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The complexity of a function can be measured by the number of queries (to
some oracle) needed to compute it. This notion has been studied in both a
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recursion-theoretic framework (see for example [5, 11, 17]) and a complexity-
theoretic framework (see for example [2, 12, 16]). We give several examples.

1. Let f be the function that, given a graph on n vertices, outputs the
number of colors needed to color it. Krentel [16] showed that this
function can be computed with O(log n) queries to SAT in polynomial
time but cannot be computed with substantially fewer queries to any
oracle in polynomial time (unless P = NP).

2. Let A be a nonrecursive set and a € NV'. Let #2 be the function that,
given (z1,...,x,), returns |A N {z1,...,2,}| (the number of elements
that are in A). It is known that there are sets A, X such that #2 can be
computed with [log(a + 1)] —1 queries to X. Kummer [17] showed that
this is optimal, i.e., if #4 can be computed with [log(a + 1)] queries
to some X then A is recursive.

The following functions have been studied extensively in this light:

Definition 1.1 Let a € / and A C V. The function F2 : N'* — {0,1}“ is
defined as
Ff(:vl, cey) = Alzy) - Az,).

The function ## is defined as
#May, . y) = A0 {2y, 2}

The function F2 is interesting because it has a certain intuitive appeal
and most lower bounds have reduced to lower bounds for F#. We investigate
the complexity of computing an approximation to F4. To do this we define
a class of functions freq{;}a such that every element of freq,f}a approximates
FA,

Notation: If 0,7 are strings of the same length then o = 7 means that o
and 7 differ in at most a places.

Definition 1.2 Let a,b € N be such that 1 < b < a, and let A C N.
frquj}a is the set of all functions f that map N* to {0,1}* such that, for
all z1,..., 24, f(x1,...,2,) and F2(zy,..., x,) agree in at least b places (i.e.,
f(zy,... 2q) =27 FA(2y,...,2,)). In prose (though not in theorems) we
will informally treat frqu}a as just one function: an upper bound on the
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complexity of frqu‘}a means at least one function in freq,f}a has that com-
plexity (or less), and a lower bound on the complexity of freqlfa means that
every functions in f'r'eq{:}a has that complexity (or greater).

Note: The set freq,fa was first defined by Rose [21] and has a long history.

For more information see [13].

We investigate the complexity of freq,fa for several sets (or types of sets)
A and parameters a, b. Our measure of complexity of a function is the number
of queries needed to compute it. Most of our results are recursion-theoretic;
however, some of our techniques also apply in a polynomial framework.

Information about the complexity of F4 will help in our study. However
the complexity of frqu‘}a is a harder question. We describe the difference.
Assume that, given (z,...,2,), one could produce (the index for) an r.e. set
W C {0,1}* such that F(xy,...,2,) € W. Tt has been shown (Lemma 2.4)
that the size of W completely determines the complexity of F4. Does knowing
W help us to compute freqb*}a(xl, ..., 24)7 From W we can obtain W', the
set of vectors that differ from elements of W by at most a — b bits. Formally

W' ={b: (3¢ W)[b=""4}.

It is easy to see that freq(fa(:vl, ...,z,) € W' The complexity of freq(fa is
completely determined by |W’|. Unfortunately it is impossible to determine
|[W'| from |W|. To determine |[W’'| we need to know the very structure of
W. This is the key reason that F2 is better understood than freq{;}a: the
complexity of F4 is related to the cardinality of W while the complexity
of frqu‘}a is related to the structure of W. One theme of this paper will be
that the more we know about W the better we understand the complexity
of f'req{;}a.

In Section 3 we prove a general lower bound on the complexity of f'r'eq{;}a
(for nonrecursive A). Tt is based on a general lower bound for #2. Tn Sec-
tion 4 we obtain exact bounds for the complexity of frqu:‘a In Section 5 we
link the complexity of frquf}a to the structure of the set W mentioned above.
This will allow us to establish the exact complexity of freq;f}a for certain sets
A. These exact complexities depend on functions from coding theory. In
Section 6 we use our proof techniques to obtain results in complexity theory.

Assuming P # NP we determine the exact query complexity of frqu’sz.



2 Definitions, Conventions and useful Lem-
mas

Notation: We use the following notation throughout this paper.

1. My, My, ... 1s a standard effective list of Turing machines.
2. JW(E), Ml(), ... 1s a standard effective list of oracle Turing machines.

3. W. is the domain of M.. Hence Wy, Wy, ... is an effective list of all r.e.
sets.

4. K ={e: M.(e) |}
5. If AC N then A" = {e: MA(e) |}.
6. D. = {¢: the ith bit of e is 1}. Hence Dg, Dy, ... is a list of all finite

sets.

Convention: Technically M, takes elements of A as input and returns

elements of A/ as output; and W., D. € N. We will sometimes need to use
N (or {0,1}*) instead of A/, In these cases we implicitly assume that there
is a fixed recursive bijection between A" and N'* ({0,1}*) and code elements

of N* ({0,1}*) into N accordingly.

Definition 2.1 Let a € N and let X C N. FQ(a, X) is the collection of all
total functions g such that g is recursive in X via an algorithm that makes at
most a sequential queries to X. FQC(a, X) is the collection of all functions
g such that ¢ is recursive in X via an algorithm MO such that (1) for all
x, M (x) makes at most a sequential queries to X, and (2) for all z,Y the
computation MY (z) converges.

The concept of bounded queries is tied to enumerability. Every possible
sequence of query answers leads to a possible answer. Hence the fewer queries,
the less possible answers.



Definition 2.2 Let a € N and f be any total function. f is a-enumerable
if there exists a recursive function g such that, for all z, [Wy4)| < a and
f(z) € Wy(z). We denote this by f € EN(a). (This concept first appeared in
a recursion-theoretic framework in [3]. The name “enumerable” is from [7]
where it was defined in a polynomial bounded framework.)

If f is a-enumerable then, given z, we can find ¢g(z) and try to enumerate
Wiy looking for possibilities for f(z). While doing this we do not know
when W) will have stopped generating possibilities. The next definition
imposes a stronger condition of enumeration. In this scenario we are given
an index of a set of possibilities as an index of a finite set. Hence we can
obtain all the possibilities and know we have them all.

Definition 2.3 Let ¢ € N and [ be any total function. [ is strongly a-
enumerable if there exists a recursive function g such that, for all z, | D] <

a and f(x) € Dyy. We denote this by f € SEN(a).

Lemma 2.4 ([3, 5]) Lel a € N and let [ be any function.

1. (3X)[f € FQ(a, X)) iff f € EN(2%).
2. (AX)[f € FQC(a, X)] iff f € SEN(2).

In this paper we will prove upper and lower bounds in terms of enumer-
ability (or strong enumerability). Using Lemma 2.4 the reader can obtain
corollaries about upper and lower bounds in terms of number of queries.

The following lemma provides a lower bound on the enumerability of #2.
We will use it in Theorem 3.1 to obtain a lower bound on freq(fa.

Lemma 2.5 ([17]) Let a € N and let A C N. If #2 € EN(a) then A is

recursive.

We now exhibit a nonrecursive set A such that if 2 < L then freg;,

a

is recursive. Since we are interested in how many queries are required to

compute freg the case where it takes zero queries is not of interest. Hence
k)

most of our theorems will assume 2 > %



Definition 2.6 [15] A set A is semirecursive if there exists a recursive linear
ordering C on N such that A is closed downward under C.

The following is a folk theorem. It will also be a consequence of Theo-
rem 9.9.

Proposition 2.7 Assume © < 1. If A is semirecursive then fregd, is re-
a 2 @

cursive. Hence every tt-degree contains a set A such that f'reqif}a IS TECUTSIVE.
Proof: Let A be semirecursive via C. Given (z1,...,z,) we may assume
z;, C -+ £ 2, Since FA(zy,...,2,) € {1°0°7" : 0 < i < a} we have
1181gl5] =a- FA(zy,...,2,). Output 11zlols].

Part 2 follows from part 1 since Jockusch [15] showed that every tt-degree
contains a semirecursive set. |

1
2
recursive then A is recursive. This was proven by Trakhtenbrot [22]. We will

It is known that Proposition 2.7 is optimal: if % > - and frqu}a is

give an alternative proof (Corollary 3.2).

3 A General Lower Bound for freqlfa

We prove a general lower bound on the enumerability of frqu‘}a for any
nonrecursive A.
Theorem 3.1 Assume 1 < b < a, 3 > %, and A C N. If f'r'qu‘}a N

EN({%W — 1) #0, then A is recursive.

Proof:  Assume that f € freq,;‘}a N EN([Q(QQ_-}E,LJ —1). Let (zq,...,2,) €

N Every time a possibility for f(z1,...,2,) is generated it yields at most
2(a — b) + 1 possibilities for #2(x1,...,z,). Hence

44 EN(Gﬁ-‘ - 1) (2(a — b) + 1)) € EN(a).

By Lemma 2.5 A is recursive. |

Corollary 3.2 ([22]) I—fs > ]5 and frqu}a is recursive, then A is recursive.

Note: Theorem 3.1 has been obtained independently by Kummer and Stephan [19]

using different methods.



4 Exact Bounds for freqfa

In this section we determine the exact complexity of freqlﬁ in terms of
enumerability. In Corollary 5.18 we will determine the exact complexity of
freqbff’a in terms of strong enumerability. Tt is known that #X(zq,... z,)
completely determines FX. Hence the structure of the set of possibilities for
FX is well understood. This is why we are able to obtain exact bounds.

Theorem 4.1 If1 < b < a then freql{f; N EN([ aatilb # 0.

Proof:  Given (z1,...,7,) we show how to enumerate < [(a“}';)l 1 possi-

bilities such that one of them is =*=" FE(z,..., 2,).

Let k£ = [( “+)1 1 Since b > 1 we have k > 1. Let Iy,..., Iz be intervals

of length < a — b+ 1 that partition {0,...,a}.

For each interval I = [e,d] we enumerate a possibility that is based on
the belief that #5(x1,...,2,) € [c,d]. By dovetailing these computations we
enumerate < k possibilities.

For interval I = [¢, d] we do the following. If ¢ = 0 then output (0,...,0).
If ¢ > 0 then simultaneously run all of M, (z1),..., M;,(z,) until exactly
¢ of them halt (this need not happen). Output a string that indicates that
these ¢ programs are in K and no other programs are in K.

We show that if #5 (zy,...,2,) € T = [c, d] then the possibility associated

to I is correct. Clearly the ¢ 1’s are correct. Since there are at most d

programs in K, at least a — d of the 0’s are correct. Hence at least c+a—d =
a+(c—d) =a+1—|I| 2a+1—(a—b+1) = b bits are correct. ||
Note: By Lemma 2.4, (ElX)[freq ﬂFQ([ og aa-1l>_1+1-‘ X) # 0]. The oracles
is unspecified. In this case we can do just as well with oracle K: by a
truncated binary search, freq[ N FQ([log a"'l -‘ K) # 0.

The enumeration procedure used in Theorem 4 1 is not a strong enumer-
ation. In Section 5 we show that a strong enumeration for freqbﬂ requires
many more possibilities than an enumeration.

We show that the above bound is tight.

Theorem 4.2 If 1 < b < a then fregf, N EN([(;&J —1)=0.



Proof: Assume [ € freq[fya N EN([(QZE)I_H-‘ —1) # 0. Assume [ €

EN( "(ai-(t-)1+1-‘ — 1) via g. We create a programs z; that conspire to cause

(V8 € Wyion ) [2(B=""" F (21, 20))].

We plan to have different blocks of programs invalidate different elements
of Wy, ,wa)- Let k = ’V(ai-lt-)il—‘ — 1. Since b > 1 we have & > 1. Let
Ji,. .., Jr be intervals of length > a — b+ 1 that partition {0,...,a}.

By the a-ary recursion theorem we can assume that z; has access to the
numbers {zq,...,z,}.

ALGORITHM FOR z;

1. Let j be such that ¢ € J; (if no such j exists then diverge).

2. Enumerate Wy, . ., until j elements appear (this step might not
terminate). Let that jth element be b= by---b,.

3. If b; = 0 then converge. If b; = 1 then diverge.

END OF ALGORITHM

For all j, 1 < j < k, if Wy(s,,. s has the jth element b, then b and
FE(zy,...,z,) differ on the bits specified by .J;. Hence they differ on at least
a — b+ 1 places, so (Vg € Wg(xh,,,,xa))[—'(g =P PR (21, L xa))]

5 Exact Bounds for freq{}a

In this section we prove a general theorem relating the complexity of f rqufa
to the structure of the set of possible values for F#. We then apply this
theorem to semirecursive sets, joins of semirecursive sets, and superterse
sets.

We will need some definitions from coding theory.

Definition 5.1 Let a,r € N. Let z € {0,1}*. The closed ball of radius r
centered al z is the set B(z,r) ={y € {0,1}* :y =" z}. If D C {0,1}" then
D is covered by k balls of radius r means that there exist zq, ..., zx such that

D C UL, B(z,r).



Definition 5.2 Let a,r € N and D C {0,1}*. k(D,r) is the minimal
number j such that D can be covered by j balls of radius r. The quantity
k({0,1}*,r) is denoted by k(a,r).

Let D be a set of possibilities for F24(zy, ..., x,) such that k(D,a — b) = j.
Let b € D be the correct possibility. Let ¢ be the center of the ball that
contains b. Since b and & differ on at most a — b places they must agree on
at least b places. Hence ¢ is a suitable value of freqfa.

The quantity k(a,r) is known as the covering number. It has been studied
extensively (see [8, 9, 10, 14, 23]). No exact formula is known for it, however
we present some known estimates.

Fact 5.3 Let Sy, = Y, ()

7

1. & <k(a,r) < 92(1 (1+1og S...) ([8, Theorem 3]. (Better lower bounds

—~
ba,r - Da,r

are known [23, Theorem 10].)
2. k(r+1,r)=k(r+2,r)=-=k(2r42,r) =2 ([10, Theorem 14]).
3. k(2r+3,r) =3, and 7T < k(2r + 4,r) <12 ([10, Theorem 14]).
Definition 5.4 Let a,r € N and D C 2%} We define k(D,r) to be
max{k(D,r): D € D},

We need to define the notions of D-verbose and strongly D-verbose in
order to state our main result. Note that every set is strongly 2{%"*-verbose.

Definition 5.5 Tet a € N. Tet D C 2013 A set A is D-verbose if

there is a recursive function g such that, for all y,...,2,, Wy, ..2,) € D
and FA(2q,...,2,) € Wy, za)- A set A is strongly D-verbose if there
is a recursive function g such that, for all z,..., 24, Dy, ) € D and

FQA(.fl,...,-ra) € Dg(xl ..... Tq)"

The following theorem provides for any A C N: (1) matching upper and
lower bounds for the strong enumerability of freq,;‘}a, and (2) lower bounds for
the enumerability of frqu‘}a. All results in this paper, except those involving
f rqu?;, will follow from it.



Theorem 5.6 Assume 1 < b < a and A C N. All D mentioned in this
theorem are understood to be subsets of 21913 For all k the following hold.

1. If there exists D such that A is strongly D-verbose and k(D,a —b) < k
then freqlfa NSEN(k) £ 0.

2. If freqi, N SEN(k) # 0 then there exisls D such that A is strongly
D-verbose and k > k(D,a — b).

3. 1If f'r'eq{;}aﬂEN(k) # 0 then there exists D such that A is D-verbose and
k> k(D,a—b).

Proof:

(1) Assume A is strongly D-verbose via ¢g. Given (z1,...,z,) we strongly enu-
merate < k possibilities one of which must be =*=" F2(z,,...,2,). Find D =
Dy(z,,....c.)- Find a set of vectors {gl, VN gk} such that D C U~ B(gz-, a—b).
(Such vectors exist since k(D,a — b) < k.) Enumerate 51, ey by as possibili-
ties. Since F4(zy,...,z,) € D

—

B)F (ar,. ., 22) € Bl a—b)
SO B
@FA ..., 22) = .
(2) Assume frqufaﬂSEN(k) (. Then there exist k total recursive functions
Prs -« pp such that (Vay, .o 2,)(30)[pi(en, - ooy 2a) =70 FA 2y, .. 2,)] Let

Dg(xu...,xa) = le B(pi(xl, RN Ia), a — b)
D= {Dg(a:l,...,xa) 1T1,...,Tq € N}

Clearly A is strongly D-verbose. Since every element of D is a union of
k balls of radius a — b, k > max{k(D,a —b) : D € D}.
(3) Similar to the proof of part 2. |

Theorem 5.6 yields matching upper and lower bounds; however they are
not readily computable. The following lemma will be helpful in computing
them.

Lemma 5.7 Let a,r € N and A C N.
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1. If there exists D such that A is strongly D-verbose and k = k(D,r) then
#4 € SEN(k(2r +1)).

2. If there exists D such that A is (strongly) D-verbose then F2 is (strongly)
max{|D|: D € D}-enumerable.

Proof:

(1) Assume A is strongly D-verbose via g. We show how to k(2r + 1)-
enumerate #2. On input (zy,...,2,) find D = Dyzy,...0a)- We know D can

be covered by k balls of radius r. Let 51, ..., bp be the centers of those balls.
Let a; be the number of 1’s in b;. Enumerate

{ai+a:1<i<kand —r <a<r}.

These are the k(2r 4+ 1) numbers one of which must be #2(zy,...,z,).
(2) This follows from the definition of (strongly) D-verbose.
i

Note: Kummer and Stephan [18, Corollary 4.3,4.4] have found a differ-

ent connection between covering numbers and frqu‘}a. Let Q(b,a) = {A :
frqufa is recursive }. They have shown the following.

1. (Va > 2)(3A, A 2-re. )[A € Q(1, [log(k(a, 1)+ 1)]) — (2, a)].
2. (Vb>2)(3A, Are. )A€ (1,20 —b) — Q2,2 —1)].

5.1 Semirecursive Sets

We established matching upper and lower bounds for frqufa when A is
semirecursive using Proposition 2.7 and Theorem 3.1. Here we give an alter-
native proof using our general theorem.

Lemma 5.8 Let D = {1°0°" : 0 < ¢ < a}, and let 0 < r < a. Then
K(D,r) = [££4].

2r+1
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Proof: Let k= [£ZtL] For 1 <i< kh—1let z; = 1@-rtizlgo=(@i-tr=i+1,

and let z, = 1°770". Tt is easy to check that D C UF, B(z;,r). Hence
k(D,r) <k.

If <k —1 balls of radius r are used then < (k —1)(2r + 1) < a elements
are covered. Hence k(D,r) > k.

Combining the inequalities we obtain k(D,r) = k. |

Theorem 5.9 Assume 1 < b < a, A is a nonrecursive semirecursive set,

and k= | ;25| Then freg, 0 SEN(k) # 0 but freqf,\SEN(k — 1) = .

Note that ng < % then k =1 so frqu‘}a NEN(1) # 0, hence some function

mn frqu}a 1S TECUrsIve.

Proof:

Let A be a semirecursive set with ordering C. Let D = {170°7" : 0 <7 < a}.
Let D be the singleton set {D}. Semirecursive sets are strongly D-verbose:
on input (zy,...,7,) (assume z; C --- C z,) the only possibilities for
Ff(;vl, ce.,T,) are 1°02~* where 0 <1 < a.

By Theorem 5.6 frqu‘}a NSEN(k(D,a — b)) #0. Since 0 <a—b < a we
can apply Lemma 5.8 with r = a — b. Hence frqu‘}a N SEN(k) £ 0.

Assume, by way of contradiction, that freq,‘;}a NSEN(k—1) # 0. By
Theorem 5.6 there exists D such that A is strongly D-verbose and k(D, a —b)
= k — 1. By Lemma 5.7 #/ € EN((k —1)(2(a —b) + 1)) € EN(a). By

Lemma 2.5 A is recursive. ||

5.2 Joins of Semirecursive Sets

In this section we obtain an upper bound on the complexity of freq,f}a when
A is the join of several semirecursive sets. No lower bound is known in the
general case; however there are particular sets A of this type for which the
lower bound is tight.

Definition 5.10 If Dy and D, are sets of strings then

Dy Dy ={o7:0€ Dy and 7 € D,}.

12



Definition 5.11 If A;, A, C N then

Lemma 5.12 Letay,...,a,,11,...,rg and Dy, ..., D, be such that D; C {0,1}"
for all 1. Then

k(Dy-Dy---Dy,r) < min{f[ k(D;,r;) : (Vi)[ri > 1] and in = r} )

Proof: We prove this for ¢ = 2. The general case is similar. Let r =
r1 + 79 be some partition of r into nonzero parts. Let k; and &, be such that
k(D;,r;) = ki. Let y1,...,yg,21,-..,2k be such that Dy C Uf;l B(yi, 1)
and Dy C Ufil B(z;, 7). It is easy to see that

k‘l ]C2

Dy - D, C U U B(yi- zj,r 4+ 12).

i=17=1

Hence k(Dy - Dy,r) < kyky = k(Dq,7m1)k(Dq,rs). Since this holds for any
nonzero partition r = r; + r, we can take ry,ry that results in the minimal

k(Dlarl)k(D23T2>- |

Theorem 5.13 Assume 1 < b < a, g > %, and ¢ > 1. Let Ay,..., A, be
semurecursive sels. Let A=A, & --- @ A,.

1. frqu‘}a N SEN(k) # 0 where k is defined as follows.

k:max{min{ﬂ [“i“] :éri:a—b} :]z:ai:a}.

=1 T?f‘l‘l

2. If q divides both a and b then freq,fa N EN(([aﬁj_qu) £ 0.

13



Proof:
1) For any o/, 0 < o’ < a, let B¢ = {1°0"~": 0 < i < a'}. Note that A is

strongly D-verbose where D = {[I/_; E* : Y%, a; = a}. By Theorem 5.6
freq,fa N SEN(k) # § where

g g
k = max{k (H E% a— b) Y a; = al.
=1 7=1

By Lemmas 5.12 and 5.8

k(T E%,a—b) < min{[TL, k(E%,r;): XL ri=a— b}
< min{[]., {ﬂw Y ri=a—b}

ri+1
Putting this all together we obtain that freg;', N SEN(k) # . where

e+ 1] :
k = max{min H’}__{_J:Zm:a—b Y a;=a}.
2 =1 7=1

=1

(2) If ¢ divides b and a, then ¢ divides a — b. In this case the internal min

occurs when all r;’s are “q;b Hence

g [ . 1 a
k:maX{H GCL_Zb-I:I_ll ZZCM:CL}.

The max occurs when all a;’s are g When this occurs

] - (| 255]) - (Res])
1 T+1 ; +1 a—b+gq
|
There are semirecursive sets Aq,..., Ay where the upper bound from
Theorem 5.13 is an overestimate; for example, if A, = --- = A then

FA®-84 ¢ SEN(a + 1). However, Theorem 5.13 is optimal for the gen-
eral case:

Theorem 5.14 Leta,b, g,k be as in Theorem 5.13. There exist sets Ay,..., A
and A=A, @ --- @ A, such that freq{;}a N EN(k — 1) =0.



Proof:
This can be proven by a straightforward diagonalization similar to [11,
Appendix]. 1

5.3 Superterse and Weakly Superterse Sets

Definition 5.15 [5] A set A is superterse if (Vn)(VX)[F2 ¢ FQ(rn — 1, X)].
A set A is weakly superterse if (Vn)(VX)[F2 ¢ FQC(n — 1, X)].

Lemma 5.16 ([4]) Let AC N.

1. If there exists a such that F4 € EN(2* — 1) (F4 € SEN(2* — 1)), then
there exists a constant ¢ such that (¥Yn)[F2 € EN(n°)] (F1 € SEN(n%)).

2. Assume A is (weakly) superterse. For all n, F4 ¢ EN(2" —1). (F2 ¢
SEN(2" —1)). This follows from part 1 and Lemma 2.4.

(Note that [{] shows a complexity-theoretic version of this lemma, but the
proof can be easily modified to obtain this lemma.)

Theorem 5.17 Assume 1 < b < a, 2 > %, and A CN.
1. freqy, N SEN(k(a,a — b)) # 0.
2. If A is superterse then freq,‘fa NEN(k(a,a —b)—1)=10.
3. If A is weakly superterse then freg;, N SEN(k(a,a —b) —1) = 0.

Proof:

(1) This follows from Theorem 5.6.

(2) Let A be superterse. Assume, by way of contradiction, that freq,fa N
EN(k(a,a—b)—1) # 0. By Theorem 5.6 there exists D such that A is
D-verbose and k(D,a — b) = k(a,a — b) — 1. Hence, for every D € D,
k(D,a —b) < k(a,a—b) —1so|D| <2°—1. By Lemma5.7, F4 € EN(2* — 1).
By Lemma 5.16, A is not superterse.

(3) Similar to part 2.
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Corollary 5.18 Assume 1 < b < a.
1. frquf; NSEN(k(a,a — b)) # 0 but frquf;l NSEN(k(a,a —b) — 1) = 0.

2. For every mnonrecursive sel A, frqu‘}; NEN(k(a,a —b)) #0 but
freq;f}; NEN(k(a,a —b)— 1) = 0. (Recall that A" is the halting problem
relative to A.)

3. Fvery mnonzero lruth-table degree contains a set A such thal

freq[fa NSEN(k(a,a — b)) # 0 but freq(fa NEN(k(a,a —b) —1) = 0.

Proof: By [11, Theorem 23|, K is weakly superterse. By [5, Theorem 16],
for all nonrecursive A, A’ is superterse. By [5, Theorem 14], every nonzero
tt-degree contains a superterse set. |

Theorems 4.1 and Corollary 5.18 offer an interesting contrast. We obtain
the exact complexity of frquf; via (1) algorithms that need not halt if a
different oracle is used, (2) algorithms that halt regardless of the oracle.
The following table shows that the difference in complexity is small when
b < %+ 2, but is exponentially large when a — b is constant. We show how
the table is derived and impose bounds as to when the rows of the table
apply. The rule b < a always applies.

1. If2b = a+4 then a = 2(a—b)—|—4, hence k(a, a—b) = k(?(a—b)—l—ll,a—b).
Ifa—b>1then by Fact 537 < k(2(a—b)+4,a—b) <12. fa—b>1
then by Corollary 5.18 and Lemma 2.4 the optimal number of queries
needed to compute freq,f;l is either 3 or 4. This derivation only applies
to a — b > 1, hence the first row of the table may be excluded in the
case a = 4. In that case we are considering f?"eqf4 which is the same
as FX. By [11, Theorem 23] F¥ € FQC(4, K) — FQC(3, K). Hence the

information in the table is still valid.

2. If2b = a+3 then a = 2(a—b)+3, hence k(a,a—b) = k(2(a—b)+3,a—0b).
Ifa—b > 1 then by Fact 5.3 k(2(a—b)+3,a—b) = 3. Ifa—b > 1 then by
Corollary 5.18 and Lemma 2.4 the optimal number of queries needed to
compute f'r'eqlﬁ is 2. This derivation only applies to a — b > 1, hence
the second row of the table may be excluded in the case a = 3. In
that case we are considering freqé‘:?, which is the same as FX. By [11,
Theorem 23] FX € FQC(3, K) — FQC(3, K). Hence the information in
the table i1s not valid for a = 3.
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3. If2b = a+2 thena = 2(a—b)+2, hence k(a, a—b) = k(2(a—b)-|—2,a—b).
Ifa—b > 1 then by Fact 5.3 k(2(a—b)+2,a—b) = 2. Ifa—b > 1 then by
Corollary 5.18 and Lemma 2.4 the optimal number of queries needed
to compute f’r‘eq,{fa is 1. This derivation only applies to a — b > 1,
hence the third row of the table may be excluded in the case a = 2. In
that case we are considering f'r'qu‘:2 which is the same as FX. By [11,
Theorem 23] FX € FQC(3, K) — FQC(3, K). Hence the information in
the table i1s not valid for this value of a = 2.

FQC complexity FQ complexity

2b =a+4 3or4d 2
2b =a+3 2 2
2b=a + 2 1 1

b=a—c |a—clogc+0O(1) |loga—logc+ O(1)
b=a—1 | a—loga+ 0O(1) loga + O(1)

6 Complexity Theory
Several of our results have analogues in complexity theory.

Definition 6.1 Let X C Y* and let £ € N. Then PFXH is the set of
functions that can be computed in polynomial time with & queries to X. A
set A C X% is p-superterse if (VE)(VX)[F ¢ PFXF-U1 A function f is k-
enumerable in polynomial time if there exists g € PF such that g(z) produces
k values, one of which is f(z). We denote this by f € EN(k). Note that in

this context “strongly k-enumerable” is the same as k-enumerable.

It is easy to see that analogues of Theorems 5.6 and 5.17 hold in a poly-
nomial framework. Applying the analogue of Theorem 5.17 directly is hard
since few sets have been shown to be p-superterse outright. However the

following is known [1, 6, 20].
Fact 6.2 If P # NP then SAT s p-superterse.

Combining Fact 6.2 with the polynomial analogue of Theorem 5.6 yields
the following theorem.
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Theorem 6.3 Assume 1 < b<a.

1. frquﬁT NEN(k(a,a — b)) £ 0.

2

7

. If P #£ NP then freqbs’ﬁT NEN(k(a,a —b) —1) = 0.
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