems GAP and MODg-GAP, k£ > 2.

Let a graph G = (V, E) be given, in arbitarily distributed form, to two proces-
sors P; and P, with unbounded computational power. In order to solve GAP or
MODg-GAP, both processors have to communicate via a common communica-
tion tape. The computation of the whole structure, which is called a communi-
cation protocol or simply a protocol, is going on in rounds. Starting with Py, the
processors write alternatingly bits on the communication tape. These bits depend
on the input available to the processor which is to move and on the bits already
written on the communication tape before. We assume without loss of generality
that in each round exactly one bit is written on the communication tape and
that all (nondeterministic) computations of a protocol are of equal length, say
L. If the last bit written on the communication tape is “1” or “0”, the particular
computation is called accepting or rejecting, respectively. (Since we shall assume
the processors to be nondeterministic, this last bit need not to coincide with the
output of the protocol.) So co-operative computations can be thought of as to
be Boolean strings. The length L of the string is the communication complexity
of the computation. (For more reading on communciation complexity we refer,
e.g., to [1], [2], [3], [4], [7]). Since our processors are nondeterministic we have to
define the output of of a protocol by means of a certain acception mode. In this
paper we consider the probabilistic majority acception mode in which a protocol
accepts an input, if the number of accepting computations is greater than the
number of rejecting ones.

We prove that all graph accessibility problems, defined before, have majority
communication complexity £2(n), where n is the number of nodes of the graph
under consideration.



Simular bounds could be proved recently for the modular communication
complexity of GAP and MOD,,-GAP [11]. For the nondeterministic communi-
cation complexity Raz and Spieker derived the lower bound §2(nloglogn) [14].
However, the optimal lower bound #(nlogn) could be proved up to now merely
for the deterministic communication complexity [5].

1 The Computational Model

In order to be able to receive our results we need a precise formal definition
of the considered computational model which was described informally already
in the introduction. Let f : S; X Sy — {0,1} be given in distributed form.
(Throughout this paper, Si and Ss are either {0,1}" or Z/mZ.) A protocol of
length L consisting of two processors P; and P, which access inputs of S7 and
S, respectively, can be described by two functions

P, S; x {0, I}SL - {0; l}a

i = 1,2. The interpretation is as follows. Let v = 5 ...v;, %% € {0,1}. If
®;(si,y) = 1, and if |y| — ¢ is even, then the corresponding processor P; is able
to write y; on the communication tape provided that it has read 1 ...7;_1 on
the communication tape and that it has s; as input. If, however, @;(s;,v) = 0,
then F; is not able to write ;.

The work of a protocol P of length L can be described in terms of two
#3851 x #So—matrices Acct and Rejf. For (s1,82) € S1 x Sa, Accfhs2 gives the
number of accepting computations of the protocol P on the input (s1, s2), and
Rejfhs2 gives the number of rejecting computations.

In order to make this approach unique, we agree that ®;(s;,y) =1, if |y| —4
is odd, forz =1, 2.

L
def .
Accfh” = E H¢(1+(]+1) mod 2) (3(1+(]+1) mod 2)y Y1+ - v5) (1)
v1--vL €401} v =1 g=1
L
P def R
Regsh52 = E H¢1+((j+1)mod2)(51+((J+1)mod2)7’Yl~~~'YJ) (2)

Y1--vp €{0,1} L, yp=0 y=1

Increasing the length of P by at most two, it can be achieved that Accfhs2 *
Rejfhs2 for all inputs (s1, s2). In the following, we assume that all protocols will
have this property.

A counting accepting mode p for a protocol P is a function p : N? — {0,1}

such that P accepts a distributed input (s1, s2) if and only if

/J(Accfhsw Rejiw) =1.
Otherwise P rejects the input. In the following we consider the probabilistic
magority accepting mode

MAJ(TL1,7’L2) =1 g ny > na,



which leads to an acception of a given input if the number of accepting compu-
tations exeeds that of rejecting computations.

Definition3. A protocol P equipped with the accepting mode MAJ is called a
majority-protocol. The majority communication complexity MAJ-Comm(f) of

a function f: Sy x Sq — {0,1} is defined by

MAJ-Comm(f) & min{ length(P) | fp=f},
where fp denotes the function computed by the majority-protocol P.

Investigating communication complexity, the appropriate type of reduction
is that of rectangular reductions which are defined as follows: Let F' = (Fy, :
I x E" = {0,1})pen and G = (Gap 1 I™ x I'™ — {0,1}),en be two decision
problems. F'is rectangularly reducible to G with respect to ¢ (denoted by F <4,
G), where ¢ : IN — IN is a nondecreasing function, if, for each n, there are two
transformations I, rp, : £* — ') such that for all x,y € X" Fan(x,y) =
Gy (1 (%), 7 (3).

Rectangular reductions can be used for proving lower bounds on the majority
communication complexity in the following way: Let ¢ : IN — IN be an unbounded
nondecreasing function. Then we define ¢(=1) by q(_l)(i) = max{j| ¢q(j) < i}.

Standard arguments yield

Lemmad4. Assume there are given two sequences of functions F = (Fan :
X0 x 3 — {0, 1 nen and G = (Gan 2 I x I — {0, 1})nen. If ¢(n) <
MAJ-Comm(F) and F <{,. G, then co¢(=")(n) < MAJ-Comm(G). O

—TEeC

One efficient way to get rectangular reductions is to work with projection
reductions [16] which are defined as follows.

Definition5. Let F = (F, : " — {0, 1}),enand G = (G, : I — {0, 1})nen-
The mapping 7, : {¥1,.. -, Ym} — {21, .., 2, 21,..., "2y} U T is called a
projection reduction from Fp, to G, if Fpp(21,...,2,) = Gu(7(y1), -+, T(Ym))-
If F,, and G, are given in distributed form,

Fop : X" x X" —{0,1} and Gap : I'™ x I'™ — {0, 1}

then a projection reduction 7, is said to respect the distribution of the variables
if
ﬂ-;l{xla"'ana_'mla"'a_'xn} - {y1;~~~;ym}
and
-1
T {Tnt1, s Tom, gty o, 90} S {Ymt1, - Yom )
A sequence 7 = (m,),, € N of reduction projections , is called a p(n)-projection
reduction and we write F' <P G if p(n) is a nondecreasing function with m <
p(n).

From Lemma 4 we immediately get



Lemma 6. Assume that we are given two sequences of functions F = (Fa, :
2" x 8" = {0,1})nen and G = (Gom : I'™ x I'™ — {0,1})men with F <2 G,
where p is increasing and ™ = (T, )nen iS5 @ sequence of projection reductions
that respects the distribution of the variables. If ¢(n) < MAJ-Comm(F), then
coq="(n) < MAJ-Comm(G). O

2 Rank Arguments for Lower Bounds

Following an approach of Mehlhorn and Schmidt, rank arguments can be used
for proving lower bounds on the length of communication protocols. Throughout
this section, f denotes a function f : S; xSy — {0,1} with N = #S5; = #5S,. M/
denotes the communication matriz of f, which is defined by Msfhs2 = f(s1,5s2).

Lemma 7. [12] Let R be any semiring. Let P be a protocol of the length L
on the input set Sy x So, #S1 = #So = N, and let Acc? and Rejt be the
N x N -matrices defined in equations 1, and 2. Then

rankpg(Acc?) < 2871 (3)
rankz(Rejf) <2871 O (4)

In order to derive lower bounds on the length of protocols equipped with the
majority acceptance mode, we adopt the concept of variation ranks of commu-
nication matrices first developed in [7].

Definition8. Two real N x N-matrices A and B with nonzero coefficients are
called order—equivalent if, for all indices i and j, a;; -b;; > 0. Let 0 be a positive
natural number, and let A be a real matriz with non-zero coefficients. The vari-
ation rank var-rank< ¢(A) is the minimum over all numbers rankg B, where B
is a N x N-matrix with b;; € {0,£1,£2,...,£0} that is order-equivalent to A.

If J denotes the N x N-matrix whose coefficients are equal to 1, then Lemma
7 implies the following corollary.

Corollary 9. log, (var—ranksgL(QMf - J)) < L, where L is the length of any
MAJ-protocol computing f. O

In order to estimate the variation rank of the matrix (2M7 — J), some linear
algebraic considerations and computations are nessecary. Recall that if RY is
the N-dimensional real vector space of column vectors and if x”y denotes the
standard scalar product, then ||x|| = VxTx is the norm induced by this scalar
product. Let A = (a;;) be areal N x N-matrix. Then [|A|| := sup{||Ax|||||x]| =

1} is the spectral norm, and [|Al|2 := />, ;|aij|? is the ls—norm of the matrix
A. The matrix A is called orthogonal if and only if A=' = AT. The following

theorem, which is well-known in linear algebra, relates these notions to each
other.



Theorem 10. 1. \/LN”AHQ < 1Al < ||1A]]2-
2. \/LNHAHQ = ||A|| of and only if A =d-U, where 0 < d € R and U is an

orthogonal matriz. O

Due to the next lemma, the variation rank of a matrix M with coefficients
from {—1, 1} can be estimated in terms of the norms of certain matrices A which
are order—equivalent to M.

Lemma 11. [7] Let M be an N x N-matriz with m; ; € {—1,1} If A = (a;;) is
any N x N-matriz over R that is order—equivalent to M with 1 < |a;;| < 8 for
. NE
all1<1i,j <N, then % < var-rank< g(M) . O
A straightforward computation using Lemma 11 together with Corollary 9
yields

Lemma12. Let A be a real matriz which is order equivalent to 2MF — J, where
1< |ai;| <6, forall 1 <i,j < N. Let A be a square submatriz of A. Then

2 A
3 logs (|:|A|:|2> —2log, 0 < MAJ-Comm(f) . O

_ Due to Theorem 10, a matrix A is optimal in Lemma 12 if A = d - U, where
U is orthogonal.

Corollary 13. If, moreover, A is assumed to be an N x NfsubmatrirNOf the
matriz A, and if there are a real number d > 0 and an orthogonal matriz U such

that A=d-U, then Llog, N —2log,# < MAJ-Comm(f). O

Using Corollary 13, we start to prove lower bounds on the length of majority
protocols for some concrete functions. We consider the MO D, -orthogonality-

test-function ORTI™ = (ORTY™), ey, m > 2, which is defined by
ORTY : (Z/mZ)" x (Z/mZ)" — {0, 1}nen,

Lif Y 2y =0inZ/mZ,

0 otherwise.

(‘Ela"'a'rnayla"'ayn)'_){

The problem is to find a quadratic submatrix M" of MORT™ with large de-
gree, and to find an optimal comparison matrix A of M’ in the sense of Corollary
13.

First we look for an appropriate submatrix M’ of M. We describe M’ by
giving its set R of column indices,

R C(Z/mZ)" = (Z/plfl>n xx (Z)phT)"

Let us assume that the elements of (Z/mZ)" and (Z/pll)n are column vec-
tors. We adopt the usual definition of Z/p'Z-linear independence. The follow-
ing lemma characterizes those sets of vectors that are linearly independent in

(Z/v'zZ)".



Lemma14. Let A = (a;;) be an integer n x k—matriz. Then the vectors

((a1; mod pl_), ..., (an; mod 7T,

forj =1,...k, are linearly independent over Z [p'Z if and only if the vectors

((a1; mod p), ..., (a,; mod p))T,

for g =1,...k, are linearly independent over Z [pZ.

Proof. (=) Assume that the columns a.;, j = 1,... k, are linearly dependent
over Z /pZ,i.e., there are integers A1, ..., Ay € Z such that, foralli € {1,...,n},
Z?zl Aja;; = 0 (mod p) and there is an jy such that A;; # 0 (mod p). Tt
follows that, for all i € {1,...,n}, Z?zlpl_l)\ja“ =0 (mod p') and there is
an jg such that p'='X;, 0 (mod p).

(<) Assume that the columns a;, j = 1,...,k, are linearly independent
over Z [pZ. Since Z /pZ is a field, there is a k x k submatrix A’ of A such that
det(A’) # 0 (mod p). Tt follows that det(A’ mod p') is a unit in Z/p'Z and

consequently A’ mod p' is an invertible matrix over Z/p'Z. Tt follows from
A (M, Ay )T =(0,0,...,007 (mod ph)
that \i =X =... =X =0 (modpl). O

Now we define on the set {x|x € (Z/p'Z)", x linearly independent} the
equivalence relation

X~y £ x and y are linearly dependent over Z/p'Z.

Let, for p; = p, R; denote an arbitrary but fixed system of representatives, and
let R el Ri1 x -+ xR,. Then we get

Corollary 15. #R = f,;::i Tt f,:::i =

. . . . . [m]
After having found via R an appropriate quadratic submatrix M’ of MORL

that is of large degree, we have to construct an optimal comparison matrix A in
the sense of Corollary 13. In order to do this, we use the following fact which is
trivial merely in the case [ = 1.

Lemma 16.
Let xq,...,Xg € (Z/pll)n be linear independent over Z /p'Z. Then

n n—k
{x|xE(Z/plZ) ,xTxlz...:xTkuO}:(Z/plZ) .
Proof. We consider the n x k matrix X = (xl, . .xk). Since Z/pZ is a field,
there is an unimodular n X n matrix U and an unimodular k x k matrix V
over Z/p'Z such that X' = (:L’;J) def U.- X .V = (Giﬁij + Zij), where the ¢;
are units in Z/p'Z, the z; are zero divisors in Z/p'Z, and §;; is Kronecker’s

function. Consequently, there are unimodular matrices U’ and V' such that

X" = (r%) def U.x.vi= (5ij)~ The claim follows now. O



Lemmal7. Let x,y € R, x#Yy.

n def -1
1-(-05 #{z | (z XZO) (zy—O}/#R_ 11171’,@—1;
n) de
2w E R | (Tx 2O ATy £0))/HR =
_1_2H11p”1+H11p”_1'D
Proof. The claims follow from Lemma 14, Lemma 16, and Corollary 15. O

Now we are able to prove a lower bound on the the majority communication
complexity of ORTI™

Proposition18. If m = pll1 -...-plr, where the p; are pairwise different prime
numbers, then, for sufficiently large n,

MAJ-Comm(ORTY") >

(p1-... pr).

Proof. We consider first the following quadratic equation and one of its solutions
t(n).

0=T2—

T+
wgn) w n)

1 - (! (n) +w(”)) wgn)
(
1

P (wi™ +wi™)
ngn)

+ VvV Dm)

The numbers wgn) were defined in Lemma 17. An easy calculation yields that the

discriminant D(®) of Equation 5 is nonnegative if and only if\/wgn) +1/ wgn) <1
The latter inequality holds. Observe that it follows easily from Lemma 17 that

2 2
limy, oo wgn) = (szl pi) , and limy, _, oo wgn) = (1 —1Ii, pl ) . Consequently,

— pi..opr—1
P1ePr

Now we define the following matrix A indexed by R x R.

limy, oo (™) , since limy, 0o D) =,

ixy = t) e pe xTy =05
y —p1... Pr otherwise,

. . . . . [m]
which is order—equivalent to the corresponding submatrix of oM ORT™ _ 1t
can be show that AT A = d . I, for sufficiently large n. The claim follows from
Corollary 13 now. O



3 Graph Accessibility Problems

In order to make graph accessibility problems tractable for the model of dis-
tributed computation, we assume that the set of input variables is partitioned
in an arbitrary way into two sets of equal size. If we speak about projection
reductions to GAPs in the sequel, we always mean ones which respect the pre-
assigned partition. As usual, the graphs under consideration are represented by
adjacency vectors of {0, 1}”2, where n denotes the number of nodes. We visualize
the graph, which is the transpose® 7%, (o) of a vector & € X", in such a way that
the edges which are not constant are drawn as thin lines and are labelled by the
corresponding predicates (see Figure 2). All other edges are drawn as thick lines.

We start with an easy graph theoretical lemma which shows that any par-
tition of the complete graph provides “enough space” to define a projection
reduction that respects a given partition.

Lemma19. [10] Let E1U E5 be any partition of the set of all edges {1,...,n} x

{1,...,n} into two sets of equal size @ Then there are subsets By C Ey
and EY C FE5 such that

- #E; > n/8 1]
— the edges from E{U EY are pairwise vertez—disjoint
— neither vertex 1 nor vertex n is incident with any edge from E{ U Ef. O

Now we give some projection reductions from =ORT™ to GAP (Proposition
20) and from =ORT!™ to MOD,,-GAP (Proposition 21) which seem to be
interesting on their own.

Proposition20. Assume that the input variable set of GAP s partitioned in
an arbitrary way into two subsets of equal size. Then -ORTH = (—-ORTwN)Nen
is reducible to GAP via a (O(n*))-projection reduction which respects that par-
titzon. O

Proof. The basic idea is very similar to that of computing parity by means of
branching programs in linear size. We have to construct a directed graph of
width 2 which counts modulo 2 for each problem instance of Z?zl t; + u; the
number of indices 7 for which t;u; = 1. O

Proposition21. Let m € IN. Assume that the input variables of MOD,,-GAP
are partitioned in an arbitrary way into two subsets of equal size. Then -ORTI™] =

(ﬂORTE(,n])NEN ts reducible to MOD,,,-GAP wvia a ((4(7;) +1)2. n4) —projection
reduction which respects that partition.

% The transpose w}, : {0,1}" — {0,1}™ of the projection reduction = is defined by
mh(u) = (mn(y1)(1), ..., 7n(ym)(1)), where u = (z1(u),..., z,(u)) € {0,1}".



Proof. Let Y U Z be the preassigned partition of the set of variables of
MOD;,»-GAP,;(,_1) and let

def m m
O N - -

be the two subsets whose existence is insured by Lemma 19. Then we have
r = [n/8 — 1| and we assume w.l.o.g. that r is divisible by (), since m is a
universal constant. The projection reduction

Topy(m) {203} — {0,1,(tl, =a),(uy=a)| v=1,.. .,r/@l),a cZ/mZ — {0}}

t

is defined by means of Figure 2 and Figure 1, in which the transpose 7r2r/(m) is
shown. '
If (t,u) € {0, 1}2r/(2.), then an easy calculation reveals that for the number
mt(t,u)
—-

1
holds

n| of directed paths from vertex 1 to vertex n in the graph = (t,u)

[1 Wt(i’l:) n:| =tTu (mod m),

where t Tu denotes the standard inner product. O
Putting altogether one obtain the announced main theorem of this paper.
Theorem 22.

1. It holds MAJ-Comm(GAP,) = 2(n).
2. Let m be an arbitrary number. Then MAJ-Comm(MOD,,,-GAP,,) = 2(n). O
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Figure 1. The graph transposed to the instance (t,u) of —~ORT™!

iy71 iu72 Z.U73 iu7(m2—1)+1 iu7(m)

l t, = ll t, = 'Zl t, =2 ltu@m—@ times l t, = m-1

ju,l ju,? jl/,3 ju,(mz_l)-l-l jl’7(m)

SR B S S

ku,l ku,? ku,S ku’(m2—1)+1 ku’(,;)
l Uy, = ll u, =X u, =2- luu(n_a ml) times l u, = m—1
11/71 ZV’Q ju,S lu’(m2—1)+1 lu,(?)

Figure 2. The subgraph G(t.,,u,) of Figure 1.
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