Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:
ECCC FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/
[FSS6]T RO5-038 and Aemahanappna Bapede Uk taEcie vRmssjé Rageddeal Solutions to Iden-
tification—and-Signatuse—ProblomsmTodducuncosinLryplology e CRYP T L6

proceeding, Lecture notes in computer Science, pages 186—189. Springer-Verlag,
1986.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM J. Comput., 18 (1):186-208, 1989.

[Kil94] J. Kilian. On the Complexity of Bounded-Interaction and Non-Interactive Zero-
Knowledge Proofs. In Proc. 35th Ann. Symp. Found. Comput. Seci., 1994.

INY90] M. Naor and M. Yung. Public Key Cryptosystems Provably Secure Against
Chosen Ciphertext Attacks. In Proc. Twenty-second Ann. ACM Symp. Theor.
Comput., pages 427-437, 1990.

A Interpreting the random tape as bit commitments

For completeness, we include the technique of [FLS90] for implementing random committed
bits in the shared random string model.

We interpret the random string as a stream of committed random bits. For this we assume
the existence of a one way permutation P. This approach was introduced in [FLS90]. We
interpret a string r of k consecutive bits in the random string as encoding the bit B(P~*(r)),
where B is a hard-core bit of the one way permutation P.

The properties we need from this encoding are that the prover can “open” a committed
bit to the verifier (simply by stating P~'(¢) in this case), the prover cannot open a committed
bit both to appear as a 0 and as a 1 (in our case this follows from P being a permutation), the
computationally bounded verifier cannot guess the values of the bits from their commitment
(this is guaranteed by the hard core property of B), and last, a uniformly chosen string of
length ¢ should be a commitment of a uniformly chosen bit in {0,1} (this follows from P
being a permutation and by the fact that B is unbiased).

So before the prover and verifier begin the protocol, they partition the random string to
non-overlapping strings of length & and treat each such string as a commitment on a random
bit. In the sequel, we refer to the shared random string as being composed of random
committed bits.

22

It was shown in [BY92] that this proof is zero knowledge. It should also be clear that if
© €3-SAT-5 and the (honest) prover indeed selects a permutation then he cannot fail.

Summing up, we can use the technique of [BY92] in order to relax the cryptographic
assumption from the existence of a family of certified trapdoor permutations to the existence
of a general family of trapdoor permutations. The cost is at most a constant multiplicative
factor in the length of the shared random tape.

7 Open questions

The result in this paper follows earlier attempts to make the non-interactive zero-knowledge
protocols more efficient. However, there is no known lower bound on the complexity of a
non-interactive proof for NP-Hard languages. It is a most intriguing open question whether
non-trivial lower bounds can be proven in this case.

References

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero Knowledge and Its
Applications. In Proc. Twentieth ACM Symp. Theor. Comput., pages 103-112,
1988.

[BG&9] M. Bellare and S. Goldwasser. New Paradigms for Digital Signatures and Message
Authentication Based on Non-Interactive Zero-Knowledge Proofs. In J. Feigen-
baum, editor, Advances in Cryptology - CRYPTO ’89 proceeding, volume 435 of
Lecture notes in computer Science, pages 194-211. Springer-Verlag, 1989.

[BP94] J. Boyar and R. Peralta. Efficient Zero-Knowledge Proofs of Circuit Satisfiability.
Technical Report 1, ISSN No. 09033920, Institut for Matematik og Datalogi,
Odense Universitet, 1994.

[BY92] M. Bellare and M. Yung. Certifying Cryptographic Tools: The Case of Trapdoor
Permutations. In Advances in Cryptology - CRYPTO 92 proceeding, Lecture
notes in computer Science. Springer-Verlag, 1992.

[Dam92] 1. Damgard. Non-Interactive Circuit-Based Proofs and Non-Interactive Perfect
Zero Knowledge with Preprocessing. In Advances in Cryptology - Eurocrypt 92
proceeding, Lecture notes in computer Science. Springer-Verlag, 1992.

[DSMP88] A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge with
Preprocessing. In S. Goldwasser, editor, Advances in Cryptology - CRYPTO
88 proceeding, volume 403 of Lecture notes in computer Science, pages 27-35.
Springer-Verlag, 1988.

[Fei] U. Feige. Personal Communication.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Based on a Single Random String. In Proc. 31th Ann. Symp. Found.
Comput. Sei., pages 308-317, 1990.

21

succeeds in cheating when he can pick f; € F that best serves his purpose, is at most
2.27% |10 {0, 1} < 2.27%. 2k
< 27F

as needed.

To summarize, in order to run the protocol with an efficient prover, we use a family F
of certified trap door permutations, we add a preliminary stage in which the prover chooses
and states a member f; € F, and then the prover and verifier interpret the shared random
string according to the permutation f; in the rest of the proof.

6.1 Getting rid of the certification requirement

The need for certification in this setting was first noted by [BY92]. They also suggested
a way to get rid of this requirement. Loosely speaking, they replace the requirement for
efficient verification that f; is a permutation by a proof (of the prover) that f; is “close”
to a permutation. The idea of the proof is that the prover has to invert random strings in
{0,1}*. In our setting, after the prover selects : € I N {0, 1}*, he uses a predetermined part
of the shared random string to demonstrate the permutation property of f;. This part of the
random string is partitioned into blocks of k bits and for each block u € {0, 1}*, the prover
specifies ' (u), i.e. the inverse of the block u under the mapping f;.

If an e fraction of the strings in {0,1}* do not have preimages and the prover tries to
invert 10k - ¢! strings in {0, 1}*, then he is caught with probability at least 27%%, Denote

by [the number of committed bits used in the proof, i.e., [= O(n- k). We select ¢ & % to be
the fraction of bad strings in {0, 1}* which we allow. Therefore, we have to use additional
10 - [tests to make sure that with probability at most 271% f; violates this property and
the prover is not caught. Note that we only multiply the length of the random string by a
constant (11), so the complexity is not changed.

We first note that since there are at most 2F possible permutations that the prover can
choose, the test fails all of them with probability at least 1 — 279, So now assume that
we are dealing with a function /; for which at most ¢ fraction of the points in {0,1}* have
two inverses. So in the proof the prover gains an additional power: The ability to open
the committed bits that have two inverses in both possible way. We call these bits bad.
As before, we let the prover choose the opening of the bad committed bits at random and
we then conclude that the prover can use this to raise his probability to cheat the verifier
by a factor of at most 2° where b is a random variable that represents the number of bad
committed bits between the [bits used for the original proof. (Note that the prover has also
the advantage of choosing which 7 € {0,1}* to choose so that the bad bits appear in good
places for him, but this advantage of selecting f; was already taken in his favor previously
in this section.

If the number of bad committed bits b < 5k, then we are done, since our soundness
analysis is robust to the prover increasing his probabilities by a factor of 2°*. So let us
compute the probability that the number of bad bits b does not exceed 5k. The expected
number of bad bits is [- ¢ = k. By the Chernoff Inequality, we get:

Prob[b > 5k] < Prob[|b— E[b]| > 4k]
< 27%

20

5.5 Complexity

Our proof uses O(k) committed bits for each variable, i.e., O(k%) random bits for each
variable. Thus the overall number of committed bits we use is O(nk) and the length of the
shared random tape we use is O(k?* - n).

In this extended abstract, we have not tried to push the constants down, and so our
constants are in fact huge. In the final version of this paper, we intend to keep the constants
as low as we can. We believe that the problem of designing a protocol with more efficient
constants is an interesting open question.

6 Efficient provers

Our proof system can also be implemented by an efficient prover (who has an auxiliary input
containing a witness for the NP problem). However, a few changes have to be made which
affect the cryptographic assumption we use.

We follow [FLS90, Kil94] by assuming the existence (and specifically by using) a family of
certified trap-door permutations. Loosely speaking, a family F of trap-door permutations is a
set of permutations {fZ : {0, 1}* — {0, 1}k}z‘el such that: f;(xz) can be efficiently computed
given (7,), it is hard to compute f'(y) given (z,y), for each 7 there exists a trapdoor t(7)
such that it is possible to compute efficiently fi'(y) given (i,y,%(7)), and there exists an
efficient algorithm that given the security parameter k, samples ¢ € I N {0,1}* uniformly
together with #(7), i.e., there is an efficient sampler that samples (¢,%(¢)) such that 7 is
uniformly chosen in I N {0, 1}*.

The additional “certification” property is that given i, it is possible to verify efficiently
that 2 € I, 1.e., f; € F. Specifically, if f; is in F then we know that f; is a permutation.

Our proof system for an efficient prover involves an additional preliminary step. Note
that the only use we made of the power of the prover is in inverting the one way permutation
while interpreting the shared random string in the beginning of the proof.

In order to remove this need of powerful computation, we let the prover choose at random
(i,t(2)) such that + € I N {0,1}* and the whole proof is made on the one way permutation
fi. So at the beginning of the proof, the prover states the index ¢ he is going to use and the
verifier verifies that indeed ¢ € I. Note that it is important to verify this since f; must be a
permutation for the soundness of the proof system. After that, the proof system is the same
and the efficient prover can invert f; (using the trapdoor t(z)) whenever needed.

The completeness, and the zero knowledge analysis remains the same, but the soundness
property has to be computed again, since the prover gains a new power: He can interpret the
shared random string in ‘I N {0, l}k‘ different manners (according to the choice of f; € F)
and perhaps he can choose f; that most helps him to cheat on a non-satisfiable input formula
®.

We treat the soundness analysis in the same manner as we did in the original soundness
analysis. Namely, first we analyze what happens when the prover really chooses uniformly
fi € F and then we compute the advantage he may get when picking the best possible
fi € F. So when f; is picked at random, the probability that the prover succeeds in cheating
the verifier is the same as computed in Section 5.2. Therefore, the probability that the prover

19

random string in the sense that the original random string will contain commitments on
random bits indeed, but the shared random string output by the simulation will contain
specific places where the commitment will be only on the bit 1.

The simulator begins by producing a real random string of committed bits which are
known to the simulator. Next, the simulator follows the prover strategy as far as it can.
Namely, it produces characters, throws away the irrelevant 00’ pairs, gather the characters
into blocks and opens all the bad blocks. At this stage (before the third part of the proof),
the simulator replaces all the characters in the good blocks by WC characters. The simula-
tor does that by producing random commitments on the bit 1’ and replacing the original
commitments in these places by the new commitments. We stress that the shared random
tape is indistinguishable from a real random tape since the bit commitments are hidden for
an efficient machine.

After substituting the commitments, the simulator polarizes the blocks randomly. Namely,
for each remaining block, a bit is chosen uniformly and independently and these bits are sent
in the third part of the proof. The remaining pairs of blocks are subsequently used in the
order specified by this random polarization.

Next, the simulator passes all the required tests by opening the relevant characters ap-
propriately. Note that each test is made of 2 or 3 characters of which at least one must be
a WC character and the rest can be completely random. The opening of the WC character
in the original proof is done so that it matches the other predetermined random characters
(over {0,1}). In the simulation the simulator produces the same distribution on the opened
characters. Namely, all the opened characters are uniformly chosen in {0,1} except for the
characters that must be fixed to pass the test. Note that it wouldn’t be good to always open
a pair to 0-1 when the exclusive or of these bits has to equal 1, since in the original proof the
pair 0-1 has the same probability as 1-0. Since no character is used twice, the distribution of
the proof output by the simulation (on satisfiable formulas) is identical to the distribution
of the real proof.

To summarize, two points are important in the simulation. First the shared random string
output by the simulation is polynomially indistinguishable from a truly random string, and
second, all the characters that are opened during the proof are uniformly chosen in {0,1}
except for the restrictions imposed by the tests. Therefore, the output of the simulation is
indistinguishable from the original proof.

5.4 A remark on perfect completeness

It is desired that a proof system will have a perfect completeness property. Namely, that if
the input formula is indeed satisfiable then the prover will always be able to prove that this
is the case. However, in our protocol even if the input formula ¢ is satisfiable, the prover
may still not be able to prove it since the conditions stated in the Chernoff bound do not
always hold for the shared random string of the proof.

To fix the protocol to have perfect completeness, we allow the prover to show that this
is the case (by opening all the characters of the shared random string and showing that the
number of good blocks is not within the desired bound). In this case the verifier accepts
(although he gets no statement about the input formula). Using this augmented protocol,
we gain perfect completeness and the soundness remains unchanged since we have assumed
that in this rare case, the prover always succeeds in convincing the verifier.

18

Again, we return to the real prover. The number of possible strategies from which the
randomized prover has chosen at random is bounded by (2“"”52)3 (as in Case (I) but for
three variables). So if the prover chooses the best strategy instead of picking a strategy at
random, the probability that he passes the test, p, satisfies:

7
P < 23(t1+t2)—E-t1-%+3(t2—t1)-%
. — 7 _
2kﬁ-(6-2‘1+1 3—2a_ E'(QQ-H .3 QQ_W).%H;.W.%)

Qkﬁ_(6_2a+1_3—2o¢_%_(%2a+1_3—2a_6.7,y))

Since 6.7y < %20“"1 372 we get that

))

o=

p < 2k5.20+1 -3_2“-(6— 2.

Since a > 140 and since 3 > ﬁ we get that the probability that the prover passes this
2—10k.

test even when he chooses his best strategy is at most

5.2.4 Combining both cases

In both cases the prover is caught with high probability. If the variables are not polarized
consistently then he is caught at the consistency test with probability 1 — 2719 and if he
sets the polarization of the variables almost consistent, then he is caught in at least one of
the clause tests with probability at least 1 — 27°. Combining both, we conclude that the
prover is caught with probability at least 1 — 2719, Also, our analysis was conditioned on
the event that the conditions given in the Chernoff inequality hold (see Equation (1)) and
by the setting of the parameters this happens with probability 27°*. Therefore, the overall
probability that the prover manages to convince the verifier on an input ¢ which is not
satisfiable is at most 2 - 279,

One may note that setting the parameters a, [, and ~ appropriately enables us to lower
the upper bound on this probability to 27¢* for any constant ¢ > 0.

5.3 Zero knowledge

In order to prove the zero knowledge property of the protocol, we have to show that there
exists a probabilistic polynomial time simulator M whose output distribution on ¢ €3-SAT-
5 is indistinguishable from the distribution (o, P(c,)) where the shared random tape o is
uniformly chosen in {0, 1}“*%2“. Note that for the honest prover when ¢ is indeed satisfiable,
the shared random tape o completely determines the proof.

The way to produce this pair, i.e., shared random tape with the corresponding proof
can be done in the following way. First, we note that we can efficiently produce a random
commitment for any given bit. For example, in the specific manner we use bit commitment,
we have to produce a random string @ such that B(z) = b, and then operate the one way
permutation P on z. For any given b € {0, 1} this can be done efficiently.

In this construction, we assume that it is impossible to distinguish efficiently between a
commitment on 0 and a commitment on 1. (This is the general requirement of a commitment
scheme, and in our particular scheme this is guaranteed by the hard-coredness of B.) In fact,
the shared random string output by the simulator will be different from the original shared

17

Returning to the real prover. The randomized prover chooses between its strategies at

random. The choice is made between the tz possibilities to fix the places of the false
1

pairs, and between choosing the inconsistently polarized pairs. The number of options for

this second choice can be bounded by 2. Also, the randomized prover passes the test with

ad a —2a . .

probability at most 9k Gog2ttaTiy By simple counting arguments, the best strategy of the

prover passes this test with probability at most

ty o1 o—k-528 gat1 3-2a oti+ts -k 228 gatl g—2a
<21 .27 104 < 2 . Q7% %04
tl -

2kﬁ2a+1~3—2a~(2—ﬁ)—ad)

Setting o = 126—0d and since § > ﬁ, we get that the prover passes the test with
2—10k.

probability at most

5.2.83 Case II: All variables are almost consistent

Assume that the consistency of all variables is at least 9/10. Again, we consider the ran-
domized prover that acts as before. l.e., selects at random the places of the ¢, — ¢; false
pairs of blocks in between the ¢; blocks, and selects at random which good pairs will have an
inconsistent polarization. In all other senses (i.e., opening WC characters) the prover always
makes his best choice in order to pass all tests.

Recall that we have defined an assignment 7 that corresponds to the majority of the
polarities in each variable. Since the input formula is not satisfiable (we are analyzing the
soundness of the protocol) then there exists a clause that 7 does not satisfy. Let the literals
in this clause be y, z, and w. (Each of them is either a variable of a negation of a variable).
Each variable contributes a string of characters s, s,, and s, of length 5. Since 7 assigns
each of the literals the value false and the literals are 9/10 consistent, then we can deduce
the following on each one of the strings.

FEach of the strings s;, s,, and s, is composed of at least 9¢;/10 random blocks (i.e.,
% -1y - 5 random characters), at most ¢;/10 WC blocks that originate from inconsistently
polarized good blocks and from t; — t; WC blocks that originate from false pairs of blocks.
Also, since we have truncated the strings from length ¢, blocks to ¢; blocks (in order to have
the same length for all strings) then we assume that all the ¢; —¢; blocks that were truncated
were good. To summarize, we have in each string (941 /10 — (£, — #1)){5 random characters,
and (11/10 + (5 — t1)) 75 WC characters.

Note again that the claim on randomness is based on the prover not selecting the places
of the false pairs and the inconsistently polarized good-pairs at random.

Recall that for the test of the clause the prover has to open all characters such that the
bit-wise exclusive or of the strings s,, s,, and s, equals 0°'16. What is the probability that
the randomized prover passes this test? The best possible arrangement of the WC characters
in the three strings s;, s,, and s, is when their indices don’t overlap, and then the prover
has control over 3(¢1/10 + (t; — t1)){5 characters. Still, all the rest of the characters are
completely random and sum up to 0 with probability 1/2. Since all these characters are
completely random and independent, the probability that the randomized prover passes this

test is at most
9—(Tt1/10-3(t2—11)) 5

16

still has two things to choose. First, he can determine where to put the ¢; — ¢; false pairs of
blocks amongst the ¢5 pairs. Second, he can decide which pairs are inconsistently polarized.
We let the randomized prover pick these at random. Namely, he picks at random ¢, — ¢4
places for the false pairs between the ¢ pairs, and he picks ¢;/10 (or more) pairs that will
be polarized inconsistently (with the polarity of the majority of the pairs).

What is the probability that the prover passes the consistency test? Recall that each
basic consistency test is performed on two pairs. If the pairs are polarized in the same
manner then the test is easily passed by the prover opening the wild characters properly.
Also, if anything is tested against a false pair then the prover easily passes the test since
it has one of the pairs consisting of wild characters only. However, when two good pairs of
opposite polarization are tested against each other, then each of the non-WC blocks in both
pairs contributes a completely random string of «/2d bits and the two strings must be equal.
This happens with probability exactly 27%/2¢,

Note a delicate point in our claim that the strings compared are random. Indeed the
contents of the strings were chosen uniformly at random, but it is known in advance which
pairs are tested against each other and the prover may use his advantage in setting the
places of the false pairs or deciding which pairs are inconsistently polarized in order to set
specific pairs against each other and enhance the probability of the good pairs to pass the
test. Nevertheless, this is not the case here. We are considering now the randomized prover
who chooses the places of the false pairs and the good pairs that are inconsistently polarized
at random, and thus the good pairs relate to one another in a completely independent and
random manner.

Now let’s compute how many oppositely polarized good pairs are tested against each
other. By our assumption, there are at least ¢1/10 good pairs which are not polarized
consistently with the majority of the pairs. By the expansion property of the expander graph
we use, these pairs have at least ¢; - 6/10 neighbors that are either consistently polarized
with the majority or they are false pairs. Since the number of false pairs is at most ¢, — ¢y,

we get that at least m e t1-6/10 — (ty — 1) tests are made between pairs that are oppositely
polarized. Since we do not recycle characters, all these tests are completely independent,
and the test is passed with probability 2-2m/2¢,
Recall that
ty= (297137 — 5) Bk

/

and

ty = (2““ 372y 7) Bk.
Thus

?

10

2oz+1 .3—2&_5
60

0)
m = kﬂ (E . 20&+1 . 3_204 _ ’7(2 _I_ _))

Setting 3 = %, we get (see Equation (2)) v = , and since ~ is that small,
we get:

B
m > kﬂ% .9atl . gm2e

To summarize, the probability that the randomized prover passes this test is at most

&|§

a _1.Bab 5a+41 q—2
k40d 2471.3 ‘1-

27 % <2

15

of blocks after being polarized polarized in the third part of the (non-interactive) proof. For
any variable z; consider the majority of the polarization in the ¢; good block-pairs which
correspond to z;. Since the prover is not necessarily honest, some of these pairs may have
their WC-block as the first block and some of the pairs may have their WC block as the
second block. We define 7(x;) to be false if in the majority of the pairs the first block in
the pair is the WC block, and we define 7(z;) to be true if in the majority of the pairs the
second block is the WC block.

Each variable has a degree of consistency with this assignment. Define the consistency
of the variable z; to be the fraction of the good pairs that have polarization equal to the
majority polarization of the variable (by which 7(z;) is determined). Clearly, each variable
has consistency at least 1/2. We are going to partition the analysis into two cases. One
possible case is that one of the variables has low consistency, and then we will show that the
consistency test of the polarization (Part (4) of the proof) passes with low probability. The
second possibility is that all variables are close to being consistent. In this case, we recall
that 7 cannot satisfy all clauses (since ¢ is not satisfiable) and we show that the prover can
pass the test of a clause which is not satisfied by 7 with low probability.

Formally, we partition the analysis into two cases:

1. There exists a variable whose consistency is less then 9/10.
2. For each variable in the formula, its consistency is at least 9/10.

We are going to show that whichever of the above is valid, the prover succeeds in convincing

the verifier with probability at most 2710,

5.2.1 A probabilistic argument

For each of the above possibilities, we use the following method by which we prove that the
prover fails with high probability. We define a randomized prover which chooses its cheating
strategy at random, and compute the probability that the proof which the randomized prover
produces passes the relevant tests. Next, we show that even if the prover chooses its best
strategy (rather then selecting his strategy at random), the probability that he manages to
convince the verifier still remains low.

5.2.2 Case I: There exists an inconsistent variable

Assume that there exists a variable z; (1 < ¢ < n) whose consistency is lower then 9/10 and
let us calculate the probability that the prover has a winning strategy for Part (4) of the
proof (the consistency test of the polarization). As mentioned, we begin by calculating the
probability that the prover can pass the consistency test of Step (4) when he chooses his
strategy at random. Recall that we are assuming a worst case scenario in which there are ¢4
good pairs of blocks for z; and there are also ¢, — ¢ pairs of blocks that were declared good
by the prover but contain, in fact, only WC characters.

In the polarization consistency test the prover has to open half of the characters in each
block. The randomized prover opens all the non-WC characters to 0 or 1 as he must, and
he opens all the WC characters in the best way, so that the test that they are engaged in is
satisfied. (Recall that each character is engaged in at most one test.) However, the prover

14

5 Analysis of the protocol

5.1 Completeness

This is the easy part of the proof. It should be clear that the prover can perform all his
tasks when the input formula ¢ is indeed satisfiable. He will fail only when the Chernoff
inequality does not hold (see Equation (1)), namely, the number of good blocks ¢;, for some
variable x;, is not in the range between ¢; and ¢;. This happens with probability at most
n-271% and since n < 2* (for reasonable settings, see Section 2) we get that this happens
with probability at most 279,

5.2 Soundness

Let us analyze what is the probability that the prover can produce a convincing proof (on a
random string) for a non-satisfiable formula ¢. The prover convinces the verifier if:

1. For each variable z;, the number of good blocks ¢; satisfies t; < {; < t5.
2. All polarity tests hold.
3. All clause tests hold.

The first condition does not depend on the input formula. The probability that the first
condition hold is at least 1 — 279, We assume (in a worst case manner) that if the first
condition doesn’t hold, than strange things happen and the prover can convince the verifier
always. This happens with probability at most 27°%. Conditioning on the event that the
first condition hold, We compute the probability that Conditions (2) and (3) hold. We show
that this happens with (conditional) probability at most 27%%. Thus, the probability that the
prover can convince the verifier is at most 2-279%. Of-course, we can reduce the upper bound
on this probability to 27 for any constant ¢ > 0 increasing the number of bit commitment
used (The parameters a, 3, and v used in the protocol).

So assume now that Condition (1) holds. We first note that this conditioning does not
foil one important property which holds in the unconditional space. The non-WC characters
in the good block pairs are uniform and independent over {0,1}. Namely, we note that
the number of good pairs of blocks is independent of the specific content of the non-WC
characters in the good pairs of blocks. This property is essential for the rest of the proof.

Let us fix the following worst case scenario for the rest of this proof. Suppose there are
t; good pair of blocks for each of the variables, but the prover claims that there are t5 such
pairs. Also, in all the non-good pairs of blocks which the prover announces as good (false
pairs of blocks), all the characters are WC. Namely, the prover has complete control over
these pairs and he can open each of the characters there to whatever he wants. Moreover,
we assume that the prover can decide the places of the {5 — ¢y false pairs of blocks in between
the ty overall pairs of blocks. However, note that in each of the ¢; good pairs, even in this
worst case analysis, we still assume that the block that does not contain WC characters is a
uniformly and independently chosen string in {0,1}°.

Next, we define an assignment 7 to the variables of the formula ¢. We shall show that if
this assignment does not satisfy ¢ (as must be the case here since we assume that ¢ is not
satisfiable) then Conditions (2) and (3) hold with small probability. Consider the good pairs

13

that the prover has the ability to open all the characters in the WC string either to 0 or to
1 as he wishes, but the other string is fixed.

Now, for each clause, we make a test. Loosely speaking, for each variable in the clause
we take part of its string (of characters) so that if the variable satisfies the clause (i.e., it is
assigned true and appears positively in the clause or it is assigned false and appears with a
negation in the clause) then the prover can completely control the opening of the string that
correspond to the variable. If 7 assigns x; a value that does not help to satisfy the clause,
then the prover can open the corresponding string only in one way which corresponds to a
random string over {0,1}. After selecting the 3 strings that correspond to the clause, the
prover has to open the strings such that their bit-wise exclusive-or equals the zero constant.
So if the prover can control one of the strings (or equivalently, 7 makes one of the literals in
the clause getting the value true) then he can easily pass this test. Otherwise, the prover
has to open 3 random strings, and their exclusive-or is zero with small probability.

More formally, recall that each variable appears in at most 5 clauses. So we partition
the pair of strings of each variable to 5 pairs of strings (each string in each of the 5 pairs
is now of size - ¢1/10) and we use one of the pairs for each appearance of the variable in
a clause. We stress that the polarity of the strings remains. Namely, the pair is divided
into 5 sub-pairs where the first string in each sub-pair is a substring of the first string in the
original pair, and the second string in each sub-pair is taken from the second string in the
original pair. Also, no overlapping is allowed. So throughout the proof the prover never uses
the same character twice.

Let a clause contain the variables z;, z;, and). ;From the pair of sub-strings that each
of the variables contribute to this clause, we select the first sub-string if the variable appears
negated in the clause and the second sub-string if the variable appears positive in the clause.
Thus, we select for each clause 3 strings of characters of length « - ¢1/10. Intuitively, if the
assignment 7 satisfies one of the literals in the clause than the string that correspond to this
literal contains only WC characters.

After selecting the 3 strings of the clause, the prover opens all the characters in all of
these strings so that the bit-wise exclusive-or of the strings equals 0%?1/10,

In case the prover has more control over the opening of these characters (e.g., if more
then one variable is assigned true in the clause) then the prover uses his degrees of freedom
randomly. Namely, he opens all WC characters at random except the ones which have to
be fixed so that the test is satisfied. This random selection is crucial for the zero knowledge

property.
Fourth part of the proof: The prover opens all the remaining characters so that for each

clause, its three corresponding strings have a bit-wise exclusive-or equal 0%/ The proof
ends.

The verifier checks that the test for each clause indeed passes, and that all characters were
indeed opened legitimately. In this case, he accepts. Otherwise, he rejects. The verification
process ends.

12

We consider an expander graph with ¢; vertices. Each vertex correspond to a pair of
blocks, and the edges, as appearing in the expander, determine which pairs are going to be
checked one against the other (through the basic test). In the sequel, we denote the degree
of the expander by d and the expansion rate by 1+ ¢. Namely, each subset A of the vertices
of cardinality at most |A| < % has at least & - |A| neighbors which are not in A.

Next we describe the basic consistency test as applied on two pairs of blocks. Let these
two pairs be number j and k, and denote by (Bj, B?) and (Bj, Bf) the blocks in the pair.
Recall that the requirement to make this basic test originates from the existence of an edge

0]

e = (j,k) in the expander. We are going to use 35 unique characters of each of the four

blocks involved in this test. Denote the character-strings which are used by the basic test as
(si(e),s%(e)) and (sp(e), s3(e)), where s?(e), (1 < p < 2 and g € {j, k}) is the substring of B?
which is devoted for the basic test specified by the edge e (we never use the same character
for two different tests). Note that if the prover is honest and the blocks are good and well
polarized, then either si(e) and s}(e) contain only wild characters and s3(e) and s3(e) are
random over {0, 1}, or s(¢) and s}(¢) are are random over {0, 1} and s}(e) and s%(e) contain
only wild characters. In this case, the prover can open the values of these characters such
that

si(e) ® s3(e) = sj(e) & si(e) = 07/

since the prover can open the WC characters to whatever value he wants (the operation “&”
denotes bit-wise exclusive-or). We define this as the basic consistency test.

Third part of the proof: The prover opens half of the characters in each of the blocks
such that all the basic consistency tests associated with all the expander edges hold.

The verifier verifies that all the characters which should have been opened were indeed
opened, and that for each edge of each expander, the consistency test is satisfied.

To summarize, in this step we “lost” half of the characters which we cannot use in the
sequel, but we gained some assurance that there is some consistency in the polarity of the
pairs. We shall analyze the degree of this assurance in the analysis of the protocol (See
Section 5).

For the next stage, we do the following concatenation process. For each of the variable,
we concatenate all the first blocks in all its corresponding pairs to a single string, and
concatenate all the second blocks in all its pairs to another string. So for each variable we
have two strings, and if the prover is honest then one of these strings is a string of WC
characters only and the other string is a random string over {0, 1}. The length of each string
is {; - /2. To make all strings (of all variables) have the same length, we truncate them to
t1 - /2 (recall that ¢; > t; or the verifier has already rejected).

4.5 Last step: showing that 7 satisfies ¢

In this last step, the prover uses the polarization of the strings, which should represent 7,
to show that the formula ¢ is satisfiable. If the prover behaves according to the protocol
it should hold that for each variable x;, 1 < ¢ < n, the prover and verifier share a pair of
strings of (hidden) characters. One of the strings consists of WC characters only, and the
other string is a random string over {0, 1} which contains no wild characters. Also, the WC
string is the first in the pair if 7(z,;) =false and the second in the pair if 7(z;) =true. Recall

11

then the random variable ¢; is between t; and t, with probability at least 1 — 271%% for a
random stream of characters.

To summarize this step, for each variable z;, the (honest) prover and verifier are left
with ¢; good pairs of blocks, each consisting of one block of WC characters and the other
block contains no WO character in the block. The number ¢; is at least ¢; and at most
t3. A non-honest prover may claim that some non-good pair of blocks are good, but with
probability at least 1 —27'% the number of pairs of blocks he can cheat on is at most ¢, —#;
(assuming the worst case in which there are only ¢, good pair of blocks but the prover claims
that there are t5).

Thus we end this step having a set of good pairs of blocks associated with each variable.
Next, we begin to associate the shared random string (which is now a random stream of
good pair of blocks) with a satisfying assignment of the formula .

4.3 Setting the polarity of the pairs of blocks according to the
satisfying assignment to ¢

Each pair of blocks contains a block of WC characters and a (random) block without WC
characters. The order of the blocks in each pair is random. In the third part of the proof,
the prover is going to set order in all these pairs according to some satisfying assignment to
the variables in the formula ¢. Let 7 denote such an assignment. The prover is going to set
the order of all the pair of blocks that correspond to the variable z; such that if 7(z;) =false,
then the first block in each pair of blocks that correspond to z; is set to be the WC block
and if 7(z;) =true, then the second block in each pair of blocks that correspond to ; is set
to be the WC block. The setting of order in the pairs of blocks is the third part of the proof.

Second part of the proof: For each pair of blocks (got from the shared random tape),
which was not dropped in the previous step of the proof, the prover specifies a bit. If a pair
is assigned the bit 0 then its order is kept, whereas, if a pair of blocks is assigned 1, then the
order of the blocks in the pair is reversed for the rest of the proof.

The verifier does not check anything, but only reverses the order of the blocks where
necessary.

To summarize this step, the honest prover has now pairs of blocks such that for each
variable, all pairs are ordered (polarized) in the same manner, and this manner corresponds
to the assignment of the variable associated with the pair.

In the following step, we are going to check that the pairs of blocks are indeed polarized
consistently. This test is not intended to check whether this polarization matches a satisfying
assignment to the formula .

4.4 Checking the consistency of the polarization

We now describe a consistency test for the pairs of blocks associated with a variable x;. This
test is repeated for each of the variables. Recall that we have ¢; pairs of blocks which are
supposed to be polarized. The test consists of many basic tests, each basic consistency test
is performed on a couple of pairs. We have to specify what the basic test is and also which
pairs are going to be tested against each other. Let us begin with the second.

10

wishes.

4.2 Sieving good blocks

In the next step of the interpretation of the random string we consider blocks of o consecutive
characters (where « is a constant to be determined later). In fact, we consider the given
stream of characters as a sequence of pairs of blocks. We call a pair of blocks good if one
of the blocks in the pair contains only WC characters and the other block does not contain
any WC character. For each variable z;, 1 < < n, the prover initially considers 3k pairs of
blocks (for a constant 3 to be determined later, and the security parameter k) and lets only
the good blocks prevail for the rest of the proof.

In the second part of the proof the prover completely opens each character in every block
that is not good. These blocks are not used again in the proof. The prover not only opens
these characters (as we defined an opening of a character by opening one of its committed
bits) but also opens the two committed bits in each of the characters, so that the verifier
can check that the discarded blocks are indeed not good.

First part of the proof: The prover opens all committed bits in all pairs of blocks which
are not good.

The verifier verifies that all blocks that were opened were indeed not good. Otherwise he
stops immediately and rejects. Also, if any of the characters opened is irrelevant (contains
the pair 00) the verifier stops and rejects. Last, the verifier checks for each variable z; that
the number of pairs of blocks, ¢;, that remained, i.e., the number of pairs of blocks that were
claimed to be good for z; (these are still hidden) is close to its expected value. If ¢; is not in
the range [t1, ;] to be specified below, then the verifier stops immediately and rejects.

Let us compute the expected value of ¢; and determine the bounds ¢; and ¢,. The
probability that a random pair of blocks is good is 2-(1/3)%-(2/3)% (choose which member
of the pair is the WC block, then it has probability (1/3)* to consist only of WC characters,
and the other block has probability (2/3)* to contain no WC character inside). Therefore,
the number of good blocks between the 3k random blocks initially considered for the variable
z; is a random variable ; that has expected value 2> . 372> . 3. k.

By the Chernoff bound, the deviation of /; from its expected value is big with low prob-
ability. Specifically,

Prob [

gi _ 2a—l—1 . 3—2a . ﬁk‘ 2 ')/ﬁk] S 2 . 2_kﬁ"¥2'2_°‘_2'32°" (1)

The parameter v is a constant which determines the tightness of the bound. We shall set its
value later. Now set the deviation bounds that the verifier insists on as:

= (2437 —) Bk

tg déf <2a+1 i 3—2a + ,}/) ﬂk‘
By the Chernoff bound, if we set the constant v to:

2. 11 .20+ . 320
y =2 2)

/

this message (the proof) and the random tape, decides whether to accept the claim that the
input formula is satisfiable.

In our proof system (as in other non-interactive zero-knowledge proof systems) the
prover’s message includes a statement or an interpretation of the structure of the shared
random string in a way that several properties are satisfied if and only if the input (¢) is in
the language (3-SAT-5). If there were no zero knowledge requirement, the proof would have
been simple. The prover would have given the indices in the random string in which the ver-
ifier can find a satisfying assignment for the formula . Note that if there exists a satisfying
assignment, then with very high probability it appears as a substring of a (polynomial-length)
random tape. However, our protocol is more involved since we would like the proof to be
zero knowledge.

Our proof system is a direct improvement over the protocol in [Kil94] which in turn is
inspired by the protocol of [FLS90].

4.1 Interpreting pairs of bits as characters

The prover and verifier first establish characters in the random string. A character can
have 3 possible values: 0, 1, and a wild-character (WC). Characters are encoded by pairs of
committed bits in the following way:

10 - the character 0

01 - the character 1

11 - the character WC.

Of-course the random committed bit stream of the random tape also contains the pair 00,
but the pair 00 will be irrelevant to the proof. On one hand, the pairs 00 will not foil
the ability of the prover to convince the verifier that ¢ is satisfiable when indeed it is the
case, and on the other hand, these pairs will not help a cheating prover to prove that ¢ is
satisfiable when this is not the case.

This new interpretation of the random tape considers the committed bits of the previous
stage in pairs, and gets a string of characters by the above encoding. In order to get rid of
the non relevant pairs '00°, the prover opens all the commitment of 00’ pairs and these pairs
are not considered any more during the rest of the proof. This opening of the irrelevant pairs
is the first step of the proof.

Now that we have defined what a character is, let us also set a procedure by which the
prover can “open” a character. Namely, a prover can show the verifier that a character
(which consists of a pair of committed bits) contains a certain value. Throughout the proof,
the prover will open a character either to the value 1 or to the value 0. To prove that a
character has value 0, the prover will open the commitment of the first bit and show that the
(committed) bit is 1. To show that a character is 1, the prover will open the commitment of
the second bit in the pair and show that it is 1. Clearly, a wild-character can be open both
ways, since both the first and the second bit in the wild character are 1. We shall make an
explicit use of the fact that the character WC can be opened by the prover both to the value
0 and to the value 1.

To summarize our interpretation of the random tape so far, we have a stream of uniformly
independently chosen characters of value 0,1, and WC. The prover can open the character 0
and 1 to their correct value, and he can open the character WC to both values 0 or 1 as he

characters as described above. These characters are uniformly and independently selected
in the set {0, 1,WC} and our goal is to gather the (completely random) characters such that
for each variable we get a pair of strings: One of them contains no WC characters and the
other contains only WC characters.

Loosely speaking, this part of the proof-system goes as follows. First, the stream of
characters is gathered into blocks of characters. These blocks contain only a constant number
of characters. (We shall have to use O(k) such blocks to get the strings for the variables which
are composed of O(k) characters.) Next, the prover selects “good” blocks: Those that either
contain only WC characters or those that contain no WC characters. In fact, he selects only
pairs of good-blocks that have one WC block and one block that contains no WC characters.
The prover then gets rid of the pairs of blocks that are not good by stating which they are
and revealing their content. The verifier checks that the prover indeed got rid only of bad
pairs of blocks and that the number of good pairs of blocks that the prover found is close
to its expected value. This should happen with high probability by the Chernoff Inequality.
All the above is done for each variable separately, and for each variable the prover collects
O(k) blocks.

Next, the prover selects the order of the blocks in each pair according to the assignment
to the corresponding variable. Namely, he can reverse the order of the blocks in each pair
by announcing the need to reverse the pair in the proof. Then the verifier makes a test
(which we do not describe here) for each variable x; that all the pairs which correspond to
the variable z; are consistently ordered (polarized). The eflicient construction of this test
relies on the properties (and existence) of an expander graph.

After the verifier is convinced that the pairs of blocks are consistently ordered, all the
pairs are concatenated to get a pair of long strings. One of the strings in the pair contains
only WC characters, and the other is random over {0, 1} as needed.

Of-course, we still have to explain how hidden characters can be constructed from the
bits in the shared random tape. We explain this in the full description of the protocol in the
following Section.

4 The protocol in detail

We present a non-interactive zero-knowledge protocol for 3-SAT-5. As mentioned in Section 2,
this implies the following theorem:

Theorem 1 Circuit Satisfiability can be proven by a non-interactive zero knowledge proof
system whose length is O(n - k?), where k denotes the security parameter and n is the size of
the circuit.

The compilation procedure of [FLS90] requires that the security parameter k be large, as
it must be as large as the security parameter for the one-way permutations or trap-door
permutations. In the actual construction for the random committed bit model we can set it
to be O(lgn). We give a sketch of this compilation procedure in Section A.

The Protocol: Denote the input formula by ¢ and denote the number of variables in ¢ by
n. Recall that in our model, the prover and verifier share a random tape and of-course the
input formula. The proof consists of the prover sending one message. The verifier, based on

the following (complex) object out of the shared random string. For each variable z;, the
prover and verifier have a pair of “character” strings (s!,s?). A character is an entity with
the following 3 properties:

1. A character can have three possible values: 0, 1, and WC (wild character).

2. A character is given to the verifier in a hidden (committed) form. It is known to the
prover and is unknown to the verifier.

3. The prover can reveal the content of the character to the verifier in the following way.
If the character has value 0 or 1, then the prover must reveal the correct value of the
character. However for a WC character, the prover can reveal either the value 0 or the
value 1 (he can choose whichever he wants).

1, 87), we assume that the strings of characters which were es-
tablished at previous stages for x; have the following property. One of the strings s! and
s? is a random string of characters with values 0 or 1, and the other string contains only
WC characters. We still have to specify the order in which the strings appear in each pair.
Namely, which one of the strings s and s? contains the WC characters and which one does
not contain any WC character.

Let 7 be a satisfying assignment to ¢, then the order of the strings in the pair has been
determined according to 7(z;). If 7(z;) =false then the string s; is the WC string, and if
7(z;) =true then the string s? is the WC string. This summarizes the description of what
we assume was already built in previous stages of the protocol. Let us now explain how the
prover uses this construction to show that indeed 7 satisfies .

For each of the five clauses in which z; is involved we select the following sub-string. if
z; appears negated in a clause (;, then we select a fifth of the string s! to represent the
variable z; in the clause C;, whereas if z; is positive (not negated) in the clause then we
select a quarter of the string s? to represent z; in the clause C;. The substrings are selected

Returning to the strings (s}, s?

with no overlap, i.e., a character in a string is selected only for one clause. (Here we use the
property that the variable appears in at most five clauses, and we selected only a fifth of the
given string). Note that the selection is made exactly so that if 7 on z; satisfies the clause
then the selected string is a WC string and the prover can open it any way he wants, whereas
if the clause is not satisfied by the assignment 7 to the variable z; then z; is represented by
a completely random string over {0, 1}.

After all strings for all clauses have been selected, the prover opens them and the verifier
checks that for each clause the three bit strings revealed by the prover sum up to 0. Namely,
the bit-wise exclusive-or of the revealed strings is a string of zeros. If 7 is indeed a satisfying
assignment to ¢ then the prover can easily pass this test. For each clause, one of the selected
strings contain only WC characters and he can open this string to whatever bit string he
needs. However, if 7 does not satisfy ¢ then there exists a clause for which all the selected
strings are completely random and the prover will be caught with high probability. (The
strings are of length O(k).)

So given a pair of strings for each variable with the above characteristics, it is possible
to check whether 7 satisfies p. However, we still have to explain how to build a pair of
strings for each character. Suppose again that we have already passed a preliminary stage
in the protocol and we have already established a long stream of “characters”, i.e., hidden

is the circuit size. The error probability for this proof is 1/n® where ¢ may be set to any
constant (affecting the constant in the size of the committed strings). Thus, only O(nlgn)
committed bits are required.

3.2 Sources of Inefficiency in [Kil94]

The inefficiency in [Kil94] comes from implementing influence games within the random
committed bit model. Let ¢ be the length of the strings in the influence game; for the
application in [Kil94], £ = O(lgn). In [Kil94] string pairs are represented by a committed bit
sequence of size () which occurs at random with probability 1/¢9®1). The procedure for
“distilling” these representations will occasionally let through invalid representations that
could be exploited by a cheating prover. To eliminate this problem, the [Kil94] construction
uses (°() representations, so that most representations will be correct with high probability.
Each (®() factor results in an additional polylogarithmic overhead over the O(nlgn) basic
requirement.

3.3 Our Approach

We obtain our greater efficiency making effective use of constant-size string pairs. We use
a much simpler encoding that represents a string pair of size £ with O(¢) committed bits.
The probability that a legal encoding occurs in a sequence of random committed bits is only
1/279¢ but this is Q(1) when £ = O(1).

Unfortunately, the soundness of the zero-knowledge proof scheme requires that we use
an influence game with size-clgn for some specific constant ¢. To obtain such large pairs we
use the distillation method of [Kil94] (with different parameter settings) to generate O(lgn)
string pairs each of size O(1). This requires only O(lgn) random committed bits. We then
adapt an expander-based method of [Kil94] to combine these pairs into a single pair whose
strings are of size ¢’lgn, where ¢ is a slightly larger constant. We use a different and more
powerful method of analyzing the result of this combining procedure.

As before, not all of the string pairs we distill are well formed; indeed, under our parameter
settings a constant fraction might not be. This prevents us from generating an ideal pair
(s!,s?) such that one is completely under the prover’s influence and the other is completely
outside the prover’s influence. Instead, we show that the prover has only a limited amount
of influence on one of the two strings. We then argue that this extra influence does not
eliminate the soundness of the reduction to influence games.

To analyse what the prover can do to cheat on « ¢ L, we conceptually imagine that first
the prover sends his message M and then the shared random string ¢ is chosen. We show
that for any M the probability that the verifier accepts (M, o) is extremely small when o is
chosen uniformly. Indeed, this probability remains small even when multiplied by the total
number of well-formed messages the prover can send. This implies that with high probability
there will be no message that the prover can send to make the verifier falsely accept.

3.4 A top-down description of our protocol

The input to the protocol is a 3-CNF formula ¢ with variables x4, z,, ..., x, and each variable
appears in at most 5 clauses. Suppose that so far the prover and verifier have established

In a reasonable settings, k is greater than Ig n since we want the properties of the protocol
to hold also when we run the protocol polynomially many times. We assume that & > logn
in the analysis of our protocol. !

In this paper, we address the problem of circuit satisfiability. However, in order to simplify
the presentation, we are going to reduce this problem to a more restricted satisfiability

problem: 3-SAT-5. The problem 3-SAT-5 is defined as follows:

Definition 2.2 The problem 3-SAT-5:

Input: A 3-CNF formula ¢ with each variable appearing in at most 5 clauses.
Question: Is ¢ satisfiable?

It is important that there exists a reduction from circuit satisfiability to 3-SAT-5 which is
linear since we present a proof system for 3-SAT-5 with complexity O(n - k*), where n is
the size of the 3-SAT-5 formula, and we claim that this proof can serve for proving circuit
satisfiability with complexity O(n-k?) where n is the size of the circuit. Indeed, one can easily
reduce circuit satisfiability to 3-SAT using a linear reduction. Furthermore, the reduction
from 3-SAT to 3-SAT-5 can also be done linearly, by creating a new variable for each copy
of the original variable and adding clauses which force all copies of the same variable to have

equal assignment. Thus, it is sufficient to present a non-interactive zero-knowledge proof
system for 3-SAT-5.

3 An overview of the protocol

In Section 4, we describe the protocol in full detail. The description there is a bottom up
description of how the proof system is built on top of the random string. In this section, we
first discuss at a high level the basic approach of [Kil94], the sources of its inefficiency and
our approach to eliminating these inefficiencies. We then give a shorter top-down description
of the proof system, which may help going through the details of Section 4.

3.1 Influence Games

The protocol of [Kil94] is based on implementing an influence game, a further abstraction
from the random committed bits model. In an influence game, the dealer deals the prover
and the verifier a sequence of committed pairs of random strings {(s}, s?)}. However, for each
pair (s}, s?) the dealer uniformly chooses a bit b € {0, 1}, and makes s} a “wild card” string.
The prover can reveal any bit of the “committed” s? as any value he desires.? However,
the verifier is not told which string is fixed to a random value and which string is wild,
and cannot distinguish whether a revealed bit was fixed at a random value or chosen by the
prover.

In [Kil94] it is shown how to in prove that circuit satisfiability (via 3-CNF-O(1)) in zero-

knowledge using an influence game where each committed string has size O(lgn), where n

!However, our protocol may be modified to deal with other settings yielding a protocol which requires
O(nlogn - k?) shared random bits.
2The name “influence game” comes from the prover’s ability to influence the values of these strings.

1.3 Outline of the paper

In Section 2 we introduce some definitions and technical details that we use in the paper. In
Section 3 we give a short introduction to our approach and a top-down preview of the proof
system. In Section 4 we give a bottom-up full description of the proof system. In Section 5
we prove that the proof system is valid, and in Section 6 we explain what modifications are
needed in the proof system so that the prover can be implemented efficiently.

2 Preliminaries

Let us set the notations and definitions we use. A parameterized ensemble of distributions
over a language L is a set £ = {E(x,k): 2 € L,k > 1} of distributions, one for each x € L
and security parameter k. We say that two ensembles of distributions E£; and F, over L are
indistinguishable on input z if for any polynomial time machine (tester) 7', all constants ¢
and all sufficiently large & it holds that:

[Prob,c g, (2 [T(s) = 1] = Prob,cp, e [T(s) = 1]| < —

where s « F(z, k) stands for s being sampled according to the distribution FE(z, k).
Let us now define non-interactive zero-knowledge proof systems.

Definition 2.1 A non-interactive zero-knowledge proof system for a language L with security
parameter k consists of a probabilistic proving algorithm P, a probabilistic polynomial time
verification algorithm V and a probabilistic polynomial time machine (simulator) M with the
following property. Let o be a random string shared by the prover and verifier, and let k(|z|)
be a security parameter. Then:

1. Completeness: For any x € L and security parameter k,
Prob [V (z,0, P(z,0,k)) = accept] > 1 — 27*(=)

where the probability space is taken over the random coin tosses of P, V', and over the
uniform and independent the choice of the random bits in the shared random string o.
We can in fact obtain perfect completeness in all of our protocols (i.e., V accepts with
probability 1).

2. Soundness: For any x ¢ L, and any (possibly cheating) prover P', and security
parameter k,

Prob [V (z,0, P'(z,0,k), k) = accept] < 9~ k(=)
where the probability space s the same as in the completeness condition.
3. Zero-knowledge: There exists a simulator M that, on input x and security parameter
k, produces a distribution space, and the ensemble {M(x,k)}zcr is indistinguishable

from the ensemble {(o, P(x,0,k))}zer, which is defined over the distribution space of a
random uniformly chosen o over {0,1} and the random choices of the prover P.

1.1 Previous results

Blum, Feldman, and Micali [BFMS88] show how to construct a non-interactive zero-knowledge
proof system for any language in NP given a very specific number theoretic assumption.
The assumption was relaxed to quadratic residuosity by De-Santis, Micali, and Persiano
[DSMP88]. The original solution required n* shared random bits to prove that a n-node
graph is 4-colorable, but the efficiency of protocols based on quadratic residuosity has since
been recently greatly improved [Dam92, BP94|. Given a cryptographic security parameter k,
which must be large, the most efficient of these families of solutions requires O(k?*n) shared
random bits.

Feige, Lapidot, and Shamir [FLS90] gave the first non-interactive zero-knowledge for NP
under a general complexity assumption. Their construction requires one way permutations
or, for polynomially bounded provers, certified trapdoor permutations (the technical “certifi-
cation” requirement was eliminated in [BY92]). They also obtained much greater generality
in how their proofs could be used (e.g., many provers could prove many theorems using the
same random string). To achieve this they introduced the random committed bit model; all
subsequent progress using general complexity assumptions has used this model. In the ran-
dom committed bit model, the prover and verifier are dealt a sequence of random committed
bits. The prover is allowed to see the contents of these bits and may, as his only action,
reveal a subset of these bits to the verifier. The verifier can only look at those bits that have
been revealed and decide whether to accept or reject. A protocol for the random committed
bit model may then be compiled into a protocol for the shared random string model.

The proof system proposed by [FLS90] was much less efficient than those based on
quadratic residuosity: It required O(k - n''/2) shared random bits to prove that an n-node
graph contains a Hamiltonian cycle. Subsequently, Feige [Fei] has shown how to prove that
n by n by n matrix has a 3-dimensional matching, using only O(k - n7/2) shared random bits.

Recently, a more efficient proof system for NP was given by Kilian [Kil94] who presented
a proof system for circuit satisfiability using O(k? - n - log®n) shared random bits for some
constant ¢. In addition to the efficiency of this proof, circuit satisfiability seems to be the
preferred NP-problem for reducing a general predicate. Kilian’s construction is based on
random committed bit model, and hence is based on the same complexity assumptions as

those of [FLS90].

1.2 Our results

We improve the protocol of [Kil94] and get a non-interactive zero-knowledge proof system
for circuit satisfiability which uses only O(k%n) shared random bits. Our proof system is
significantly simpler than the one in [Kil94]. As in [FLS90]+[BY92],[Kil94] we also rely on
the general cryptographic assumption that there exists a one way permutation, or trapdoor
permutations if the prover only runs in polynomial time.

In the random committed bit model, we show how to prove circuit satisfiability using
O(nlgn) random committed bits, and achieving an error of 1/n°(). We do not know how
to achieve such an error probability in the interactive model without using Q(nlgn) bit
commitments. Note however that the compilation technique of [FLS90] requires a significant
overhead and hence noninteractive zero-knowledge proofs remain asymptotically less efficient
than their interactive counterparts.

An Efficient Non-Interactive Zero-Knowledge Proof
System for NP with General Assumptions

Joe Kilian * Erez Petrank f

Abstract

We consider noninteractive zero-knowledge proofs in the shared random string
model proposed by Blum, Feldman and Micali [BEMS8S8]. Until recently there was
a sizable polynomial gap between the most efficient noninteractive proofs for NP based
on general complexity assumptions [FLS90] versus those based on specific algebraic as-
sumptions [Dam92]. Recently, this gap was reduced to a polylogarithmic factor [Kil94];
we further reduce the gap to a constant factor. Our proof system relies on the existence
of one-way permutations (or trapdoor permutations for bounded provers).

Our protocol is based on the random committed bit model introduced by Feige,
Lapidot and Shamir. We show how to prove that an n-gate circuit is satisfiable, with
error probability 1/n°®), using only O(nlgn) random committed bits. For this error
probability, this result matches to within a constant factor the number of committed
bits required by the most efficient known interactive proof systems.

1 Introduction

A basic issue in cryptography is the tradeoff between resources and security properties.
Ordinary zero-knowledge proofs obtain greater security at the price of requiring greater
interaction between the prover and the verifier. Fiat and Shamir [FS86] give a heuristic
means for eliminating the need for interaction, at a cost of slightly weaker security properties
and more importantly the ability (for now) of rigorously analyzing the resulting protocols.
Blum, Feldman and Micali [BFMS88| propose a more theoretically appealing compromise,
known as the shared random string model for noninteractive zero-knowledge proofs. In this
model, the prover and verifier are given a shared string of bits that are guaranteed to be
completely random. In this model, the prover can then send a zero-knowledge proof of a
theorem as a single message to the verifier who can then check the proof without further
interaction.

Such non-interactive zero-knowledge proofs turned out to be an important cryptographic
primitive. For example, it is used in the signature scheme framework of [BG89] and to
obtain secure public-key encryption schemes that are robust against chosen message attacks
[INY90]. This motivates the questions of what assumptions are necessary for noninteractive
zero-knowledge proofs and how efficient can these proofs be made.

*NEC Research Institute. E-mail: joe@research.nj.nec.com

tTechnion - Israel Institute of Technology, Haifa, Israel. E-mail: erez@cs.technion.ac.il. Most of this work
was done while the author was visiting the NEC Research Institute. Author supported by the Rothschild
Fellowship for post-doctoral studies.

