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Abstract
We classify the univariate functions that are relativizable closure proper-
ties of GapP, solving a problem posed by Hertrampf, Vollmer, and Wagner
(Structures ’95). We also give a simple proof of their classification of univariate
functions that are relativizable closure properties of #P.

1. Introduction

An operator H is a closure property of a class G of functions if, for all ¢ in G,
Hg belongs to G. An operator H is a relativizable closure property of a class G of
functions if, for all oracles A, for all g in G*, Hg belongs to G*.

Closure properties of #P and GapP, studied in [4, 5], yield important closure
properties of various counting classes. Hertrampf, Vollmer, and Wagner [6] considered
the special case where Hg = f o g for some function f of a single variable. It is
known [4, 5] that #P and GapP are closed under addition and under f(n) = (2),
GapP 1s also closed under subtraction. Therefore, if a univariate function f is a linear
combination of binomial coefficients then GapP is closed under f; if, in addition, f
is a positive linear combination of binomial coefficients then #P is closed under f
as well. A relativized converse is hinted at by several oracle constructions involving
counting classes (e.g., [1, 3, 2]) that hinge on the nonexistence of such polynomials.
However, an exact characterization of the univariate functions that are relativizable
closure properties of #P was unknown until Hertrampf, Vollmer, and Wagner [6]
proved that they are exactly the positive linear combinations of binomial coefficients.

In this note, we prove that the univariate functions that are relativizable closure
properties of GapP are exactly the linear combinations of binomial coefficients. In
addition, we give a simple proof of Hertrampf et al’s result for #P. (Hertrampf et al
also consider multivariate functions — see Section 4.)
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2. Terminology

We write Accept(M, z) to denote the number of accepting paths of nondeterministic
TM M on input = and Reject(M,z) to denote the number of rejecting paths of
nondeterministic TM M on input z. We write Gap(M, z) to denote Accept(M, z) —
Reject(M, z). We write NPTM as a shorthand for “nondeterministic polynomial
time-bounded Turing machine.” A function h is in GapP if there is an NPTM M
such that, for all z, h(z) = Gap(M, z). These concepts are relativized in the standard
way by allowing M access to an oracle A.

3. Results

Lemma 1 is well known [7, 2]:

Lemma 1. Let h be a degree-d polynomial, having integer coefficients, in variables

A1y, Gm. If b is a symmetric function, then there exist integers co, ..., cq such that
21<i<m @
h(ay, ... an) = Z ci( tsism T
0<i<d t

Lemma 2. Let f be a function from N to Z. If, for every oracle A and every function
g € #P* we have fog € GapP?, then there exists a finite sequence of inlegers cy, ..., ci

such that v

0<i<k

Proof:  This is a simple application of the polynomial method [2].
We define a function g4 € #P*:

ga(z) =y : ly| = |z] and y € A}].

Let f be a function from N to Z. Assume that for every A, f o gs € GapP?.
Therefore, for every oracle A, there exists an oracle NPTM M0 such that, for all z,
f(ga(z)) = Gap(M4, z). By astandard diagonalization argument it follows that there
exists a single oracle NPTM MO such that for all A, for all z, f(ga(z)) = Gap(M*, z).

Let MO run in time p(n). Let £ be the least positive integer such that for all
n > 4L pn) < 2" Let n > {. Let x = 0". Let A contain no elements of
length different from n. For 7 = 1,...,2", let a; = 1 if the yth string of length
n belongs to A, a; = 0 otherwise. By standard techniques [2], the result of each
path of M“ is obtained by evaluating a multilinear polynomial over a,, ..., ay and
identifying a result 1 with ACCEPT and —1 with REJECT; this polynomial has
integer coefficients and degree p(n) or less. Gap(M*, ) is equal to the sum of these
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multilinear polynomials, which we denote by h,(aq,...,an). Note that ga(z) =

Yi<j<an aj. Therefore, f(3o,cjcom a;) = hnla, ..., agm), so hy is a symmetric function.
Therefore, by Lemma 1, there are integers ¢i, ..., ¢y, such that
h _ Ligj<am @
(@1, oy agn) = Z I , ,
0<i<p(n) ¢

so, for 0 < N <27,

N
f(N)=h,(N) = Z c2-< ) .
0<i<p(n) !
Let Hy(N) = Socicpin & (V). Then, for 0 < N <27, f(N) = H,(N). For all n >/,
the univariate polynomials H, and H,y1 have the same value on at least 2" points

but both have degree less than 2", so H, = H,41. Consequently, H, = H, for all
n > £. Therefore for all N > 0,

fIN)=H/(N)= Y c(N>

0<i<p(4) !

We complete the proof by letting k = p(¢). i

Because every #P function is a GapP function, the following is an immediate
consequence of Lemma 2:

Theorem 3. Let f be a function from Z to Z. If, for every oracle A and every
function g € GapP? we have f o g € GapP?, then there exisls a finite sequence of
integers cq, ..., cp such that

V)= % (N)

0<i<k l

The converse follows from well known closure properties of GapP [5]. We note that
this characterization is not surprising because many oracle constructions for counting
classes hinge on the nonexistence of polynomials of this type (for example, [1, 3, 2]).

Theorem 4 ([6]). Let f be a function from N to N. If, for every oracle A and every
function g € #P4 we have fog € #P?, then there exists a finite sequence of natural
numbers cq, ..., ¢, such that

V)= 3 cz-(N).

0<i<k !



Proof:  Define g4 as in the proof of Lemma 2. Let f be a function from N to N.
Assume that for every A, f o g4 € GapP?. As in the proof of Lemma 2, there exists
an oracle NPTM MO such that for all A, for all z, f(ga(z)) = Gap(M*,z).

Let M run in time p(n). Let £ be the least positive integer such that for all n > /7,
p(n) <271 Tet n > (. TLet x = 0". Let A contain no elements of length different
from n. For j = 1,...,2" let a; = 1 if the jth string of length n belongs to A,
a; = 0 otherwise. Let @; = 1 — a;.By standard techniques [2], the result of each path
of M* is obtained by evaluating a multilinear polynomial over ay, ..., aqn, @y, ..., dyn
and identifying a result 1 with ACCEPT and 0 with REJECT; this polynomial has
nonnegative integer coefficients and degree p(n) or less. Gap(M4,z) is equal to the
sum of these multilinear polynomials, which we denote by h,(as, ..., asn). Note that
ga(z) = Yi<j<on a;. Therefore, f(X1<j<om ;) = hnla, ..., asn), s0 hy is a symmetric
function. Therefore, by Lemma 1, there are integers cy,. .., ¢,(n) such that

N o ]

0<i<p(n) !

We will show that ¢; > 0 for each 1.
The function h is a positive linear combination of terms of the form

t(al,...,agk) = H a; 1_.[52
€U eV
where UNV =0 and [UU V| < k. Call t a U-term if the product of positive literals
is taken over the set U. If we set a; = 1 iff ¢ € U, that makes t(ay,...,a9:) = 1 for
all U-terms ¢ and t(aq,...,a9:) > 0 for all other U-terms. Therefore the number of
terms with a fixed U is bounded by f(|U]). Now suppose that ¢, < 0 for some m.
That means that when we expand the terms in A we get every product of the form
—aj, - - a;,, where iy < -+ < i,,. These products can only come from U-terms where

|U| < m — 1. The total number of such terms is bounded by 3> (c;<m_1 f(z)(QZn) =
0 ((inl))v and each of those term contributes at most k& products of the desired form,
for a total of O ((mgil)) However there are (271) products of the form —a;, - -+ a;,,, so

we have (i:) =0 (( 2 )) This contradictio;n implies that ¢, > 0.

m—1
Continuing as in the proof of Lemma 2, we obtain

N
f(]V) = Z C7j< Z ) .
0<i<r(?)
Define a function Vf by (Vf)(n) = f(n+ 1) — f(n).

Corollary 5. [ is a relativizable closure property of #P iff Vf is a relativizable
closure property of #P.



On the surface, this is a surprising corollary because V is not a relativizable closure
property of #P. In contrast, the corresponding statement for GapP is obvious (even
unrelativized).

4. Extension

Finally we note that analogous results hold for functions f of any fixed number of
variables.

Theorem 6. Lel [ be a function from Z% to Z. If, for every oracle A and every
d-tuple of function g1, ..., qq in GapP? we have f o (g1,-.-,94) € GapP#, then there
exisls a posilive inleger k and collection of integers c;,..;, such that

N N
f(]\/v)z Z CZ1ld()(>
0<i1 i<k g td

Theorem 7 ([6]). Let f be a function from N* to N. If, for every oracle A and every
d-tuple of function ¢i,...,qq in #P* we have fo (91,...,94) € #PA then there exists
a positive integer k and a collection of nonnegative integers c;,..., such thal

N N
f(lV)Z Z C“Zd()()
0<in,omiq<k t td

The proofs are very similar to the ones given for univariate fs. As they involve
no new ideas, they are omitted.
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