Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 039 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Polynomial Time Samplable Distributions
Tomoyuki Yamakami

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 1A4

July 11, 1995

Abstract

This paper studies distributions which can be “approximated” by sampling algorithms in time polynomial
in the length of their outputs. First, it is known that if polynomial-time samplable distributions are
polynomial-time computable, then NP collapses to P. This paper shows by a simple counting argument
that every polynomial-time samplable distribution is computable in polynomial time if and only if so
is every #P function. By this result, the class of polynomially samplable distributions contains no
universal distributions if FP = #P. Second, it is also known that there exists polynomially samplable
distributions which are not polynomially dominated by any polynomial-time computable distribution if
strongly one-way functions exist. This paper strengthens this statement and shows that an assumption,
namely, NP ¢ BPP leads to the same consequence. Third, this paper shows that P = NP follows from
the assumption that every polynomial-time samplable distribution is polynomially equivalent to some

polynomial-time computable distribution.

Key words: average-case complexity, sampling algorithm, domination

1 Introduction

Average-case analysis has been efficient used to show better upper and lower bounds on time and space
for algorithms which work on instances distributed randomly according to known distributions. Here a
prior knowledge of distributions are necessary to analyze the average behaviors of these algorithms. Most
practical average-case analyses are made for simple distributions of instances; for example, the distributions
which are computable by feasible deterministic algorithms or the distributions with which the instances are
producible by feasible probabilistic algorithms. The algorithms of the latter case are simply called sampling
algorithms, and distributions produced by those algorithms in time polynomial in the length of their outputs
are called “P-samplable” by Ben-David et al. [3] (by definition, samplable distributions take only dyadic
rational numbers with binary representation). In this paper, we tend to use a more accurate terminology
“polynomial-time samplable.”

Impagliazzo and Levin, however, took a different approach towards polynomial-time samplability by
defining “polynomial-time samplable” distributions to be polynomial-time computable distributions of the
pre-images of functions which are also computed in polynomial time [7]. As far as such functions are
polynomially honest, the samplability of Impagliazzo and Levin implies that of Ben-David et al. since,
otherwise, we can construct a polynomial-time computable function which the standard distribution of its
pre-images is not computable in polynomial-time.

To handle broader classes of distributions whose ranges vary on real numbers between 0 and 1, Gurevich
[6] proposed an approximation scheme to polynomial-time computable distributions: a distribution p is
called polynomial-time computable if we have a polynomial-time algorithm which, on a pair of inputs z
and 0, outputs an approximation of the value y(z) within a factor of 27%. In this paper, we use Gurevich’s
scheme to capture the notion of polynomial-time samplability and focus on the complexity of these samplable
distributions.

All polynomial-time computable distributions are naturally polynomial-time samplable. However, Ben-
David et al. show that, in their setting, polynomial-time samplable distributions are more complex than
polynomial-time computable distributions unless P = NP [3]. This paper extends their result and shows by a
simple counting argument that all polynomial-time samplable distributions are polynomial-time computable
if and only if #P equals FP. In other words, polynomial-time samplable distributions are as hard as #P
functions to compute deterministically. As a corollary, we can show that there is no universal, polynomial-
time samplable distribution if FP = #P.

When a distribution g dominates another distribution v within a polynomial factor, we simply say that u
polynomually dominates v. This type of domination relations between distributions are of great importance
in average-case complexity theory. The first step along this line is due to Levin [11]. He introduced the
notion of many-one reducibility between distributional problems (or randomized problems) by requiring an
additional polynomial-domination relation between distributions. As proven in [6], distributional problems
which can be solved in polynomial time on the average are invariant to polynomial-domination relations.

In Levin’s definition, domination relations play a special role of “reducibility” between distributions in
measuring the complexity of these distributions. For instance, every polynomial-time computable distribution
is polynomially dominated by some polynomial-time samplable distribution; but whether the converse holds

is not clear. Ben-David et al. show that, in their setting, if strongly one-way functions exist, then there

exists a polynomial-time samplable distribution which is not polynomially-dominated by any polynomial-
time computable distributions [3]. This paper shows that the assumption NP ¢ BPP (weaker than the
assumption that strongly one-way functions exist) leads to the same conclusion. In this proof, we use
a family of hash function to randomize nondeterminism and an amplification technique for probabilistic
algorithms to reduce their error probability (as has been used in, e.g., [8]).

When two distributions polynomially dominate each other, we simply call them polynomially equivalent.
It seems unlikely that every polynomial-time samplable distribution is polynomially equivalent to some
polynomial-time computable distribution, but it is still an open question. We note that the assumption
FP # #P may not sufficient for a negative answer. This paper shows that if NP differs from P, as is widely
believed, then there is a polynomial-time samplable distribution which cannot be polynomially equivalent

to any polynomial-time computable distribution.

2 Preliminaries

This section presents fundamental notions and notations used throughout this paper.

2.1 Basics

Denote by N and RT the set of nonnegative integers and the set of nonnegative real numbers, respectively.
Let ilog(m) = [log, m]. The notation log* n stands for (log, n)*.

Fix ¥ = {0,1} and denote by A the empty string. The length of a string z is denoted by |z|, and the
cardinality of a set X is denoted by || X||. For n € N, X" represents the collection of all strings of length n.
The natural order on ¥£* (i.e., to order strings first by length and then lexicographically) is assumed. Let
z; be the first i bits of string . We assume that a pairing function {,) is computable and invertible in
polynomial time.

Let ID be the set of all dyadic rational numbers on the real interval [0, 1],i.e., {3% | m,n € N}. We always
identify a string s;ss - - - sg, where s; € {0, 1}, with Zf‘zl s -2 " in .

By P and NP we denote the classes of sets which are deterministically and nondeterministically, respec-
tively, computable in polynomial time. Denote by RP and BPP the classes of sets which are computed by
probabilistic Turing machine in polynomial time with one-sided error and two-sided error bounded away
from 1/2 by some constant, respectively.

Let FP be the class of functions on ¥* which are polynomial-time computable. A function f from ¥*
to N is in #P [20] if there is a set A € P and a polynomial p such that f(z) = ||{y € £P1=D | (2, y) € A}
for all z. A set S is in Few [4] if there exists a #P function f, a set B € P, and a polynomial p such that
S ={z|{(z, f(x)) € B}, and f(z) < p(|z|) for all z.

A function f on ¥* is p-honest if there exists a polynomial p such that |z| < p(|f(z)]) for all z, and f is
exp-honest if |z| < 2¢1#@)l for some constant ¢ > 0. A function f from ©* to R is called positive if f(z) >0
for all 2, and f is polynomially bounded if there exists a polynomial p such that f(z) < p(|z|) for all 2.

A set A is polynomial-time many-one reducible to a set B if A = {z | f(z) € B} for some reduction f in
FP. If f is also p-honest, then we say that A is p-honest polynomial-time many-one reducible to B.

A property P(z) holds for almost all z in S if the set {# € S| P(z) does not hold} is finite.

Let Prob[FE] denote the probability that event E occurs. In particular, Prob,[E(z)] denotes the condi-

tional probability that F(z) occurs when z is chosen from £" at random.

2.2 Distributions

A distribution p is a nondecreasing function from X* to [0, 1] such that lim,_c p(2) = 1, and its associated
(probability) density function fi is defined by p(A) = p(A) and fi(z) = p(z) — p(z~), where 2~ is the prede-
cessor of x. For a practical reason, we use semi-distributions instead of distributions: a semi-distributions
are obtained by replacing limy_ oo pt(2) = 1 by limgy_ e p(2) < 1.

For a set S, let i(S) = > g ft(x). For a function f on ¥*, we simply write pus-1 to denote the
distribution defined by fi;-1(z) = g({z | f(z) = z}).

In this paper, we use the standard distribution vg, whose values are dyadic rational numbers, which can
be easily sampled by the following probabilistic Turing machine: pick a nonnegative integer n randomly.
Precisely speaking, first define the translation by ¢r(00) = 0, ¢r(11) = 1, and ¢r(01) = ¢r(10) = #, where #
is the terminal symbol different from 0 and 1 and then let v () = Prob[{z | |z]| is even,tr(z) = z#}] for
all . Tn other words, v () = 27171=260zD=1 where £(n) = |log,(n + 1)].

Let F be any enumeration of semi-distributions, say F = {uo, g1, ...}, and let k, s be functions from N

to Rt. A string # is rare with respect to (k,s, F) if p;(z) < 275020 for all i < k(|z]).

Lemma 2.2.1 Let k be any nondecreasing function on N such that 0 < k(n) < § for all n. Assume
s(n) < n+logn — 2logk(9n). For all ng > 0, there exists an n with ng < n < 9ng such that [|[{x € X" | z
is rare w.r.t. (k,s,F)}|| > 2" — 25(r)—lognt2logk(9n)

Proof Sketch. We first show that, for any integer ng > 0, there exists an n with ng < n < 3ng + 6k(no)
such that, for each i < k(ng), ||[{x € ¥" | wi(x) > 27} < k(n)nif(n) Assume otherwise. Let r(n) =
3n 4 6k(n) and define AL = {x € X" | y;(x) > 275"}, Take ng such that, for all n with ng < n < r(no),
there exists an i < k(no) satisfying || AL || > k(n) - 2°(*) /n. Hence, at least L%J many n’s satisfy the
condition ||AZ|| > k(n)-25(") /n for some j < k(ng). Let ¢ = (k(no)=1)(r(no)+1)+n0 - Ginee r(ng) > not2k(no)=1

k(ng) e—1/k(ng)
k(no)
r(ng
we have (p) > e. Then,
r(no) r(no) r(no)
k(n) - 25() k(n r(70) k(n
Suz Y Y omz 3 I e 3T ML, M,
ol n=[c] r€ A} n=[c] c=[c] ct+1

The lemma immediately follows from the following inequation:

k(gn) - 25(n) < 23(n)—logn+2logk(9n).
n

o € " | 3i < k(n)u(x) > 270} < k(n) -
Oa

A function f from X* to R¥ is polynomial on p-average [11] if Zx;ﬂ ||~ f(2)? i) is finite for some
& > 0; equivalently, there exists a polynomial p such that Prob[{z | f(z) > p(|z|-7)}] < L for all real number
r > 0 [14, 18]. For a distribution p, we say that a Turing machine M runs in polynomial-time on p-average
if Az. Timeps () is polynomial on p-average [6].

A distribution p polynomially dominates a distribution v [6] if there exists a polynomially bounded
function p such that p(z) - fi(z) > v(z) for all .

Definition 2.2.2 [10, 6] A (semi-)distribution u is polynomial-time computable if there exists a deterministic
Turing machine, with two input tapes, one output tape, and one work tape, which works in polynomial
time (i.e., on input (z,y), the running time of M is at most p(|z|, |y|) for some polynomial p) such that
|p(z) — M(z,09)| < 277 for all z and i € N. Denote by P-comp the set of all distributions which are

polynomial-time computable.

Note that there is an effective enumeration of all polynomial-time computable semi-distributions [16, 19].

2.3 Hash functions

For n,c € N, let H, 4. denote the family of pairwise independent universal hash functions from X" to X"+¢
which is defined as follows: a hash function h in H, n4. is of the form h = (M, b), where M is an n+ ¢ by n
bit matrix and b is a bit vector, and takes its value as h(z) = Mz @ b. Hence H, n4. can be identified with
the set of all n 4+ ¢ by n + 1 matrices over {0,1}, and h is encoded to a string of length (n + 1)(n + ¢).

It is known in [5] that if # y and i < n + ¢, then Prob[{h € Hp nyc | h(2)ei = h(y)ei}] = 270
Moreover Prob[{h € Hy, nye | h(2) i = we;}] = 277 for fixed = and w [5].

Fix n and ¢ and assume 7 < n and [|X|| > 0. We say that a hash function h in H, 4. i-distinguishes
on X if h(2)cite # h(w)—iyc for all w € X — {z}. For every z and i with ilog(||X|]) < i < n + ¢, we have

X||-1
CIXI=T

Prob[{h € Hp, n4c | h i-distinguishes 2 on X }] <1 S S

3 Polynomially samplable distributions

This section formally defines the notion of polynomial-time samplability of distributions and shows that

polynomial-time samplable distributions are as hard as #P functions to compute deterministically.

3.1 Polynomially samplable distributions

Ben-David et al. [3] first formulated a notion of polynomial-time samplable distributions on dyadic ratio-
nal numbers by using sampling algorithm. On a recent work on pseudo-random number generators, Hastad
et al. [8] also used an ensemble of “polynomial samplable” probability distributions. Here we use an approx-
imation scheme to cope with real-valued distributions and give a generalized definition of polynomial-time

samplability.

Definition 3.1.1 A distribution u is polynomial-time samplable if there exists a polynomial p and a proba-
bilistic Turing machine M (it does not necessarily halt), called a sampling algorithm, such that

ji(x) — Prob[M(0!) produces z and halts within time p(|z|, z)]| < 27" for all # and i € N. Denote by P-samp

the set of all polynomial-time samplable distributions.

From a different point of view, Impagliazzo and Levin [7] defined “polynomial-time samplable” distribu-
tions to be of the form p;-1, where fi;-1(x) = u({z | f(z) = x}), for some u € P-comp and some f € FP.
This definition has major disadvantage: it is so broad that we can actually construct such a distribution that

cannot belong to P-comp. Moreover we can construct a g € P-comp and an exp-honest f € FP such that

no distributions in P-comp polynomially dominate pz-1. Recall that g polynomially dominates v if there
is a polynomially-bounded function p such that p(z) - fi(z) > ©(z) for all . This notion will be thoroughly

studied in Section 4.

Proposition 3.1.2 There exists a positive distribution p € P-comp and a nondecreasing, exp-honest func-

tion f € FP such that py-1 is not polynomially dominated by any v in P-comp.

Proof. We first define 5 as follows: 7j(z) = 2=2(*=D=1if & € {0}* and |z| = n® for some n > 2, or else
f(z) = 0. Let fi(z) = Li5(z) + $7(2). This p is positive and belongs to P-comp. For every n > 2 and for

6
z = 0", we have
1

1 1 1
i) > i) = g

1
n3 = (n6)1/2 - |r|1/2

v

! >
2n? —

since 2/"=1) < n. Hence, j(z) > m%/g holds for all z = 0"° with n > 2.

To define the desired function f, we need an effective enumeration of all polynomial-time computable
semi-distributions. Assume that F = {v; | i € N} is such an enumeration (see [16, 19]). Let f(x) be the
minimum y such that logn < |y| < 9logn and |y|*~! - 2;(y) < 2(0") for all i < logn and all integers k with
1<k< Tzlﬁfgﬁlom, where n = min{r | 7% < |z| < (r + 1)%} if n > 213; otherwise, let f(z) = =.

This f is well-defined. To see this, consider the case |z| = n® for some n > 2!3. By choosing log n as k(n)
and n + logn — 2loglogn — 4 as s(n) in Lemma 2.2.1, we know that there exists at least one rare string y
with respect to (k,s, F) with logn < |y| < 9logn, i.e., ;(y) <2750 = % for all 2 < logn. For such
a string y, we have

16]y[*—21log? |y| < 16 - 95~ log" =1 n -log?(9log n) < 9% log" n 1

ulE=1 . 5. (a) A AT
v vi(y) < olyl = n ST S < £(0™)

since logn < |y| < 9logn, 16log2(910gn) < (9logn)?if n > 4, and 9% log" n < Vrifk < r;ﬁi’fom. Hence,
f(z) exists. It is easy to see that f is exp-honest and also polynomial-time computable.

By definition, for all k and i, |y|*~' - & (y) < fig-1(y) for some y since fiz-1(y) > p(0"). O

In this paper, we require f to be p-honest, and take the following weaker (than in [7]) definition:

Definition 3.1.3 A distribution p is weakly polynomial-time samplable if there exists a distribution v €
P-comp and a p-honest function f € FP such that y = v;-1. Denote by WP-samp the set of all weakly

polynomial-time samplable distributions.
Proposition 3.1.4 P-comp C WP-samp.

Proof. Take f to be the identity function. Then we have y = py-1 for all distribution u. ad

As shown in [21], the feasible computability of y;-1, in general, does not imply that of 4, namely, there
are distributions g which are not in P-comp, but p¢-: is in P-comp for f(z) = 0ll. Moreover Wang and
Belanger show that, for every pu € P-comp and every nondecreasing, p-honest function f € FP, us-1 belongs
to P-comp [2].

Proposition 3.1.5 WP-samp C P-samp.

Proof. To show the proposition, we modify the proof of Theorem 7 in [3]. Assume that v is in WP-samp.
By definition, there exist a p-honest function f € FP and a deterministic polynomial-time Turing machine
M such that v = py-1 and |pu(z) — M(z,0%)| < 27¢ for all 2 and i. By [6] we can assume that Az. M (z, 0F)
is nondecreasing for each fixed k. We also assume that, for some polynomial p, |z| < p(|f(2)|) and |f(z)] <
p(|z|) for all 2.

For simplicity, write M (z,0%) = Zzef—l(x) M (z,0pUD+E=1) "where M'(z,0%) = M (z,0%) — M (2=, 0%).
Note that |fi(z) — M!(z,0%)| < 27%+1. Since |f(z)| < p(|z|), we have

|o(z) — M(2,0%)] < Z li(z) — M'(z, 0PUzD+h=1)| < gpllal) g=p(lzD=k — 9=k
G

To complete the proof, we need to show that M(;r, 0%) can be computed by some sampling algorithm on

input 0*. Define the sampling algorithm N as follows:

begin sampling algorithm N
input 0*
fori=1to
choose one bit b; randomly
let p; be the real number identified with string b1bs - - - b;
find the minimal string # by binary search such that
M (2=, 0pUsD+h=1) < 5o < M (2, 0PUsD+k=1)
if there is such an z then output f(z) and halt
end-for

end.

It is not difficult to see that M(aj, 0%) is equal to the probability Prob[N (0¥) = z in time ¢(|y|, k)] for some
polynomial q. a

3.2 The P-comp = P-samp question

This subsection shows that polynomial-time samplable distributions are computable in polynomial time if
and only if FP = #P. So, it seems unlikely that P-comp = P-samp.

Toward the goal of this subsection, we first study another category of distributions, the so-called #P-
computable distributions introduced by Schuler and Watanabe [17], which seems to have more computational
power than polynomial-time samplable distributions. Again we modify their definition to fit our approxima-

tion scheme.

Definition 3.2.1 A distribution p is #P-computable if there exists a function f € #P and a polynomial
p such that |j(z) — %ﬁ’z—?f% < 27" for all 2 and i € N. Denote by #P-comp the set of all #P-computable

distributions.
Proposition 3.2.2 P-samp C #P-comp.

Proof. Assume that p is polynomial-time samplable and is witnessed by a sampling algorithm M and

a polynomial p. Without loss of generality, we assume that every path of M (0%) which outputs z halts in

exactly p(|z|,i) steps. Let f(z,0!) be the number of computation paths y such that M (0?) outputs z and
halts on path y in time p(|z|,i). Clearly f € #P since each path of M (0?) is bounded by p(|z|,i). It is easy
to see that the probability that M (0) outputs z and halts in time p(|z|,7) equals géﬁ—’z??)

out to be #P-computable. a

Hence, p turns

The converse inclusion, #P-comp C P-samp, is an open question. The best-known result is due to Schuler
and Watanabe [17] that, in their setting, every #P-computable distribution can be “approximated with a
constant factor” by a sampling algorithm in time polynomial in the length of outputs with nonadaptive
queries to an NP oracle.

The next lemma establishes a basic relationship between #P and #P-comp.
Lemma 3.2.3 FP = #P implies P-comp = #P-comp.

Proof. Assume that FP = #P. For an arbitrary g € #P-comp, assume that there exists a function

f € #P and a nondecreasing polynomial p such that |j(z) — gp(ﬁ;?’l,)) < 27" for all 2 and i € N. Now we
show that p is computable by some deterministic Turing machine in polynomial time.

Define g(z,0") = 3, ., h(z,2,0%), where h(z,z,0%) = f(z,0lzl+8y cgedzllel+i—p(zLIel+1) - Since g € #P,
it follows from our assumption that ¢ € FP. We then have

- g(g;,()i) — - h(z,x,Oi) N f(Z,0|ﬂ?|+i) lz| o—lz|—i _ 9—i
‘“(‘l) ~ utern | =) _Z: qately | < 2 |1E) = Gy | S 272 =27
where ¢(n,i) = p(n,n +). Hence, g € P-comp. This completes the proof. a

It is known that P-samp = P-comp implies P = NP [3]. In the following lemma, we basically prove that
WP-samp = P-comp implies FP = #P.

Lemma 3.2.4 Assume that, for any p € P-comp and any one-one, p-honest, polynomial-time computable
Junction f, piy-1 is in P-comp. Then, FP = #P.

Proof. TFor any set A in P and any polynomial p, let g(z) = ||[{y € (2D | zy € A}||. Without loss of
generality, we assume that p is strictly increasing. We will show that g € FP.
Now take the standard distribution v and define a one-one, polynomial-time computable function f as

follows:
Ozy if zy € A and |y| = p(|z]),

flzy) = lzy if 2y & A and |y| = p(|z]),

ry otherwise.
We also define a weakly polynomial-time samplable distribution n by 7(y) = s ({z | f(2) = y}). By our
assumption, i is computable in polynomial time. For g, we have the following simple equation:
9= rllzh=2erl=D)=1 . g gy = Z Ut (f7H(0zy)) = n(021PUDy — p(oz— 17Dy,
y:lyl=p(lz])
where 7(n) = n + p(n) + 1. Therefore, ¢ is polynomial-time computable. a

We combine the above lemmas and propositions and reach the desired conclusion.

Theorem 3.2.5 The following statements are equivalent.
1. FP = #P.
2. P-comp = #P-comp.
3. P-comp = P-samp.
4. P-comp = WP-samp.

S

For any p € P-comp and any one-one, p-honest f € FP, p¢-1 is in P-comp.

Proof. The implication from (1) to (2) is due to Lemma 3.2.3. Clearly (2) implies (3) by Proposition
3.2.2, and (3) implies (4) by Proposition 3.1.5. By definition, (4) implies (5). The last implication from (5)

to (1) immediately follows from Lemma 3.2.4. O

3.3 Universal distributions

We have seen in Theorem 3.2.5 that P-comp = P-samp exactly when FP = #P. This subsection applies
this theorem to polynomial-time samplable universal distributions. Universal distributions are known to be

malign, i.e., average-case complexity equals worst-case complexity [12].

Definition 3.3.1 Let F be a set of distributions and 7T a set of functions from X* to R*. A distribution y is
called T -universal for F if y € F, and for all v € F there exists a function ¢t € T such that ¢(z) - i(z) > v(x)
for all strings . Especially, if 7 is the set of polynomially-bounded functions, then g is called poly-universal.

By a modification of the proof of Lemma 4.1 in [13], we can show that P-samp has no poly-universal
distributions if FP = #P.

Lemma 3.3.2 Assume that FP = #P. For every function f € o(2"), P-samp has no O(f)-universal

distribution. Hence, there is no poly-universal distribution for P-samp.

Proof. Assume that FP = #P. Note that, under this assumption, NP collapses to P. We modify the
proof of Lemma 4.1 in [13]. Assume that f € o(2"), and po is O(f)-universal for P-samp. We note that
g(x) - fio(x) > () for some g € O(f) since g is universal. Hence, fig(z) > %f)l > 273121 for almost all
z. Let z_; be the minimal string # such that fio(z) > 273171,

By Theorem 3.2.5, there is a polynomial-time Turing machine M which computes po. Let v(z) =
M (z,03171%%) for all and denote »(z) = v(z) — v(z~). In general, v is not a distribution since # does not

always take nonnegative value. However, we have (z) > 0 for all # > 2_;. This is seen as follows: for all z,
lfto() = ()] < |no(x) = (@) + [wo(x7) = w(a™)| < 27774 4 9737 1=% < =3k,

and thus o(z) > fio(x) — 273 > 0if 2 > z_;.

Now we define a series of strings {z;|i € N} as follows. For convenience sake, write R(z,y) if y > 2/
and v(y) —v(z) > 2lyl -v(y). Let z;41 be the minimal string such that R(2;,2;41) holds. This z;4; exists
since, otherwise, o(2}) < v(y) —v(z;) < 2. &(y) for all y of length > 217l and thus o(y) > ﬁ for some

1

constant ¢ > 1. For each integer n > |z, Z|y|=” v(y) > 2" - == = 1, a contradiction.

The set {z; | i € N} is expressed by {y | Im < |y|Fxo,...,2m = y¥i < m[29 > 2_1 and ;41 is the
minimal string such that R(z;, z;41)]}, and hence it belongs to NP. Since NP collapses to P, {z; | i € N} is
in P. Note that

21— 00

> 2@y <3 (w(@igr) — v(w) < lim v(z) < 1.
=0 =0

Let i(z) = ¢ - 21°1(p(x) + 2731°l) if & € {#;]i € N}; otherwise, 0, where ¢ is an adequate positive constant.
The distribution 7 is obviously computable in polynomial time, and thus 1 € P-comp.

By our definition, for any constant d > 0, there exists an i such that
(i) > 2700 (i) + 272170 > 27 g (27) > d - f(@i) - fio(22).

This is a contradiction. O

4 Domination and equivalence relations

Domination relations were explicitly introduced by Levin [11] on his theory of average-case complexity as a
certain type of “reducibility” between two distributions which measures the complexity of these distributions.
In this sense, two distributions which dominate each other can be considered to have almost the same
degree of complexity. So, we call them “equivalent.” Equivalence relations capture the closeness of two
distributions and also give rise to an appropriate “approximation” between them. In this section, we study

the consequences of several types of conditions of these domination and equivalence relations.

4.1 Domination conditions

In this subsection, we first focus on polynomial-domination relations which were introduced by Levin [11].
Recall from §2.2 that u polynomially dominates v if p(z)-fi(x) > v(z) for p a polynomially-bounded function.
Polynomial-domination relations are useful in average-case complexity theory since they do not change the
degree of average running time: namely, provided that p polynomially dominates v, if an algorithm requires
polynomial-time on p-average, then this algorithm also runs in polynomial-time on v-average [6].

Consider the following condition:

Condition I. For every u € P-samp, there exists a distribution v in P-comp such that v polynomially

dominates y, i.e., p(x)-0(x) > i(z) for some polynomially bounded p.

By Theorem 3.2.5, Condition I is derived from the assumption FP = #P. Ben-David et al. further show
as Theorem 8 in [3] that if Condition I holds, then no strong one-way function exists. In their proof, they

actually used the following fact:

Lemma 4.1.1 [3] Assume Condition I. For any set B € P and a polynomial p, let Sp = {z | ||Bs|| <
p(|z])}, where B, = {2 € X1°l | 22 € B}. There exists a deterministic Turing machine M such that, for each
n € N, M on input in Sg NX" lists all elements of B, (whenever B, = §, M outputs 0) in polynomial
time if |5 VS| > 27 /p(n).

Let #Psew denote the set of all #P functions which are polynomially bounded. Lemma 4.1.1 immediately

yields the following consequence.
Corollary 4.1.2 Condition I implies FP = #Psey,, and thus P = Few.

Proof. Assume Condition I. Take a function f € #Py.,, arbitrarily. Then, there exists a set B € P and
a polynomial p such that f(z) = ||Bg|| and f(z) < p(Jz|) for all z. Let Sg = {2 | | B:|| < p(|z])}. Since
[|[Sp NX"|| = 27, we can apply Lemma 4.1.1 to construct a deterministic polynomial-time Turing machine

which, on input 07, lists all elements of Sg N X". Hence, f belongs to FP. a

Using the hash-function technique of [8] and the amplification technique for probabilistic algorithms from,
e.g., [1], we can show that Condition T also leads to the consequence NP C BPP which is stronger than the
result stated in [3].

Theorem 4.1.3 Condition I implies NP C BPP.

Proof. Assuming Condition I, take any set A in NP to show that A € BPP. There exists a set B € P
such that A = {z | 3z € ©I*l[z2 € B]}. Let gp(z) = ||B:|| and B, = {z € ©I*l | 22 € B}.

We take the set H, n4. of hash functions. Define B = {zz|lz = 2'sPh(h(2)ekte)t, 2 = z’lO|r|_|zl|,:L”z’€
B,z 2/ € ¥t € X" % h € Hyy pie,c = ilog(n)}, where s7 is the kth string in the set yilog(n)

Let Sy = {z | | B+|| < 1}. We first show that S NE™| > n(i—:m for almost all n. Now fix k and 2’
and assume that n = |z’| is sufficiently large, and ilog(gg(z’)) < k < n. Consider the case gg(z’) > 0. The
probability py . = Prob[{hw | gg(2'sphw) < 1,h € Hp, pic, w € B"F¢}] is larger than or equal to the sum
of the probability over all hw that, for each 2’ € By, h(2') ke = Wekye, and h k-distinguishes 2’ on B,:.

Thus, we have

-1 1
.) (1-27¢) 270+ > (g = 2 5
s > an(&) - (1-27°) > =ttty L
For the case gg(z’) = 0, clearly pi ,» = 1. Hence, Prob,[gg(z) < 1] > 27¢ - ming {pc o} > m This

yields the desired result.
By Lemma 4.1.1, there is a polynomial-time deterministic Turing machine N which recognizes Sz. We

define a probabilistic polynomial-time algorithm M as follows:

begin probabilistic algorithm M
input z (say, n = |z|)
choose w, hy, ..., hy(nyoy at random (w € X", h; € Hyy nye, ¢ = ilog(n))
let Result =0
forall j (1<j<n(n+2))andallk (1<k<n)
run N on 2z’ = zsphjw
let Result = OR of Result and N (z5 ;)
end-for
output Result

end.

Our goal is to prove that Prob[M(z) = A(z)] > 2 for almost all z. Take any input z of length n. Let
p=Prob[{hy - hyyn | Alx) = OR?Q'I'”ORZ:lN(:L’}k))}]. Note that the probability Prob[M (z) = A(z)]

10

is at least p. To lead to the desired consequence, it suffices to show that p > 1 — e~ for almost all n since
1—e > %for all n > 2.

Now fix j. Assume A(z) = 1. Note that if 0 < gp (2] /) < 1 for some &', then ORE_; N (z} ;) = 1. The
probability p; = Prob[{h; | A(z) = ORj_; N (])}] is at least the sum of the probability over all h that, for

each z € B, and for some k with ilog(gp(z)) <k < n, h(2)cktc = Werte and h k-distinguishes z on B,.

Hence, p; > gp(x) - (1 —27¢) - 27%+9) > (1 —27¢)27¢ > Lo For the other case A(x) =0, N(zsphw) =0

for all h, w, and k; thus p; = 1. So, in general we have p; > n_-1+-2 for all j. To calculate p, consider the error
probability 1 — p;. After n(n + 2) independent trials for Ay, ..., hy(n42), the error probability 1 — p is at

most H?g‘l'n(l —pi)<(1- %4_2)”(”'*'2) < e " since (1 — %)’ < % for almost all positive integers r. Thus,

n

we have p > 1 — e~ ". This completes the proof. a

Polynomial-domination relations are useful but too tight to be considered as an effective measure of
“approximation” or “reducibility” between distributions in average-case complexity theory. Gurevich [6]
later introduced a weaker form of domination relations by requiring a function to be polynomially bounded

”

“on the average.” Following his definition, we also relax Condition I to allow p to be, instead, polynomial

on the average in the following fashion:

Condition I'. For every p-honest function f € FP and every p € P-comp, there exists a distribution

% for

v € P-comp and a function p which is polynomial on p-average such that v(y) > erf_l(y) g

all y.

Note that Condition I implies Condition I’ since, for every p-honest function f in FP, the following two
conditions are equivalent: (i) there exists a polynomially-bounded function p such that p(y)o(y) > fiz-1(y)
for all y, and (ii) there exists a polynomially-bounded function p such that o(y) > erf_l(y) %(f)l for all y
[6].

In the definition of Condition I’, the p-honesty of f is essential since, without this condition, Condition I’
fails to hold. This follows from a fact of the complexity class Pp-comp. BY Pp-comp We denote the collection
of sets A such that, for all 4 € P-comp, there is a deterministic Turing machine M which computes A in
polynomial-time on p-average [18]. We need the fact that Pp_comp is not closed downward under polynomial-
time many-one reductions [19]. The following lemma which was proven as Lemma 7.1 in [6] is also used to

show the necessity of the p-honesty condition in Condition I’.

Lemma 4.1.4 [6] Assume that D(y) > erf_l(y) z—(%l for all y, p is polynomial on p-average, and A is
many-one reducible to B wvia f in FP. If B is computable in polynomial-time on v-average, so is A on
J-average.

Proposition 4.1.5 There exists some function f € FP and some p € P-comp such that, for every v €

P-comp and every function p which is polynomial on p-average, D(y) < erf_l(y) Z—((%l for some y.
Proof. Assuming to the contrary, we prove here that Pp-comp is closed under polynomial-time many-one
reductions. This contradicts the fact that Pp-comp is not closed under polynomial-time many-one reductions
[19].

Assume that A is polynomial-time many-one reducible to B via a reduction f, and B is in Pp-comp. We

show that A € Pp_comp. For every distribution g in P-comp, by our assumption, there is a distribution

11

v € P-comp and a function p which is polynomial on p-average such that v(y) > erf_l % for all y.
Note that B is computable in polynomial-time on v-average. By Lemma 4.1.4, A is also computable in

polynomial-time on p-average. Since p is arbitrary, A belongs to Pp-comp.- O

As another consequence of Lemma 4.1.4, Pp-comp turns out to be closed under many-one reducibility

with p-honest polynomial-time computable reductions.

Proposition 4.1.6 If Condition I’ holds, then Pp_comp is closed downward under p-honest polynomial-time

many-one reducibility.

Proof. Immediate from Lemma 4.1.4 and by the same argument in Proposition 4.1.5. a

4.2 Equivalence conditions

As seen in §4.1, domination relations can be viewed as an “approximation” or a “reducibility” between two
distributions in average-case complexity theory. If two distributions dominate each other, in this paper, we
call them “equivalent” since they are close to each other and have almost the same degree of complexity.
Equivalence relations was first discussed in [17] under the terminology “approximation within constant
factor” to show the closeness of two distributions.

In a particular case, we say that u is polynomially equivalent to v if u polynomially dominates v, and v
polynomially dominates u. Now consider flat distributions which were defined in [6] (u is flat if o(z) < 21°I°
for some € > 0). Note that most of natural distributions dealt with in average-case complexity theory are
flat. These flat distributions are invariant to polynomial-equivalence relations. This is seen as follows. Since

pt is polynomially equivalent to v vz) < a(z) < p(x)o(z) for some polynomially-bounded p. Then, we have

) p(x)
G
>~ 2|_,L.|e

In this subsection, we study the following conditions of equivalence relations:

v(z)

p(z)

~ i(x)

() — o(2)| < max{|p<x>a<w) — i),

Hence, |i(z) — o(z)] < 271°1° for some ¢ > 0, and consequently p is flat.

Condition II. For every p € P-samp, there exists a distribution v in P-comp such that u is polynomially

equivalent to v.

Condition IT’. For every p-honest f € FP and every g € P-comp, there exists v € P-comp and functions

ﬁ Eig for all

p, q which are polynomial on p-average such that Z:cef_l(y) q(z)p(z) > v(y) > Z:cef_l(y)
Y.

Clearly Condition IT implies Condition I, and Condition I’ implies Condition I’. By Theorem 3.2.5,
Condition IT is true if FP = #P.

In what follows, we show that Condition IT implies P = NP, and Condition II’ implies P = RP. We
prove the latter claim first. In this case, the amplification lemma to one-sided bounded-error probabilistic

algorithms is effectively used to make its error probability exponentially small.

Proposition 4.2.1 Condition II’ implies P = RP.

12

Proof. Take an arbitrary A € RP and prove that A belongs to P. By the amplification lemma [15], there
is a strictly increasing polynomial p and a set B € P such that, for every z € ", Prob[{y € (") | (z,y) ¢
B}] < 27" if & € A; otherwise, Prob[{y € ¥P(") | (z,y) € B}] = 0.

Take the distribution u defined as fi(zy) = s (2) - 277U if |y| = p(|2]), or else ji(zy) = 0. Clearly p is

polynomial-time computable. Let

217020 if |y| = p(|z|) and (z,y) € B,
fley) = ¢ 20?0l if |y| = p(|z]) and (z,y) ¢ B,
xy otherwise.
By Condition IT’, we have a distribution v € P-comp and a function ¢ which is polynomial on p-average such

that Z:cef—l(y) q(z)i(z) > v(y) > Z:cef—l(y) Z((;f)) for all y. Since Zx;t)\ Q(T;/kﬂ(g;) < ¢ for some constants

k
k,c > 1, we have ¢(z) < (€~|x) for all nonempty strings « with f(z) > 0. Thus, for almost all 2 and all y

A(z)
of length p(|z]),

¢ lzyl\" 2glel+p(e))* < (glol . glel+p0e)* — or(al)
i(a0) < (S < (ol + el el + 1720000) " (oo gl sntoD) = e,

where 7(n) = (2n+p(n))*. Since v € P-comp, there exists a deterministic polynomial-time Turing machine M
such that |o(z)— M (z,0%)| < 271 Let M'(z) = M (z,07U=D+2Il) By definition, |o(z)— M’ ()| < 277 (=D -2l=l
for all z.

Let x € X", Assume that # € A. Then, we have

\s [l —1(p1p(n) Do m _ 1
ey 3 H S I)
z€f 1 (z1p(n

since Uyt (2) > 5357 > 53w if n > 7. Hence, M'(z) > p(x1P(0)) —g=r(r)=2n > 9-r(n)=2n(9n _9) 1In the other
case x ¢ A, p(x1P(?)) < Zzef_l(zlp(n)) q(2) - i(z) = 0. Hence, M'(z) < p(x1P(?)) 4 2-r(n)=2n — 9-r(n)=2n
Now we have a complete characterization of A in terms of M'; namely, ANY" = {z € ¥" | M'(z) >
2-r(n)=27(97 _ 9)} for almost all n. Since M’ halts in polynomial-time, A is also computable in polynomial-

time. O

The above proposition may not simply achieved to conclude that P = PP since the amplification lemma
may not hold for PP sets.
To close this subsection, we prove that Condition IT leads to the consequence that NP collapses to P.

This follows from a combination of Theorem 4.1.3 and Proposition 4.2.1.
Theorem 4.2.2 Condition II implies P = NP.

Proof. Assume Condition II. Theorem 4.1.3 implies NP C BPP. Ko [9] shows that NP C BPP yields
RP = NP. Thus, we have RP = NP. By Proposition 4.2.1, Condition II also leads to P = RP. Therefore,
we conclude that P = NP. ad

13

Acknowledgments

The author is grateful to Stephen A. Cook for discussions with him and to Rainer Schuler for giving him

useful comments. He also thank Michael D. Hutton for his correcting errors in an early draft.

References

[1] J. L. Balcazar, J. Diaz and J. Gabarrd, Structural Complezity I, II, Springer-Verlag, 1988(I),
1990(11).
[2] J. Belanger and J. Wang, Isomorphisms of NP complete problems on random instances, in: Pro-

ceedings, 8th Conference on Structure in Complexity Theory, 1993, pp.65-74.

[3] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case complexity, J.
Comput. System Sci., 44 (1992), pp.193-219.

[4] J. Cai and L. A. Hemachandra, On the power of parity polynomial time, Math. Systems Theory,
23 (1990), pp.95-106.

[5] J. Carter and M. Wegman, Universal classes of hash functions, J. Comput. System Sci., 18 (1979),
pp.143-154.

[6] Y. Gurevich, Average case complexity, J. Comput. System Sei., 42 (1991), pp.346-398.

[7] R. Impagliazzo and L. A. Levin, No better ways to generate hard NP instances than picking uni-
formly at random, in: Proceedings, 31st IEEE Conference on Foundation of Computer Science, pp.
812-821, 1990.

[8] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby, Construction of a pseudo-random generator
from any one-way function, Technical Report, TR-91-068, International Computer Science Institute,
Berkeley, California, 1991. Preliminary versions appeared in the proceedings of the 21st STOC, 1989,
pp-12-24 and the 22nd STOC, 1990, pp.395-404.

[9] K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Information
Processing letters, 14 (1982), pp.39-43.

[10] K. Ko and H. Friedman, Computational complexity of real functions, Theoretical Computer Science,

20 (1982), pp.323-352.
[11] L. Levin, Average case complete problems, STAM .J. Comput. 15 (1986), pp.285-286.

[12] M. Li and P. M.B. Vitanyi, Average case complexity under the universal distribution equals worst-
case complexity, Information Processing Letters, 42 (1992), pp.145-149.

[13] M. Li and P. Vitdnyi, An introduction to Kolmogorov complezity and its applications, Springer-
Verlag, New York, 1993.

[14] R. E. Schapire, The emerging theory of average-case complexity, Technical Report MIT/LCS/TM-
431, Massachusetts Institute of Technology, 1990.

[15] U. Schéning, Complexity and Structure, Lecture Notes in Computer Science, Vol.211, 1986.
[16] R. Schuler, On average polynomial time, Technical Report Nr.94-12, Universitat Ulm, 1994.

14

[17] R. Schuler and O. Watanabe, Towards average-case complexity analysis of NP optimization prob-
lems, in: Proceedings, 10th Conference on Structure in Complezxity Theory, 1995.

[18] R. Schuler and T. Yamakami, Structural average case complexity, in: Proceedings, 12th Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science,
Vol.652, 1992, pp.128-139, Springer-Verlag.

[19] R. Schuler and T. Yamakami, Sets computable in polynomial time on average, in: Proceedings, 1st
Annual International Computing and Combinatorics Conference, August, Xi’an, China, 1995.

[20] L. Valiant, The complexity of computing the permanent, Theoretical Computer Science, 5 (1979),
pp-189-201.

[21] J. Wang and J. Belanger, On average P vs. average NP, in Complezity Theory — Current Research,
editors K. Ambos-Spies, S. Homer and U. Schoning, Cambridge University Press, pp.47-67, 1993.

15

