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Abstract

Identify a string x over {0,1} with the positive inte-
ger whose binary representation is 1z. We say that a
self-reduction is k-local if on input z all queries belong
to {z—1,...,2 —k}. We show that all k-locally self-
reducible sets belong to PSPACE. However, the power
of k-local self-reductions changes drastically between
k = 2 and k = 3. Although all 2-locally self-reducible
sets belong to MODgPH, some 3-locally self-reducible
sets are PSPACE-complete. Furthermore, there exists
a 6-locally self-reducible PSPACE-complete set whose
self-reduction is an m-reduction (in fact, a permuta-
tion).

We prove all these results by showing that such lan-
guages are equivalent in complexity to the problem of
multiplying an exponentially long sequence of uniformly
generated elements in a finite monoid, and then exploit-
ing the algebraic structure of the monoid.

1. Introduction

In this paper we identify a string z over {0, 1} with the
positive integer whose binary representation is 1z. Thus
we do not distinguish between the sets {0,1}* and Zt.
Balcazar [1] introduced lexicographical self-reductions,
also called wdg-self-reductions, which on input z query
only strings that are less than z. Lexicographical self-
reductions are an important tool in unifying certain
connections between uniform and nonuniform complex-
ity [1]. They are also important in the study of which
complexity classes may have sparse complete sets [13].
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Goldsmith, Joseph, and Young [9] (independent of
Balcazar) introduced near testability, and subsequently
Goldsmith, Joseph, Hemachandra, and Young [8] in-
troduced near near-testability. Both notions are spe-
cial cases of lexicographical self-reductions in which the
queried string (if any) is always the immediate prede-
cessor of the input string.

The complexity of lexicographically self-reducible sets
is well understood: all of them belong to EXP and some
of them are < -complete for EXP [1]. The complex-
ity of near-testable sets is also well understood: all
of them belong to PARITYP and some of them are
<P -complete for PARITYP [§].
ity of nearly near-testable sets: all of them belong to
PFYP o PARITYP and some of them are <?, -complete
for PFNF o PARITYP [10].

In order to better understand lexicographical self-
reductions, we ask what happens when a self-reduction
is allowed to look only at the £ immediately preceding
strings for some constant k.

So is the complex-

Definition 1. A C 77T is k-locally self-reducible if
there if a polynomial time-bounded deterministic ora-
cle Turing machine M such that

e M4 recognizes A, and

e Oninput 2, M4 queries only elements of {x—1,. ..,

z—k}.

Remark: The 1-locally self-reducible sets are the same
as the nearly near-testable sets.

We would like to define a many-one version of this no-
tion of self-reducibility. Since no queries can be made on
the empty string, we will allow our many-one reductions
to be undefined on finitely many inputs.

Definition 2.

o A is m-reducible to B if there is a polynomial-time
computable partial function f : Zt — Z* such that
for all but finitely many = we have z € A <=
f(z) € B.



e If the partial function f above is 1-1 and onto, then
A is permutation-reducible to B.

Definition 3. A is m-k-locally self-reducible if there is
an m-reduction f from A to A such that z —k < f(z) <
z for all z € Z* for which f(z) is defined.

Obviously, if A is m-k-locally self-reducible, then it is
k-locally self-reducible.
Here are our main results:

o All k-locally self-reducible sets belong to PSPACE.

o All 2-ocally self-reducible sets belong to MODgPH.
(MODGPH is a generalization of the polynomial
hierarchy where we allow a bounded number of
MODg quantifiers interspersed with the usual ex-
istential and universal quantifiers. Tt is an ex-
ponential analogue of the circuit complexity class
ACC(6).) In fact, all 2-locally self-reducible sets
belong to a fixed level of this hierarchy.

e There exists a 3-locally self-reducible PSPACE-
complete set.

e There exists an m-6-locally self-reducible PSPACE-
complete set whose self-reduction is in fact a per-
mutation reduction. (The reader may be surprised
that there is a self-reducible PSPACE-complete set
whose self-reduction is even an m-reduction. The
key to the reduction is determining which question
to ask, rather than what to do with the answer.)

We will also give a new proof of Hemachandra and
Hoene’s characterization of the nearly near-testable
sets.

We prove these results by reducing questions about
the Turing machine complexity of locally self-reducible
sets to questions about the circuit complexity of mul-
tiplication in finite monoids, and then applying results
of Barrington, Immerman, Straubing, and Thérien on
circuits and monoids [3, 5, 4]. This algebraic approach
to circuit complexity is proving to be a valuable tool in
the study of Turing machine-based complexity classes;
see, for example, [7, 11].

2. A Connection to Algebra

Let A be k-locally self-reducible, so there is a polynomial-
time algorithm A that takes z+1 and ya(z — k + 1), ...,
Xa(z) as input and determines ya(z + 1). This

gives a polynomial-time algorithm A’ that takes = + 1

and xa(z —k+1),...,xa(z) as input and determines

Xa(r = F+2),0, xa(e +1).

Thus z + 1 determines a mapping A*(z + 1) from
{0, 1}* into itself; the mapping is computable in poly-
nomial time from the input z + 1 by running the algo-
rithm A’ on all elements of {0, 1}* in succession. So to
determine x 4(z + 1) it suffices to compute

(xa(1), ., xa(E)A"(k + DA (k +2)- - A*(z + 1).

(Here we compose finite functions from left to right.)
This expression can be evaluated left to right using a
constant amount of space to store the k-tuple, linear
space to store the input to 4*, and polynomial space to
compute each mapping A*(i). We have thus proved:

Theorem 4. If A s k-locally self-reducible then A is
im PSPACE.

We want to look at this proof in a somewhat different
way, which will be more useful for the purposes of this
paper. The set of maps from {0, 1}* into itself forms a
monoid (that is, a set with an associative product and
an identity element) with composition as the product.
It is easy to show that the problem of multiplying n el-
ements of a fixed finite monoid is in NC* [3]. Thus the
multiplication of exponentially many uniformly gener-
ated elements of a finite monoid can be carried out by
uniform AND-OR circuits of linear depth. Our result
then follows from the fact that uniform circuits of poly-
nomial depth can be evaluated in polynomial space.

Let us be a bit more precise. If @) is a finite set, then
the set of maps from @ into itself forms a finite monoid
with composition as the operation. Actually there are
two monoids we can define this way, one in which we
compose maps from right to left, the other in which we
compose maps from left to right. In what follows we
will assume, as in the above discussion, that maps are
composed from left to right, so that fg means “apply
first f, then ¢.” We thus also write the image of an
element of ) under a map f as ¢f rather than f(q).
We use the term transformation monoid to mean any
monoid of maps on a finite set, in which the identity
element is the identity map.

Let f:{0,1}* — {0, 1}. We define
Ff : {Oa 1}k - {07 l}k
by

Fe(aq,... xp, fle, .. 2)),

where f : {0,1}* — {0,1} is a map. Let us denote the
monoid generated by the transformations F; by M;.
That i1s, M} consists of all possible products of finite
sequences of the F;, together with the identity transfor-
mation. We argued above that determining membership
in a k-locally self-reducible set reduces to evaluation of

yxg) = (22, ..



products in M. In the next two sections we will ana-
lyze the structure of M}, for various values of k£ to obtain
more detailed information about k-locally self-reducible
sets.

3. PSPACE-Complete Locally Self-Reducible
Sets

We will first obtain matching lower bounds to Theo-
rem 4. Our proof depends on a result of Barrington,
showing, in essence, that NC' is as easy as multiplica-
tion in finite monoids. Let Sy denote the symmetric
group of degree 5; that is, the group of all permutations
of the set {1,2,3,4,5}. Let b, ¢ be distinct elements of
Ss, and let L € NC!. Barrington [3] showed that for
each n > 0 there is a function f, : Z¥ — Z7T, and for
each z € {0, 1}* a sequence a(x) of elements of S5, such
that:

e The length of a(z) depends only on |z|, and is
bounded by a polynomial in the size of the circuit
for inputs of length |z|.

e The " element of a(z) depends only on the
f|z|(i)th bit of z.

o If z € L, then [[a(z), the product in Sy of the
elements of a(x), is equal to b. If ¢ L, then

[Ta(z) =c.

Barrington in his original paper, and later Barring-
ton, Immerman and Straubing [5] studied the complex-
ity of this circuit simulation for uniform NC'. For our
purposes, we only need the following facts, easily deriv-
able from Barrington’s original construction: Suppose
we have a fan-in 2 circuit whose underlying graph is the
full binary tree of depth d. Thus there are 29 — 1 leaves,
each interior node is either an AND gate or an OR gate,
and each leaf node is labeled by an input bit or its nega-
tion. (Typically the same input bit appears as the label
of many different leaves.) We can determine the j** el-
ement of the string a(z) in d(1) time steps, assuming
that in a single step we can do each of the following:

e Determine from the d 4 1-bit encoding of a node
whether 1t is an AND gate, an OR gate or a leaf.

e Determine from i, j whether the i*? leaf is labeled
by the j** input bit, or whether it is labeled by the
negation of the j* input bit.

We will also need the following fact about the con-
nection between space used by a Turing machine and
circuit depth: Every language in PSPACE is recognized
by a uniform polynomial-depth family of circuits [6, 2].
In this context, “uniform” means that we can determine
in polynomial time from the encoding of a gate whether

it is an AND gate, an OR gate, or a leaf, and, if it is a
leaf, which bit of the input it queries.

Lemma 5. Let K be a set that generates S; and in-
cludes both an odd and an even permutation. Let T be
a nonempty proper subset of {1,2,3,4,5}. There is a
polynomial-time computable function ¢ : Z+ — K such
that the set

Sp={r:16(1) - 6(x) € T)
1s PSPACFE-complete.

Proof: Let L be any language in PSPACE. Let k €
T, k' ¢ T, and let b be a permutation that maps 1 to k,
and ¢ a permutation that maps 1 to k’. By the preceding
remarks, for each # € {0, 1}*, there is a sequence a(z) of
elements of S5 such that the length of () depends only
on |z| and is exponential in |z|, [[a(z)is bif z € L and
¢ otherwise, and the map that sends the pair (i, z) to
the " element of a(z) is polynomial-time computable.

We can strengthen this slightly and suppose that the
elements of the sequence a(z) all belong to the set K. To
show this, we must argue that every element of S5 can
be written as a product of a fixed number r > 0 of ele-
ments of K. Let H be the set of elements of Sy that can
be written as a product of a sequence of generators of
length divisible by 120 = |S5|. For any sequences 3 and
v of generators, H contains the product of the sequence
ByB94119 Thus H contains all the commutators in S,
and since H is obviously closed under multiplication, H
contains the commutator subgroup As, which consists
of all the even permutations. Since H contains at least
one odd permutation as well, H = S5. We now have
each element of S5 expressed as a product of a sequence
of length divisible by 120. Let ¢ € K; we can pad each
of the sequences by a sufficient number of copies of g!2°
so that they all have the same length.

Now consider the infinite sequence

a(1)120a(2)120...

of elements of K. (Note that in writing the argument
of a as an integer we are using the identification be-
tween {0,1}* and Z*.) Let ¢(i) denote the i'" element
of this sequence. Observe that ¢ is polynomial-time
computable.

We have

z(x)
[Te(@) = TTla(1)'*" - a(e = 1) *a(2)] = H ¢(1)-

Here z(z) is the length of the concatenated sequence

a(1)120 o — 1)120a(1‘);



z(a) is polynomial-time computable. Tt follows that z €
L if and only if z(z) € Sy, so that Sy is PSPACE-hard.
Since ¢ is computable in polynomial time, our remarks
in the preceding section show that Sy is in PSPACE, so
S 1s PSPACE-complete. |

Theorem 6. There exists an m-6-locally self-reducible
PSPACE-complete language whose self-reduction is a
permutation reduction.

Proof: = We define a self-reducible set S recursively.
Let K consist of the transpositions (1 2), (2 3), (3 4),
and (4 5), together with the identity of S5. K generates
S5 and contains odd permutations (the transpositions)
and an even permutation (the identity). Thus Lemma 5
can be applied; let ¢ : Zt — K be as in the lemma. Let

e lc S

4 {2535455}g§

eif g > 1land 1 < r < 5 then, 5g + r € S iff
Sg—1) +ré(q) €S

Then z € Sy iff 52 +1 € S, so by Lemma 5, S
is PSPACE-complete. Clearly, S has a 6-local self-
reduction that is 1-1 and onto from Z+ — {1,2,3,4,5}
to Z+. |

Theorem 7. There exists a 3-locally self-reducible lan-
guage that is PSPACE-complete.

Proof: We first take a closer look at the structure
of the monoid M3. We define functions f, g : {0,1}% —

{0, 1} by

£(0,0,0) = £(0,0,1) = f(0,1,0) = f(1,1,1) = 1.
£(0,1,1) = £(1,0,0) = f(1,0,1) = f(1,1,0) = 0.
g(0,0,1) = ¢(0,1,0) = ¢(1,0,0) = g(1,1,1) = 1.
¢(0,0,0) = ¢(0,1,1) = ¢(1,0,1) = g(1,1,0) = 0.
Let us identify the triples (0,0,0), (0,0,1), (0,1,0),
(0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) with

2,1,6,3,4,7,5,8, respectively. With these identifica-
tions, F} is the permutation (2 1 3 5 4)(6 7) and F|
is the permutation (1 3 5 4)(6 7). Note that Fy and F,
both map {1,2,3,4,5} into itself. In fact, the permuta-
tions (2 1 3 54) and (1 3 5 4) generate S5, because

(21354)%(1354)(21354)=(35),

and S is generated by any pair consisting of a 5-cycle
and a transposition.

Since we have both an odd and an even permuta-
tion, we can apply Lemma 5, with T = {1,3}, and

obtain both a polynomial-time computable map ¢ and
a PSPACE-complete set S45. We define a set S recur-
sively by 1 ¢ 5,2¢ 5,3€ S, and, forz >3,z € S if
and only if (xs(z — 3), xs(z — 2), xs(z — 1))p(x — 3) =
(xs(z — 2), xs(z — 1), 1).

Since ¢ 1s polynomial-time computable, S is 3-locally
self-reducible. For z > 3, we have z € S if and only
if the third component of (0,0,1)¢(1)---¢(z —3) is 1.
Under the identification of triples and integers, this hap-
pens if and only if 1¢(1) - - - #(x—3) € T, since this prod-
uct of permutations always maps 1 into {1,2,3,4,5}.
Thus for any positive integer y, y € Sy if and only if
y+ 3 € S. It follows from Lemma 5 that S is PSPACE-

complete. |

4. An Upper Bound for 2-Locally Self-Reducible
Sets

In this section we will give an upper bound on the com-
plexity of 2-locally self-reducible sets. This bound sug-
gests that such sets are not PSPACE-complete, unless
certain hierarchies contained within PSPACE collapse
to a fixed level.

Let us review a few complexity-theoretic notions: If C
is a class of languages and then we denote by MOD,,, - C
the class of languages I for which there is a polynomial
p and a language L' € C such that for each z,

{y:ye {0,137070 2y € L'} = 0 (mod m).

We denote by V - C (respectively, 3 - C) the class of lan-
guages L for which there is a polynomial p and a lan-
guage L' € C such that z € L if and only if for every
(respectively, for some) y € {0, 13700 2y € L'. We
can define hierarchies of complexity classes by beginning
with the class P and successively applying the operators
MOD,,-, 3-, and V- . If we do not use the modular oper-
ators, we get the usual polynomial time hierarchy. If we
allow the modular operators for a fixed modulus m, we
obtain a hierarchy of complexity classes that we denote
by MOD,,PH. That is, MOD,,PH is the union of all
the classes

Ql'QQ"'Qt'P;

where each @); is one of the operators V, 3, or MOD,,.

The class MODyP is commonly denoted @P and
PARITYP in the literature.

There is a simple connection to circuit complexity:
Suppose we have a language L that is polynomial-
time reducible to evaluating a uniform, constant-depth,
exponential-size family of circuits with unbounded fan-
in AND, OR and MOD,,, gates. Each gate and input
node can be encoded by a bit string whose length is
polynomial in the input size. “Uniform” in this context
means that we can determine in polynomial time from



the encoding of a gate what type of gate it is, from z
and the encoding of an input node the bit at that input
node, and from the encodings of two gates g1 and gs
whether gy is a child of g5. Then L is in MOD,,, PH. At
the cost of an increase in the depth by a constant fac-
tor, we may assume that all the gates on a given level
are of the same type; in this case, we can write down
explicitly a level in MOD,,PH that . belongs to. For
example, if L is reducible in this way to a depth-3 family
of circuits with a MOD3 gate at the output, AND gates
at the next level, and OR gates at the input level, then
LeMODs-¥V-3-P.

A monoid typically contains many subsets that are
closed under multiplication in the monoid, and are thus
subsemigroups of the monoid. When the subsemigroup
is a group, we call it a group in the monoid. (We avoid
the term “subgroup” in this context, since this is often
taken to mean that the identity of the group coincides
with that of the monoid.)

Lemma 8 (Folklore). Let M be a transformation
monoid on a finite set ). Fvery group in M s 1so-
morphic to a permutation group on |@Q)| elements.

Proof:  TLet G be a group in M. Let e be the identity
of G. If ¢ € G then Qg = (Qg)e and thus the image
of ¢ is contained in the image of e. Conversely, Qe =
(Qg~")g, and thus the image of e is contained in that
of g. So all elements of G have the same image I. For
any ¢ € G, Ig = (Qe)g = Qg = I, so every element of
G permutes I. If g, h € G induce the same permutation
on I, then for all ¢ € Q, q9 = (ge)g = (qe)h = qh
and thus ¢ = h. Thus G is isomorphic to a group of
permutations of I C (), which can be embedded in the
group of permutations on |@| elements. |

We say that a finite monoid M is solvable if every
group in M is solvable. There is more to this termi-
nology than meets the eye: Every monoid M admits a
certain kind of decomposition (the Krohn-Rhodes de-
composition) in which the factors are simple composi-
tion factors of the groups contained in M. When M is
a solvable monoid, all of these composition factors are
cyclic groups of prime order. Thus solvable monoids
are in a precise sense a semigroup-theoretic analogue of
solvable groups. Barrington and Thérien [4] show that
in this case we can compute the product of a sequence
of elements of M in ACC(r)—that is, with a constant-
depth, polynomial-size (in the length of the sequence)
uniform family of unbounded fan-in circuits with AND,
OR and MOD, gates—where r is the product of the
distinct prime divisors of the cardinalities of the groups
in M. In fact it is possible, although somewhat cum-
bersome, to write down the depth of the circuit family
and the gates that occur on each level directly from a
Krohn-Rhodes decomposition of M.

Proposition 9. M, is solvable, and the prime divisors
of the orders of the groups in Mo are 2 and 3.

Proof:
phic to a subgroup of S4, the symmetric group on four

By Lemma 8, every group in My is isomor-

letters. Thus My is solvable, and the only primes that
divide the order of a group in My are 2 and 3. We need
only show that M5 contains both a group of order 2 and
a group of order 3.

Let £(0,1) = 0, £(1,0) = 1, £(0,0) = 0, and
J(1,1) =1. Then F}y transposes (1,0) and (0,1) and
leaves (0,0) and (1, 1) fixed,thus generating a group of
order 2 in M.

Let ¢(0,0) = 1, ¢(0,1) = 0, ¢(1,0) = 0, and

g(1,1) = 1. Then F, cycles (0,0), ( 1), and (1,0), and
fixes (1,1). Thus F, generates a group of order 3 in M: |

As an easy consequence we obtain:

Theorem 10. Fvery 2-locally self-reducible set belongs
to a fized level of the MODgPH hierarchy.

Proof: Let A be 2-locally self-reducible. As re-
marked in Section 2, determining if 2 € A reduces
to evaluating a uniformly-generated exponentially long
product in Ms. By the preceding proposition and the
result of Barrington and Thérien cited above, this can
be carried out by a particular uniform exponential-size
ACC(6) circuit family. Thus A belongs to a particular

level of the MODgPH hierarchy. |

We will not try to explicitly determine the lowest level
of MODgPH that contains all 2-locally self-reducible
sets. However, we can fairly easily obtain an explicit
upper bound by noting that the monoid of all transfor-
mations on a 4-element set has a Krohn-Rhodes decom-
position as a wreath product

UoCs0U0(C30C30U 0(C50C50C500Cs,

where Cyp, denotes the cyclic group of order m, and U
denotes a group-free finite monoid. This leads to a cir-
cuit with seven levels of MOD3, and MODj3 gates, and a
similar number of levels of AND and OR gates to sim-
ulate the monoids U and to glue everything together.
We could get a lower level of the hierarchy by using a
decomposition of the smaller monoid M5, although we
have no reason to believe that this upper bound is the
best possible.

Our result shows that we cannot reduce the 3-locally
self-reducible sets to the 2-locally self-reducible sets, un-
less PSPACE collapses to this fixed level of MODgPH.
This would happen if there were a uniform way to com-
pute products in Sy using ACC(6) circuits, but this is
considered unlikely. A theorem of Smolensky [14] shows



that for polynomial-size circuit families, ACC(6) is dif-
ferent from both ACC(3) and ACC(2). The analogous
separation for uniform exponential-size families would
show that the 2-locally self-reducible sets are not in ei-

ther MODsPH or MOD3PH.

5. 1-Locally Self-Reducible Sets

Hemachandra and Hoene [10] isolated the complexity
of the 1-locally self-reducible sets by showing that they
belong to @OptP and that some of them are @OptP-
hard. This result (and the related result of [8]) falls out
of our algebraic framework in a nearly mechanical way.

We first recall a few definitions. OptP denotes the
class of functions f from {0, 1}* to itself for which there
exist a polynomial p and a language L € P such that
for all z € {0, 1},

f(z) = max{y € {0, 1?17 2y € L},

if such a y exists, and f(z) = 07D otherwise. ®OptP
is the class of all languages I for which there exist a
polynomial p, a language L' € P, and a function f €
OptP such that for all 2, z € L if and only if

{y € {0, 1)70°D: 2 f(2)y € L'}| = 0 (mod 2).

Hemachandra and Hoene show that ®OptP is identical
to PFN" o PARITYP.

Theorem 11 (Hemachandra—Hoene). Fvery 1-locally

self-reducible language is in GOptP, and every language
in ®OptP is <F -reducible to a 1-locally self-reducible
language.

Proof: Both parts of the proof are based on the
structure of the monoid M, which is just the monoid
of all transformations on the set {0,1}. Observe that
M, has four elements: the identity, the transposition,
the constant map to 0, and the constant map to 1. We
denote these elements by 1, 7, ¢q, and ¢y, respectively.
For the first part of the proof, let A be 1-locally self-
reducible. Since GOptP is closed under finite variation,
we may assume 1 € A. There is then a polynomial-time
computable map a from the positive integers to M7 such
that z € A if and only if the product a(2)a(3)- - a(z)
fixes 1; that is, if and only if this product is equal to
1 or ¢1. We define a map ¢ from strings of odd length
to My as follows: If ||+ 1 = |y| then ((zy) = 1 if
y = 01+t y = 0l#11 or 12 < y in the lexicographic
order. (Remember that we view z alternatively as a
string, or as the integer whose binary representation is
lz.) In all other cases {(zy) = a(u), where u is the
integer whose binary representation is y. ( is clearly
polynomial time computable, and z € A if and only if

C(20IFYy (2017l (21171 € {1, e4).

Let f(x) be the largest y in the lexicographic order, with
|yl = |z| + 1, such that {(zy) is a constant map, if such
a y exists; f(z) = 01°1+! otherwise. Clearly f € OptP.
Observe that if there is no y with |y| = |z| + 1 such
that ¢(zy) is a constant map, then f(z) = 0171+1 and
z € A if and only if an even number of elements of the
sequence

C(x0IPIFY) L (a1l

are equal to 7. On the other hand, if {(zf(z)) = &1
(respectively, ¢g), then @ € A if and only if an even
(respectively, odd) number of elements ((zy), with |y| =
|z| + 1 and y > f(x) are equal to 7.

We define for |z| = |y| = ||+ 1,

1 ify<z
- 1 jfy:zand C(zz)E{l,Cl}
e(l'zy) — T if Yy==z and C({L’Z) S {T’ CO}

C(zy) ify>z

It follows now that z € A if and only if there is an even
number of y with y = || 4+ 1 such that 8(zf(x)y) = 7.
Let us define A’ by zzy € A’ if and only if |z| = |y| =
|z| + 1 and f(xzy) = 7. Since A’ € P, A € ®OptP, as
claimed.

For the converse, suppose A € @OptP. Then there
exist A’ € P, f € OptP, and a polynomial p such that
z € Aif and only if zf(z)y € A’ for an even number of
y € {0,1}7(=D)_Since f € OptP there exist a polynomial
q and aset T € P such that f(z) is the lexicographically
largest y of length ¢(|z|) such that zy € T, if such a y
exists, and f(z) = 0¢0=1) otherwise. We may assume
that p and ¢ are strictly increasing functions.

We now define a function from strings whose length
is an integer of the form n + p(n) + ¢(n), where n > 0,
to elements of M; : Let a,y,z be strings with |y| =
p(|z|), |z| = q(Jz|). Let 2’ denote the successor of z in
the lexicographic order on strings of length ¢(|z|); 2" is
not defined if z = 192D, If 22 € T then we define
O(xzy) = c1. Otherwise we set O(zzy) = 1 if wzy ¢ A’
and either zz € T or z = 04(I=1), O(ezy) =7 if zzy € A’
and either zz € T or z = 020D and #(zzy) = 1 in all
other cases. Consider the sequence

Bz alleDy | g(g1rUehtaten,

It follows from the definitions made above that the
product of this sequence in M is equal to 1 or ¢; if and
only if x € A. Let us denote this sequence by a,. Now
consider the infinite sequence formed by concatenating
all the a; with copies of ¢; in between:

Q1C1gCy -+

Let 9(i) denote the i'* element of this sequence. Ob-
serve that ¢ 1s computable in polynomial time.



We define a set S of positive integers recursively as
follows: 1 € S, and for j > 1, j € S if and only if
xs(j— Dy(j —1) = 1. Thus j € S if and only if the
product (1) ---9(j — 1) is 1 or ¢;. Obviously S is 1-
locally self-reducible. We now have z € A if and only
if

Il=1-a, =1 a1 -a, =9¢((1)---(y),

where y is computable from 2 in polynomial time. Thus
z € Aif and only if y + 1 € S, giving us the desired
reduction to a 1-locally self-reducible set. |

An analogous (although much simpler) argument, us-
ing the permutation group S = {1, 7}, will prove that
the near-testable sets are all in ®P, and that every
language in @P is <P -reducible to a near-testable set.
This result is originally due to Goldsmith, Hemachan-
dra, Joseph, and Young [8].

6. Conclusions and Related Research

We have shown that the class of k-locally self-reducible
sets coincides with PSPACE for all & > 3. We have also
found an upper bound on the complexity of 2-locally
reducible sets and given a new proof of an exact char-
acterization of the 1-locally self-reducible sets.

In all cases, our results were obtained by studying
the complexity of computing the product of an ex-
ponentially long, uniformly generated sequence of el-
ements in the finite monoid My, for £ = 1,2,3. In
essence, we showed that every k-locally self-reducible
set is polynomial-time, many-one reducible to the com-
putation of such a product, and conversely, every such
product computation is reducible to testing membership
in a k-locally self-reducible set.

As we remarked in the introduction, several other
papers in the literature have employed this algebraic
approach to Turing machine-based complexity classes.
After we completed a preliminary version of this pa-
per, we received a technical report by M. Ogihara [12],
which is best understood in terms of this approach. Ogi-
hara studies “bottleneck Turing machines”. On inputs
of length n, a width-k bottleneck Turing machine runs
for 277 phases, where each phase takes n®(1) steps.
At the end of each phase, the machine 1s reset. The
only information passed from one phase to the next is
the value in a ‘safe storage’, capable of holding one of
k different values. Our locally self-reducible sets are a
special case, since every k-locally self-reducible set is
recognized by a width-2* bottleneck Turing machine.

Now every language recognized by a width-k bot-
tleneck Turing machine is in PSPACE, since we need
only polynomially many bits to keep track of the phase,
polynomial space to perform the computation in each
phase, and only a constant amount of additional space

for the safe storage. Tt is also easy to see that testing
membership in such a language is equivalent to evaluat-
ing a uniformly generated, exponentially long product
in the monoid T} of all maps from {1,...,k} into it-
self, since in each phase we are, in effect, computing
such a map. (Machines for which this map is always a
permutation are called permutation bottleneck Turing
machines.) Cai and Furst [7] used Barrington’s com-
pleteness result for NC' to show that every language in
PSPACE is recognized by a width-5 bottleneck Turing
machine. Ogihara studies the structure of the classes
of languages width-k bottleneck Turing machines for
k < 5. What is interesting here is that many of his re-
sults can be obtained by translating fundamental facts
about the structure of the monoids 7T} and the permu-
tation groups Sy into Turing machine language.

Let us give a few examples of this: The class of lan-
guages recognized by width-k£ bottleneck Turing ma-
chines is denoted SF}y by Ogihara, and the class of lan-
guages recognized by width-k£ permutation bottleneck
Turing machines is denoted perm-SF}). Ogihara shows
that perm-SF;3 coincides with the class MOD3-MOD,- P.
This translates the fact that the permutation group S
is an extension of the cyclic group of order 3 by the
cyclic group of order 2. He further shows first, that,

MOD, - MOD3 - MOD, - P C SFj,

which translates the fact that the semigroup of non-
permutations in 73 contains copies of the cyclic group
of order 2, and then that

(MOD2 . MOD3 - MODQ)OptP,

(which is defined analogously to ®OptP = MOD,OptP
in the preceding section) is contained in SF3. This is
because, as we saw in the last section, passage from
P to OptP in these complexity classes corresponds to
the adjunction of constant maps to a transformation
monoid, and T3 contains all the constant maps. We can
go further and use a wreath product decomposition of
T3 to show

SFy C (¥ un?y-MOD, - (25 uT?)-MOD; - MOD,.

There is, in all this, the beginnings of a detailed the-
ory, in which structural properties of finite monoids are
translated into complexity-theoretic properties of the
classes of languages defined by multiplication of expo-
nentially long, uniformly generated sequences in these
monoids.

Acknowledgments. We are grateful to Bill Gasarch for proofread-
ing the manuscript.
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