Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

P FTP: ftp.eccc.uni-trier.de:/pub/eccc/
Revision 02 of
S0 O 0 WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR95-039 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Polynomial Time Samplable Distributions*
Tomoyuki Yamakamif

Abstract

This paper studies the complexity of the polynomial-time samplable (P-samplable) distributions,
which can be approximated within an exponentially small factor by sampling algorithms in time
polynomial in the length of their outputs. The paper shows common assumptions in complexity the-
ory that yield the separation of polynomial-time samplable distributions from the polynomial-time
computable distributions with respect to polynomial domination, average-polynomial domination,

polynomial equivalence, and average-polynomial equivalence.

Key words: average-case complexity, sampling algorithm, domination condition, strong one-way

functions

1 Introduction

Average-case complexity theory has provided a rich source of analysis that shows better upper
and lower bounds on time and space for randomized algorithms that work on instances distributed
randomly according to underlying “natural” distributions. In the course of early studies, we have
found randomized algorithms that solve even some NP-complete problems in average polynomial
time. Levin’s discovery of the existence of average-case NP-complete problems, however, not only
changed the course of our attempt to solve all NP problems fast on the average but also high-
lighted the importance of research on average-case analysis of NP problems as well as underlying
distributions.

Most of “natural” distributions dealt in average-case complexity theory are computable (or
more loosely approximable) or samplable—the distributions with which the instances are producible
by feasible, probabilistic algorithms. The algorithms that “generate” samplable distributions are
called sampling algorithms or generators and the distributions produced (or more loosely, approxi-

mated) by those algorithms in time polynomial in the length of their outputs are particularly called

*A preliminary version of the paper appeared in the Proceedings of the 21st International Symposium on Mathe-

matical Foundations of Computer Science, Lecture Note in Computer Science Vol.1113, pp.566-578, 1996.

TCurrent affiliation: Department of Computer Science, Princeton University, Princeton, NJ 08544.

P-samplable (polynomial-time samplable), whose name was attributed to Ben-David et al.[2], in
contrast to P-computable distributions.

Toward the complexity of P-samplable distributions, an early study shows that P-samp—the
set of all P-samplable distributions—contains P-comp—the set of all P-computable distributions
[3, 2]. In early 1990’s, Ben-David et al. showed that P-samp differs from P-comp unless NP
collapses to P [2]. This result was soon followed by the final answer that P = PP is a sufficient
and necessary condition for P-comp = P-samp [9].

Along the line of average-case complexity theory, the notion of p-domination (that is, every prob-
ability of a distribution exceeds that of another distribution with a multiple of a polynomial factor)
[8] is more appropriate on a complexity-theoretic discussion among distributions since the average-
case complexity measure, polynomial on the average, is indeed invariant to the p-domination; in
other words, any two distributions which are p-equivalent (that is, the two distributions p-dominate
each other) [19] preserve this measure for any distributional problems. It thus seems natural to ask
whether every distribution in P-samp is p-dominated by some distribution in P-comp and more
proper to discuss the computational complexity of the set P-samp/yp—the equivalence classes of
distributions modulo the above p-equivalence a~P—than P-samp itself.

Another notion more suitable in average-case complexity theory is the avp-domination (average-
polynomial domination) [4], which is an average-case version of p-domination, and its avp-equivalence
~VP_ 1t is also known that any two avp-equivalent distributions preserve the measure “polynomial
on the average” no matter what distributional problems are chosen.

In this paper, we study two questions of whether there exists a P-samplable distribution which
no P-computable distribution p-dominates (or avp-dominates) and whether the set P-samp/xp dif-
fers from P-comp/xp (or P-samp/xave € P-comp/xave). Notice that, for the separation P-comp/xp #
P-samp/xp, for example, even the assumption P # PP may not suffice. Thus we must ask what
type of assumption suffices to lead to our desired consequences. In this paper, we shall extensively
focus on this question and throughout Sections 3 and 4 we shall give the following answers: if
P # RP then P-samp/qavp differs from P-comp/qave; if P # NP then P-samp/np differs from
P-comp/xp; and if NP ¢ Nearly-BPP then there exists a distribution in P-samp that is not

p-dominated by any distribution in P-comp. A further discussion is presented in Section 5.

2 Basic Notions and Notation

Denote by N and Rt the set of nonnegative integers and the set of nonnegative real numbers,

respectively. Let ilog(m) = [log, m] and llog(m) = [logy(m + 1)|. The notation log® n stands

k

for (logym)®. A property P(z), is said to hold for almost all z in an infinite set S if the set

{z € S| P(z) does not hold} is finite.

Fix our alphabet ¥ = {0,1} and denote by A the empty string. Let ¥* = ¥* — {A}. For each
n € N, A" denotes ANY" for a set A C ¥*, where ¥" = {2 € ¥* | |z| = n}. Denote by s} the
k-th string of the set X1°8(") with respect to the standard order on :* (i.e., to order strings first
by length and then lexicographically); for instance, s} = 0'°s(") | By z C y, we mean that z is an
initial segment of y, i.e., s = y for some s. For any set A C ¥* and z € ¥*, let A(z) = 1if z € A,
or else A(z) = 0. Let 2, be the first ¢ bits of string z.

Let D be the set of all dyadic rational numbers on the real interval [0,1], i.e., {m/2" | m,n €
N, m < 2"}. We always identify a string sy - - - sg, where s; € {0, 1}, with E,]f:l 527" in D.

A function f from £* to ¥* is p-bounded (polynomially bounded) if there exists a polynomial p
such that | f(z)] < p(|z]) for all z. Moreover, f is said to be p-honest (polynomially honest) if there
exists a polynomial p such that |z| < p(|f(z)|) for all z; similarly, f is exp-honest if |z| < 2¢1/(*)l
for some constant ¢ > 0.

A real-valued function f, from ¥* to R™, is called positive if f(z) > 0 for all z, and f is p-
bounded if there exists a polynomial p such that f(z) < p(|z|) for all z. A function f from N to
Rt is negligible if, for every polynomial p, f(n) < 1/p(n) holds for almost all n € N.

For m,n € N, let H, ,, denote the family of hash functions h from X" to 3™, each of which
is of the form h = (M,b), where M is an m by n bit matrix and b is a bit vector, and takes its
value as h(z) = Mz @ b. Hence H, ,, can be identified with the set of all m by n 4 1 matrices
over {0,1}, and h is encoded as a string of length (n 4 1)m. Fix n and ¢ and assume ¢ < n and
|X| > 0. We say that a hash function h in H, ,4. i-distinguishes x on X if h(z)cite # h(W)ite
for all w e X — {z}.

We assume the reader’s familiarity with Turing machines, central complexity classes P, NP,
RP, BPP, PP, and E (liner-exponential time), and two function classes FP and #P. (For more
details, see, e.g., [10].)

The notation Prob[F]in general stands for the probability that event F occurs and Prob,c4[F(z)]
denotes the conditional probability that E(z) occurs when 2 is chosen from finite set A at ran-
dom. A distribution p is a nondecreasing function from X* to [0, 1] such that p(z) converges to
1 as |z| grows and its associated (probability) density function [i is defined by fi(A) = p(A) and
fi(z) = p(z) — (™), where 2~ is the predecessor of z. For a set S C ¥*, ji(S) denotes) fi(z).
For a function f from ¥* to ¥*, we write yt -1 to denote the distribution defined by its probability
fig-1(z) = f({z | f(z) = z}). In this paper, we use Regan’s pairing function (,) [11]; however, we
often write fi(z,y) for g({z,y)) for brevity. For convenience, let vs (the standard distribution) be
defined by its probability g (z) = 9~ lel=2Mog(|z])~1

Let u be a distribution. A function f from ¥* to Rt U {oo} is called polynomial on p-averaget

YEquivalently, there exists a polynomial p such that a({z | f(=) > p(|=z|r)}) < 1/r for all positive real numbers r
[12, 17].

if the expectation > vy || =" f(z)®fu(z) converges for some constant § > 0 [8, 4].

For any two distributions g and v, p p-dominates (polynomially dominates) v, symbolically
v <Py, if there exists a p-bounded function p from ¥* to R such that p(z)ji(z) > o(z) for all x
[8]; similarly, u avp-dominates (average-polynomially dominates) v, denoted by v <*P y if there
exists a function p from ¥* to R which is polynomial on v-average such that p(z)i(z) > 9(z) for
all z [4]. Moreover, u is p-equivalent (polynomially equivalent) to v, symbolically p &P v, if both u
and v p-dominate each other [19]. Similarly, u is avp-equivalent (average-polynomially equivalent)
to v, denoted by p ~*'P v, if both p and v avp-dominate each other.

A distribution p is said to be P-computable (polynomial-time computable)$ if there exists a
deterministic polynomial-time Turing machine M which “approximates” u, i.e., |u(z)—M (z,0)| <
27" for all z € ¥* and 7 € N [7, 4]. Denote by P-comp the set of all P-computable distributions.
In a similar fashion, we can define E-comp, the set of E-computable distributions. In contrast,
1 is called strictly P-computable if there exists a polynomial-time Turing machine M such that
M (z) = p(z) for all z [2].

A distribution p is called #P-computable if there exist a function f € #P and a polynomial
p such that |fi(z) — gp((af—;?g < 27 for all # € ¥* and i € N [16] and the set of all #P-computable
distributions is denoted by #P-comp.

A distribution yp is P-samplable (polynomial-time samplable) if there exists a polynomial p and
a randomized Turing machine M (which does not necessarily halt), called a sampling machine or

generator, which “approximates” j, i.e.,

ji(z) — Probas[M(0%) produces z and halts within time p(|z|,]| < 27!

for all 2 and ¢ € N. In contrast, we call u strictly P-samplable if a probabilistic polynomial-time
algorithm generates strings = with probabilities fi(z) [2]. An algorithm used for a sampling machine
is called a sampling algorithm. Let P-samp denote the set of all P-samplable distributions.
Another type of “polynomial-time samplable” distribution, introduced in [5] as is of the form
s for some y € P-comp and some f € FP, is of importance¥ in average-case analysis. This defi-
nition, nevertheless, allows us to construct a positive distribution ¢ € P-comp and a nondecreasing,
exp-honest function f € FP such that y;-, is not p-dominated by any v in P-samp. Hence we
must restrict our interest and require f be p-honest. We call such samplable distributions invertibly
P-samplable (IP-samplable, for short) for clarity. Let IP-samp denote the set of all IP-samplable

distributions and furthermore let IPj-samp be the set of all distributions of the form p -, for a

$In the theory of average-case NP-completeness, a distribution is sometimes called polynomial-time computable if

it is p-dominated by one that is computable in polynomial time.

I These distributions play an important role in average-case complexity theory; for example, any NP problem
under these distributions is shown to be “probabilistically” reduced to a single NP problem under the standard

distribution [5].

distribution g € P-comp and a p-honest, one-one function f in FP.

At the end, we note that, by extending a result in [9] that P = PP exactly when P-comp =
P-samp, the following five statements are shown to be equivalent: (1) P = PP; (2) P-comp =
#P-comp; (3) P-comp = P-samp; (4) P-comp = IP-samp; and (5) P-comp = IP;-samp.

3 Domination Relation

This section focuses on the P-comp versus P-samp question from the viewpoint of domination
relation.

For brevity, we say that G p-dominates (avp-dominates, resp.) F if every distribution in F is p-
dominated (avp-dominated, resp.) by some distribution in G for two sets F and G of distributions.
We then re-use the symbols <P and <?'P as set relations between two sets of distributions: we
write F <P G (F <*P G, resp.) to mean that G p-dominates (avp-dominates, resp.) F. Clearly
the set inclusion F C G implies the p-domination F <P G; furthermore, the set relations <P and
<P are as reflexive and transitive as the set inclusion C.

The following proposition exemplifies the difference between C and <P: although we do not

know whether P-samp C IP-samp, the domination enables us to show that P-samp <P IP-samp.

Proposition 3.1 P-samp <P IP-samp. More strongly, for every pp € P-samp and every p-honest
function f € FP, there exists a distribution v € P-samp such that p -1 <P v.

Proof. We first demonstrate that P-samp <P IP-samp. Let pu be a P-samplable distribution,
and let M be a randomized Turing machine witnessing p with a time-bound polynomial p. We
assume that, at every configuration of M, M flips a fair coin. Without loss of generality, p is
assumed to be increasing.

We define a function g as follows: Let g(z) be the output z of M on input 021l on path 2z’
and in time p(3|z|) if z = 2’1 and such = exists; let g(z) = A if z = 2’1 but no such z exists; let
g(z) = 2" if z = 2’0. Obviously g is P-computable. On the other hand, since M is a sampling
algorithm, we have fi(z) < 2721l - 3° %ﬂll, where A, is the set of all strings w such that, on
input 021l on the computation path encoded by w, M halts in time p(3|z|) and produces z. Let
v(z) = be({w | g(w) = 2}) and let ¢(2) = 8(p(3z) + 1) + co, where ¢g is the minimal positive
integer such that co(A) > fi(A). It is not difficult to show that ¢(|z|)P(z) > fi(z). We thus have

p =P
For the second part of the proposition, assume that g € P-samp. Following the previous
argument, we can choose a distribution g’ from IP-samp such that u <P u'. It is easy to see that

i <P ' implies pi ;-1 <P ,u'f_l. Now let v = Hlf—l- Since f is p-honest, ,u}_l also belongs to IP-samp.

Thus, we conclude that v belongs to IP-samp. |

We have known that the domination P-samp <P P-comp is derived immediately from the
assumption P = PP. It is nevertheless possible that P-comp p-dominates P-samp even if PP
differs from P. In the rest of this section, we discuss the possibility of P-samp AP P-comp.

We begin with the next lemma, which lists several different statements that are equivalent to

P-samp <P P-comp.

Lemma 3.2 The following statements are equivalent: (1) P-samp <P P-comp; (2) IP-samp <P
P-comp; and (3) for every p-honest function f € FP and every u € P-comp, there exists a
distribution v in P-comp and a p-bounded function p from X* to R such that v(y) > Exef_l(y) %(%l
for all strings y.

Proof. Since IP-samp C P-samp, (1) implies (2). It follows from [4, Lemma 3.3] that (2) is
equivalent to (3). The implication from (2) to (1) follows from Proposition 3.1. O

It is known that P-samp AP P-comp if strong one-way functionsll exist [2]. We improve this
result by showing that a much weaker assumption suffices to reach the same conclusion. To be
more precise, it is enough to assume the existence of NP sets which are not nearly-BPP, which is

defined as follows.

Definition 3.3 A set A is nearly-BPP if, for every polynomial p, there exists a set S and a
polynomial-time randomized Turing machine M such that, for each z, (i) z € ¥* — S implies
Probas[M (z) # A(z)] < 1/3 and (ii) Probyexn[z € S] < 1/p(n) for almost all n. Let Nearly-BPP
denote the collection of all nearly-BPP sets.

The relationship between the strong one-way functions and nearly-BPP sets is stated in the

following proposition.
Proposition 3.4 If strong one-way functions ezist, then NP ¢ Nearly-BPP.

Proof Sketch. A key idea of the proof is to construct a length-regular**, strong one-way function
f which is one-one on most instances with the property |f(z)| > |z| for all z [2]. Let A be the set
of all strings of the form msl-x| such that f(z) = 2 and the ith bit of z is 1 for some z. Clearly A

A (uniform) strong one-way function is a P-computable function f such that, for every polynomial-time ran-
domized Turing machine M, the function)\n.Prob(xys)epnM[f(l\l(I", f(z);8)) = f(z)] is negligible, where T}, is the

set of all pairs (z, s) for which, along with random seed s, M on input z of length n halts.
**A function f from ¥* to * is length-regularif | f(z)| = |f(y)| for all pairs (z,y) for which |z| = |y].

belongs to NP. Toward the conclusion, it suffices to show that if A is in nearly-BPP, then there

exists a randomized Turing machine that “inverts” f with nonnegligible probability. []

Lemma 3.5, given below, is a crucial lemma to our main theorem. It shows that the assumption
P-samp <P P-comp helps find all elements of the inverse image f~'(y) of any P-computable

function f which does not decrease significantly, whenever the set f=1(y) is relatively small.

Lemma 3.5 Assume P-samp <P P-comp. Let f be any function in FP, let k be a positive
integer, and let ¢ and ¢' be any two polynomials with q(n) > 1 for all n. Assume that |z| <
|f(z)| + klog|f(z)| for almost all x. There exist a set S and a deterministic Turing machine M
such that (i) S C range(f); (ii) |SNY"| < % for each n € N; and (iii) M on input y € S
correctly lists all elements of f='(y) (whenever f=(y) = @, M outputs 0) in polynomial time when
='Wl < d(lyl)-

Proof. A crucial point of the following proof is to define a coding function A which, on input
(1", z), encodes the output f(z) together with the first n bits, say z, of z if 2 is in the domain of
f so that with the help of the inverse function A~! we can find from y an element z of f~!(y) by
depth-first search (asking whether z0 or z1 is a coded word) with polynomially-many steps.

Formally, the desired function h is defined as follows. Let h({(w,z)) be (y,z1) if w € {1}*,
|z| = |w|, z C z, and f(z) = y; otherwise, set h((w,z)) = (w, 20). Notice that h is defined on all
strings and p-honest. Take a distribution u defined as follows: fi(w,z) = g (z) - 27 2MoswD=1 jf
w € {1}, or else 0. Clearly, p,-1 € IP-samp. Recall that Jg(z) > %

Let ng be the minimal positive integer n such that klogn < n and |z| < |y| + klog |y| for all
y € range(f) of length at least n and all 2 for which f(z) = y.

By our assumption IP-samp <P P-comp (equivalent to P-samp <P P-comp by Lemma 3.2),
there are an n € P-comp and a polynomial r with r(n) > ¢’(n) for all n such that r(|y|)7(y, z1) >
fip-1(y, z1) for all y and z. Without loss of generality, we assume that » is strictly P-computable.
For each y € range(f) of length at least ng, we thus have 7(y, z1) > f&—% for any initial segment
z of each element in f~!(y), where s(n) = 256r(n)n***. TFor each y of length at least ng, let
Cy =1z 9y, 21) > %, |z| < |y|+ klog |y|}. Notice that Cy, when |y| > ng, consists of all initial
segments of each element in f~'(y); in particular, f~'(y) C C,. By the computability of 7, there
exists a polynomial-time algorithm which recognizes the set {(y,z) | z € C,}.

For the desired S, define S = {y | |Cy| > ¢(|y])s(|y|),y € range(f)}. Clearly we have S C

range(f). We show that, for all n, |S"| < % Assume otherwise, and let 3’ be an element of S.

Let n = |y/|. Then we have

Y iy, > G2

v 5(n)

a contradiction.

Define a Turing machine M as follows. On input y of length at least ng, by a depth-first search,
M computes at most ¢(|y|)s(|y|) elements z of C, and lists all these elements z, if any, which
satisfy f(z) = y, or else M outputs 0. For concreteness, when the length of input y is less than
ng, we design M so that all elements of f~!(y) are encoded into M’s program. It is not difficult
to show that if |f='(y)| < ¢’(|y]), |y| > no, and y € S, then all elements of f~!(y) are retrieved in

polynomial time. This completes the proof. O

Note that the set S in the above proof may not be P-computable. To avoid the introduction of
S we must assume a stronger assumption. For a further discussion, see Lemma 4.4.
Using the hash function technique, we can show the desired result that P-comp cannot p-

dominate P-samp unless every NP set is nearly-BPP.

Theorem 3.6 P-samp AP P-comp unless NP C Nearly-BPP. More strongly, the following
holds: Assume P-samp <P P-comp and let A be any set in NP. For every polynomial p with
p(n) > 1 for all n € N, there exist a set D and a polynomial-time randomized Turing machine M
such that D C A, and, for each z, x € A — D implies Proby[M (z) # A(z)] < 1/2, x € A implies
Probay[M(z) # A(z)] =0, and Probyexn[z € D] < 1/p(n) for almost all n.

Proof. Assume P-samp <P P-comp. Take any set A in NP and any polynomial q. We want
to show that A satisfies the claim. It is sufficient to consider the case that there exists a set
B € P satisfying A = {z | 3z € ¥Fl[zz € B]}. For each z, let B, be the set of witnesses,
{z]zz € Bn EQM}, for “z € A.” Assume that there exists a nondecreasing polynomial p such
that Probyesn[z € A] > p(l—n) for almost all n since, otherwise, the theorem is trivial by choosing
D= 0.

In order to apply Lemma 3.5, we want to define a function f that maps any element in z B,
to 201l (and the others to 1) so that, by help of the inverse f~'(z0/*l), we can retrieve all
witnesses B, for “z € A” if they exist. In the case that there are always at most polynomially-
many witnesses for A, Lemma 3.5 guarantees the existence of an algorithm that computes all
witnesses in polynomial time. However, this attempt fails if A has many witnesses in general.

Instead, we use hash function to make such a function f one-one on most inputs. Take the set
H, ntc of hash functions. Define f(z') = 1zs7hh(y) —pt.0"" if 2/ = zysth and y € B,; otherwise
0z', where 2 € X", h € Hy nte, and ¢ = ilog(n). Notice that |2'| < |f(2')| for all 2. For brevity,
write t(n) = 14 n +ilog(n) + (n 4+ 1)(n +ilog(n)) + n + ilog(n).

We show that f is one-one on the fraction of each input set X*"). For each k and z of length
n, let g(z) = |f~(z)| and pi, = Pl‘Ob(hiw)EHnyn_*_cXEnﬁ-c[g(lmszhwkk.}_con_k) = 1]. It suffices to

show that pg . > 1/2n for almost all n. Now we fix k£ and z, and assume that n = |z| is sufficiently

large and ilog(g(z)) < k < n. Consider the case |B;| > 0. The probability py, is larger than or
equal to the probability over all pairs (h,w) that, for each y in By, hA(y)—ktc = Wekye, and b
k-distinguishes y on B,. Thus, since ¢ < logn + 1, we have

pra > [Bo| - 2704 (1-27) > (1-277) 2o 2 27 > o
n

For the case |B;| = 0, clearly pi, = 1 since g(]msﬁhwekﬂO”_k) = 1 for all k, h, and w. This
yields the desired result pj, > 1/2n.

Now we apply Lemma 3.5. It follows by this lemma that there are a set S and a polynomial-time
deterministic Turing machine N which recognizes S such that S C range(f) and |SﬂEt(”)| < %.
For the desired randomized polynomial-time algorithm M, we define it as follows:

begin randomized algorithm for M

input z (say, n = |z|)

choose w and h at random (w € X"T° h € Hy, pye, ¢ = ilog(n))

let Result :=0

for all k£ (1 <k <n)
run N on 2, = lesthw 40"
let Result := OR of Result and N(z})

end-for

output Result and halt

end.

—k

For the desired set D, we first write dj, , = Prob(h7w)EHn’n+CXEn+c[1$SZh'U)(_k+cOn_k € 5], where
¢ = ilog(n). Using this 8y, we then define D = {z € ¥t N A | Ikfilog(|Bz|) < k < n Ay >
+ A |z| = n]}. We must show that Probyesn[z € D] < 1/¢(n). Assume otherwise. Thus, we have
Ok, > 1/4n for some k (ilog(|Bz|) < k < n) and « € D". Since
| 5t(m)] 1
2 < 4ng(n)’
we have max{d;, | ilog(|B;|) < k < n,z € ¥"} < 1/4n. This is a contradiction. Therefore,
Probgesn[z € D] < 1/¢(n).

Now our final task is to prove that (i) Proba[M(z) = A(z)] > 1/4n for all z in A — D, and (ii)
Probp[M(z) # A(z)] = 0for all z ¢ A. This is enough to establish the theorem because we can am-

max{0x , | log(|Bz|) <k < m,z € X"} - Probgesn[z € D] <

plify its success probability. Take any input z of length n. Let p, = Prob, wyen, .y oxxnte[A(2) =

ORJ_;N(z}))]. Note that the probability Probas[M(z) = A(z)] is at least p,. Assume A(z) =1

for a string = € D. Note that if 2}, € S and g(z},) = 1 for some &', then OR}_, N (z},) = 1. Hence,
pe > Max{py s — Op o |ilog(|Be|) <k <n} > 4]_?1

For the other case A(z) =0, AN(Z'(QZh?I}(_n+COn_k) = 0 for all A, w, and k; and thus, p, = 1. This
completes the proof. O

Different from the p-domination, there is no clear evidence for the separation between P-comp

and P-samp with respect to the avp-domination. See Section 5 for more discussion. It is, however,

easy to show that E-comp A*'P P-comp. Note that the average-case complexity class Pz consists

of sets recognized in polynomial-time on p-average for every distribution p in set F [17].
Proposition 3.7 E-comp £2'P P-comp.

Proof. Assume to the contrary that E-comp =<*'P P-comp. This yields the consequence
Pr-comp € PE-comp. Since Pg.comp = P [17], we obtain Pp_comp = P, which clearly contra-
dicts another result in [14, 18] that Pp_comp differs from P. Therefore, E-comp A*'P P-comp. O

4 Equivalence Relation

In this section, we study the equivalence classes of distributions modulo the equivalence relations
~P and ~*'P for which the notion “polynomial on the average” is invariant.

Formally, for a set F of distributions, 7 /xp denotes the collection of all equivalence classes [u]
for every u € F, where [u] = {£ | £ &P u}, and among such collections the notions of p-inclusion
CP and p-equality 2P can be naturally introduced: G CP F means G/np C F/np and F =P G
means F/xp = G/np. Similarly, the avp-inclusion C*'P and avp-equality =*'P are defined by the
use of ~*'P instead of ~P. Note that these new relations are reflective and transitive; moreover,
=P and =P are symmetric. Obviously, F C G implies F C?P G, and F = G implies F =P (.
Furthermore, 7 CP G (F C*P G, resp.) implies F <P G (F <*P G, resp.).

As a main theorem of this section, we show that, under the assumption P # RP, P-comp 2*'P
IP;-samp; thus, if RP differs from P, then P-comp cannot avp-equal P-samp. The following

lemma is useful to show our theorem.

Lemma 4.1 The following two conditions are equivalent: (1) P-comp 2*'P IPy-samp; and (2)
for every p-honest f € FP and every p € P-comp, there exists v € P-comp and functions p,q
which are polynomial on u-average such that erf_l(y) q(z)pp(z) > v(y) > Eref_l(y) % for all y.

Theorem 4.2 If P # RP, then P-comp 2*'P IP;-samp.

Proof. Consider an arbitrary set A € RP. We want to prove that A belongs to P. By the
amplification lemma [13], there is a strictly increasing polynomial p and a set B € P such that, for
every z € X", Prob, cyum [2y € B] < 277 if 2 € A, and otherwise, Prob, csum[zy € B] = 0. For
each z, let B, be the set of witnesses for “z € A”; that is, B, = {y € X)) | 2y € B}.

The key idea of the proof is to define the function f that assigns each witness zy with the
value zA(z)?(7) so that the probability fi 1 (21707])) measures the cardinality of the set B,. Our

10

assumption ensures ;-1 can be “approximated” deterministically in polynomial time. Since B is
either large or empty, we can determine in polynomial time whether fi - (:Clp““‘"')) > 0, which is
equivalent to A(z) = 1.

We formally define u by ji(zy) = vee(z) - 2770=D if |y| = p(|2]), or else ji(zy) = 0. Clearly u is
P-computable. Let

Fay) = { wA@y Dt lyl = p(la),
Ty otherwise.

By the assumption P # RP and Lemma 4.1, we have a distribution v € P-comp and a function
q which is polynomial on p-average such that -)q(r)ﬂ(:r) v(y) > Ea:‘ef ; for all

k
y. Since 32,y |z| " q(x)"*i(2) < ¢ for some constants k,c > 1, we have g(z) < (ZJ;D for all

nonempty strings = with fi(z) > 0. Thus, for almost all 2 and for all y of length p(|z]),

a(ey) < (|Ty|) (<l + p) la] + 1)22|x|+p<|r|))’“ < (2¢1. 2|x|+p<|x|))’“ _ orllal)

fulzy)
where r(n) = (2n4 p(n))*. Since v € P-comp, there exists a deterministic polynomial-time Turing
machine M such that |9(z) — M(z,0)| < 27% TLet M'(z) = M(z,0"(zD+2z) " By definition,
[0(x) — M'(z)] < 27" eD=2le] for all z.
Let x € ¥". Assume that z € A. Then, we have

() iz) o TP () 20— 1
Dt (z172) > Z l](Z) = 9r(n) 9p(n) 2 9r(n)+2n
sef (@10

since Uyt() > 5o3mw > 547 if n > 7. Hence, M'(z) > p(a1P(") — 277(n)=2n > 9=rn)=2n(gn _),
In the case that z ¢ A, p(217(") < Y sef-1(a1rin) €(2) - fi(2) = 0. Hence, M'(z) < (217 4
2-r(n)=2n — 9-r(n)=2n Now we have a complete characterization of A in terms of M’; namely,
ANY" = {z € ¥ | M'(z) > 277 (M=27(2" — 2)} for almost all n. Since M’ halts in polynomial

time, A is also computable in polynomial time. |

As another main theorem, we shall show that the assumption P # NP suffices to reach the
desired conclusion P-comp 2P P-samp. We start with the following lemma, which follows from

Lemma 3.2.

Lemma 4.3 The following three conditions are equivalent: (1) P-comp =P P-samp; (2) P-comp =P
IP-samp; and (3) for every p-honest f € FP and every u € P-comp, there exist a distribution v

in P-comp andp bounded functions p and q from ¥* to Rt such that Zref () q(z)p(z) > o(y) >

erf_ () p(m) for all y.

In addition to the above lemma, we can show that P-comp =P P-samp if and only if P-comp =P

11

#P-comp. To prove this claim, however, we need several results and we shall see the proof at the
end of this section.

To show the desired theorem, we would like to have a lemma, stronger than Lemma 3.5, which
can be obtained under the stronger assumption that P-samp CP P-comp. Under this assumption,
the statement regarding the set S in Lemma 3.5 are eliminated because S turns out to be P-

computable.

Lemma 4.4 Assume that P-samp CP P-comp. For any set B € P and any polynomial p, let
Sg = {z | |Bs| < p(|z|)}, where B, = {z € ¥l°l | 22 € BY. There exists a deterministic Turing
machine N such that, for each n € N, N on input x in Sgp NYX" lists all elements of B, (whenever

B, =@, N outputs 0) in polynomial time.

Proof. Assume that P-samp CP P-comp. Until the introduction of a set (', the proof is similar
to that of Lemma 3.5.

We define a p-honest function h as follows: Let A((w,yz)) = (ly,z) if w = s|kxy| for some

x| = |yl, |2| = k, 2 C 2, and yz € B; otherwise, let h((w,yz)) = (Oy,z). Let f(w,z) =
Dg (z) - 27 2o (2N =1 if o € os(l7]) and 0 otherwise, where llog?(n) = llog o llog(n).

Since p,-1 € P-samp, it follows by Lemma 4.3(3) that the assumption P-samp CP P-comp
ensures that there are an € P-comp and a nondecreasing polynomial r such that r(|y| + |z|) -
fp-1(y, 2) > 1y, 2) > fi-1(y, 2)/r(|ly| + |2]) for all y and z. Denote by D, . the collection of z such
that z C 2 and 2 € By. Note that if y € Sg then |D, .| < p(|y|). Since fi;-1(y, z) = Dy.c |

22Uog2(2[g)+1

we obtain 7(1y, z) > m when D, , # @, where ¢(n) = 2llog?(2n)+2llog(2n)+

2—2|y|
22log (2[y])+1 7

2.

Let M be a polynomial-time Turing machine which approximates 7. lLet d be the minimal
positive integer such that 3r(2n + 1)29(") < 241°8(?) for almost all n. We define a new machine
M" as M'((y, 2)) = M((y, 2), 02lvl+dlog(v)+1) Hence, M'((1y, 2)) > H(1y, z) — 2~ 2lvl=dlog(jy)=1
% For each y € X", let Cy = {z | M'((1y, 2)) > 231?:”, ,|z] < n}. Notice that B, C C if

y € Sp and that the set {(z,y) | z € C}} is in P.

To avoid the introduction of a set S, as in Lemma 3.5, we use the other inequality r(|y| + |z| +
1) - fi-1(1y, 2) > A(1y, z), which enables us to prove the following claim: For each n > 0 and any
y € SpNYn, |Cy] < 29 (2n+1)%p(n)3n. This claim guarantees that if y € Sg then all elements of
B, are printable in polynomial time by depth-first search for the set €. In what follows, we must

show the claim above.

Note that if z € Cy, then H(1y, z) > QdQT For each n > 0 and any y € SpNY¥",
r(2n+1)%.272" 9—2n
92q(n) ZlDyZ| 2 Z (lyl + =] + 1)Mh 1(1y, 2) Zn ly, 2) lel g(n |C -

12

Therefore, |Cy| < 9d-llog(n)—g(n) r(2n+1)? - Yo | Dys| < 2dr(2n + 1)%p(n)®n. This completes the
proof. a

Theorem 4.5 P-comp 2P P-samp unless P = NP.

Proof. Assume that P-comp =P P-samp. Let A be an arbitrary set in NP. It is enough to
prove that A € RP since P = RP follows by Theorem 4.2 from our assumption. Notice that it
also suffices to consider a set A only of the form A = {z | 3z € XIl[z2 € B]} for some B € P. Let
By ={z eyl |2z e B}.

The most crucial part of the proof is to randomize by hash functions a witness set B, so that
the density of its corresponding witness set By is small on most z/. Lemma 4.4 then guarantees
the existence of an algorithm that determines whether there is a witness (i.e., By #). If we run
this algorithm on random input 2/, with high probability we can hit a witness and thus, we can
conclude that z € A.

Formally we define:
B = {22 | 3khzz[z,z € X" Az’ = wsPhh(2) cpy0" "
A2 = 210111 A 22 € BAR € Hppyo A e =ilog(n)]}.

Since B € P, Bis also in P. Let Sy =12"] |By/| < 1}, where By = {2/ € 2l | /2" ¢ B}.

We define py . = Prob, wyem,, ,poxsnte [mth'kaHO”_k € Sg]. Similar to the proof of Theorem
3.6, we can prove that py» > 1/2n holds for almost all n and for all = with |B;| > 0.

We then apply Lemma 4.4 to the set Sg, and we obtain a polynomial-time deterministic Turing

machine N that recognizes Sz. We define the randomized polynomial-time algorithm M as follows:

begin randomized algorithm for M

input z (say, n = |z|)
choose w, h at random (w € £",h € Hy, py., ¢ = ilog(n))
let Result =0
for all k (1 <k <n)
run N on zj, = zsphjw
let Result = OR of Result and N(z})
end-for
output Result
end.

To see that M recognizes A, it suffices to prove that Proby[M(z) = A(z)] > 1/2n for almost
all z since we can amplify its success probability. Take any input z of length n and let p, =
Proba wyer,, poxsn [A(z) = ORZ_ N (2}))]. Note that the probability Proby[M(z) = A(z)] is at
least p,. Our goal now is to prove that p, > 1/2n.

We must consider two separate cases. First we consider the case A(z) = 1. Note that if

13

0 < gg(2y) < 1 for some k', then OR;_, N(27) = 1. The probability p, is at least the sum of the
probability over all pairs (h,w) that, for each z € B, and for some k with ilog(gz(z)) < k < n,
h(2) e = Wepge and b k-distinguishes 2 on B,. Hence, p, > gg(z) - (1 — 27°) - 2=(k+) >
(1-27%)27¢ > 1/2n. For the other case A(z) = 0, N (282hw4+.0""*) = 0 for all triplets (h,w, k);
thus p, = 1. This completes the proof. O

Toward the end of this section, we show that P-samp %P #P-comp implies NP ¢ BPP. For its
proof, we need so-called PNF-samplable distributions. A distribution yu is called PNP-samplable't
if there exist a sampling oracle machine M, a deterministic Turing machine N, and a set A € NP
such that (i) M with oracle A “approximates” j in time polynomial in the length of outputs
and that (ii) on each input (Oi,s), N lists in polynomial time all query strings of M on input
0° along with computation path p if s is a correct code of path p of M [16]. It is known that
#P-comp CP PNF-samp [16], where PNP-samp is the set of all PNP-samplable distributions.

We are now ready to show the following theorem.
Theorem 4.6 P-samp %P #P-comp implies NP ¢ BPP.

Proof. We note that P-samp C #P-comp. It thus suffices to show that #P-comp CP P-samp
under the assumption NP C BPP. Let us assume NP C BPP. Take an arbitrary distribution u
in #P-comp. By the result mentioned above, there is a distribution v € PF-samp such that p
is p-equivalent to v. Under our assumption, v belongs to PBPP_samp. It is not difficult to show
that PBPP_samp 2P P-samp, which has a similar flavor to the result that BPPBFP = BPP (see,

e.g., [21]). Therefore, there is a distribution £ in P-samp such that v =P £. Hence, p =P €. O
As a corollary, we can show an extension of Lemma 4.3.
Corollary 4.7 P-comp =P P-samp if and only if P-comp =P #P-comp.

Proof. It suffices to show the “only if” part of the corollary. Assume P-samp CP P-comp. By
Theorem 4.5, we have P = NP. Remember that NP C BPP if and only if NP = RP [6]. Thus,
we have NP C BPP. By Theorem 4.6, every #P-computable distribution is p-equivalent to some
distribution that can be sampled by a randomized Turing machine in time polynomial in its output.

|

11 Originally Schuler and Watanabe used an ensemble of conditional distributions but we can easily modify their

proof to accommodate a distribution on the infinite set.

14

5 Further Discussion

We have shown that certain reasonable complexity-theoretic assumptions lead to the separation of
P-samp from P-comp with respect to domination and equivalence. In this section we shall discuss
further results related to our subjects.

We begin with a discussion on the possibility of P-samp £*'P P-comp. Since the avp-domination
inherently embodies average-case complexity measure, there is a close connection to the average-case
complexity class Pz. We present three assumptions that yield the desired conclusion P-samp A*'P
P-comp. Firstly, if P = Pp_samp, then P-comp cannot avp-dominate P-samp (because P-samp <*'P
P-comp together with P = Pp_gamp leads to the conclusion Pp-comp = P, which contradicts a result
in [14, 18]). Regarding the P = Pp_gamp question, we note in addition that Theorem 4.6 enables
us to prove that, assuming Pp_samp 7# P, either FPE Z #P or NP ¢ BPP holds.

Secondly, the non-closure property of Pp_comp under p-m-reduction (polynomial-time many-one
reduction) suffices to conclude that P-samp £*P P-comp. We note that Pp_somp is closed down-
ward under increasing p-m-reductions but not under exp-honest p-m-reductions [18]. In contrast,
Pp_gamp is indeed closed downward under p-honest p-m-reductions.

Thirdly, the existence of avp-universal P-samplable distribution yields the desired consequence
(because P-samp <*P P-comp implies the existence of avp-universal P-computable distributions,
which contradicts a result in [15]). Here, a distribution is called avp-universal for F if it is in F
and avp-dominates every distribution in F. We can further weaken this notion and ask whether
P-comp has an F-universal distribution g (that is, u € P-comp and for every v € P-comp, there
exists an f € F such that #(2) < f(z)(z) for all z). If there exists an O(f)-universal distribution
for P-comp, where f is any function in the set o(2"), then we are able to draw a conclusion that P
and NP are truly different.

At the end, we note that nearly-BPP sets are also closely related to the average-case com-
plexity measure in the following fashion: BPPp.comp C Nearly-BPP, where BPPp_comp is
the collection of sets A such that, for every p € P-comp, there exists a randomized Turing

machine M which recognizes A with bounded-error probability in polynomial-time on p-average

: Timepy (x;5)? . ()2 s ‘ .
(e D20 D serm(e) o] Srery 7 < 00, where I'p7(z) consists of all random seeds s

for which, along with s, M on input z halts [1]). Hence, if a strong one-way function exists, then

NP ¢ BPPp._comp.
Acknowledgments

The author is grateful to Stephen A. Cook for discussions with him and thanks Osamu Watanabe

for pointing out an erroneous statement in an early draft and Ker-1 Ko for his helpful comments

15

on the draft. He also thanks anonymous referees who referred him to Milterson’s paper.

References

[1] A. Blass and Y. Gurevich, Randomized reductions of search problems, SIAM J. Comput., 22
(1993), pp.949-975.

[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case complexity, J.
Comput. System Sci., 44 (1992), pp.193-219.

[3] Y. Gurevich, The challenger-solver game: variations on the theme of P =?NP, Bulletin of the
ETACS, 39 (1989), pp.112-121.

[4] Y. Gurevich, Average case complexity, J. Comput. System Sci., 42 (1991), pp.346-398.

[65] R. Impagliazzo and L. A. Levin, No better ways to generate hard NP instances than picking
uniformly at random, in: Proceedings, 31st IEEE Conference on Foundation of Computer Science,
pp. 812-821, 1990.

[6] K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Information
Processing letters, 14 (1982), pp.39-43.

[7] K. Ko and H. Friedman, Computational complexity of real functions, Theor. Comput. Sci., 20
(1982), pp.323-352.

] L. Levin, Average case complete problems, STAM J. Comput., 15 (1986), pp.285-286.

] P. B. Milterson, The complexity of malign ensembles, STAM J. Comput., 22 (1993), pp.147-156.
[10] C. H. Papadimitriou, Computational Complezity, Addison and Wesley, 1994.

]

K. W. Regan, Minimum-complexity pairing functions, J. Comput. System Sci., 45 (1992), 285-295.

[12] R. E. Schapire, The emerging theory of average-case complexity, Technical Report MIT/LCS/TM-
431, Massachusetts Institute of Technology, 1990.

[13] U. Schéning, Complezxity and Structure, Lecture Notes in Computer Science, Vol.211, 1986.

[14] R. Schuler, Some properties of sets tractable under every polynomial-time computable distribution,

Information Processing Letters, 55 (1995), pp.179-184.

[15] R. Schuler, A note on universal distributions for polynomial-time computable distributions, in:

Proceedings, 12th Conference on Structure in Complexity Theory Conference, pp.69-73, 1997.

[16] R. Schuler and O. Watanabe, Towards average-case complexity analysis of NP optimization prob-
lems, in: Proceedings, 10th Conference on Structure in Complexity Theory Conference, pp.148-159,
1995.

[17] R. Schuler and T. Yamakami, Structural average case complexity, J. Comput. System Sci., 52
(1996), pp.308-327.

[18] R. Schuler and T. Yamakami, Sets computable in polynomial time on average, in: Proceedings,
1st Annual International Computing and Combinatorics Conference, Lecture Notes in Computer

science, Vol.959, pp.400-409, 1995, Springer-Verlag.

16

[19] J. Wang and J. Belanger, On the NP-isomorphism problem with respect to random instances, J.
Comput. System Sci., 50 (1995), pp.151-164.

[20] T. Yamakami, Average case computational complexity, Ph.D. Dissertation, University of Toronto,

1997.

[21] S. Zachos, Probabilistic quantifiers and games, J. Comput. System Sci., 36 (1988), pp.433-451.

17

