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(Extended Abstract)

Abstract

We prove an optimal bound on the Shannon function L(n, m,¢) which describes the trade-off
between the circuit-size complexity and the degree of approximation; that is

m€2

L(n,m,e) = @<M

) + O(n).

Our bound applies to any partial boolean function and any approximation degree, and thus com-
pletes the study of boolean function approximation, introduced by Pippenger [11], concerning
circuit-size complexity. As a consequence, we provide the approximation degree achieved by poly-
nomial size circuits on a ‘random’ boolean function; that is

E_
Appo(n, I(n) = n*) = © (M) ksl
As an application, we obtain a non trivial upper bound on the hardness function H(f) introduced
by Nisan and Wigderson [10]; that is, for any boolean function f : {0,1}" — {0,1}:
H(f) < 2"3 4024+ 0(1).

The optimal bound for L(n, m, €) gives also a general criterium for determining the quality of a given
learning algorithm for partial boolean functions. The contribution in our proofs can be viewed as a
new technique based on some particular algebraic properties of linear operator for approximating
partial boolean function.



1 Introduction

We investigate the concept of approximation of boolean functions introduced by Pippenger [11]. The
main result of this paper is an optimal bound on the trade-off between the circuit-size complexity
and the degree of approximation. The obtained result holds for the general case, that is, for any
partial boolean function and for any approximation degree function. As a consequence, we provide a
rather precise answer to another central question: “Which is the degree of approximation achieved by
polynomial-size circuits for any (and thus even random) boolean function?” or, equivalently, “How
much information a polynomial-size circuit can give about a random boolean function?”

This question plays an important role in several topics such as pseudorandom generators [13, 9],
randomized computations [4] and cryptography [5]. In particular, we show some consequences of our
results for the relevant work, due to Nisan and Wigderson [10], concerning the notion of hardness of
boolean functions and, more generally, the hardness-randomness trade-offs.

- Pippenger’s concept of approzimation, prior works and our resullts

Let f: A— {0,1} (A C {0,1}") be a partial boolean function and consider the uniform probability
function defined on A. The function L(f,¢) denotes the minimum positive integer l,,,;, for which a
boolean circuit! S of size ,;, exists such that Pr(f = 5) > %—I— € where € (with 0 < € < 1/2) denotes
the approzimation degree. The function App(f,1) is the maximum value € for which there exists a
circuit S of size at most [ such that the above inequality holds. These two functions describe the
trade-off between circuit-size complexity and degree of approximation. We can then introduce the
‘approximation’ version of the Shannon functions, i.e., the function Lg(n,¢) defined as the maximum
value of L( f, €) achieved by any boolean function f : {0,1}" — {0,1} and the function L(n,m,€) as the
maximum value of L(f, €) achieved by any partial boolean function f: A — {0,1} with |A] < m. The
functions L(f), Lo(n), L(n, m) denote the corresponding Shannon functions for perfect constructions
(i.e. for e = 1/2). Moreover, we can define the function Appg(n,l) as the minimum value of App(f,I)
achieved by any function f : {0,1}" — {0,1} and, equivalently, the function App(n,m,!) for partial
boolean functions.

Pippenger [11] introduced the function L(n,m,¢) and obtained the asymptotical behaviour for a
restricted case, that is, when m = Q(2") and ¢ is a positive constant independent of n:

s (14 (33 )+ (3 Joe ()

In this case, we have L(n,m,e) = O (%) . Notice that the function 7' is also the asymptotical

behaviour for L(n,m) (see [12, 3]). Informally speaking, such results tell us that, when a constant
degree of approximation (thus very high!) is required, it is then necessary to use boolean circuits having
size equivalent to those required for perfect constructions. However no information can be derived
from Pippenger’s result about the degree of approximation achieved either by circuit of smaller size
(in particular those having polynomial size) or when the domain size is not exponential in n. In
some applications, such as the construction of pseudorandom generators and/or crypto-systems, such
information is generally required. Qur main contribution consists in determining the optimal bound
for the functions Lg(n,€) and L(n,m,€) in the general case.

Theorem 1.1 For anyn >0, 0 < m < 2" and € > 0, we have:

L(n,m,e) = @(

m€2

log(2 + me?)
We can then apply this theorem for obtaining the behaviour of functions Appo(n,!) and App(n,m,1).

one?

)+o<n>, and Lo(n,e) =© (W

) + O(n).

lwe consider boolean circuits having any kind of gates of one or two inputs



Corollary 1.1 A constant ¢ > 1 exists such that if | > ¢n then

Appo(n,l) =0 (7(ljn)) , and Appo(n,l(n) = nfy=0 (M) for k> 1. (1)

23 (27)

In [10], it is proved that if a function F: {0,1}" — {0, 1} exists such that ;) F € EX P and i) for
any n > 0, the restriction of F to the finite domain {0, 1}" is not approximable? by any polynomial-size
circuit, then BPP C NosoDTIM E(2°"). Observe that Eq. 1 implies that for any n there is a boolean
function f, for which the approximation degree achieved by polynomial-size circuits is bounded by
the inverse of an exponential function in n and thus it cannot be approximated. Although this fact
does not imply that the hypothesis of Nisan and Wigderson’s theorem is completely true (observe
that condition (i) might not be verified), our lower bound provides further positive indications on the
conjecture that the gap between deterministic and randomized computational power is not large.

On the other hand, the lower bound in Corollary 1.1 implies a non trivial upper bound on the

hardness function H(f) = min{l : App(f,1) > 1} [10].
Corollary 1.2 For any n > 0 and for any boolean function f:{0,1}" — {0,1}, we have:
H(f) < 23+ 024 0(1).

The interest in the hardness function lies in the following theorem [10]. If a function F : {0,1}" —
{0,1} exists such that i) ' € EXP and i) for any n > 0, the restriction of F' to the finite domain
{0,1}" has hardness 2°™ for some a > 0, then BPP = P. In particular, Corollary 1.2 provides a new
upper bound on the value a in condition (#) (i.e. a < 1/3). Since this bound holds also for a non
recursive function F', our opinion here is that condition (¢7) is very strong for a function belonging to
EXP.

Theorem 1.1 has also an important consequence in learning partial boolean functions. In particular,
the optimal bound for L(n,m,¢€) gives a good criterium for determining the quality of a learning
algorithm. A learning algorithm for a partial boolean function f(z1,...,z,) (with domain size m)
can be reasonably seen as a boolean circuit S7(zy,...,2,) which makes use of a set T of positive and
negative examples (i.e. a table T' of boolean vectors &’s with the corresponding values f(Z)’s) (see also

[6]). Suppose now that ST achieves an approximation degree equal to € (i.e. Pr(f = ST) > I+e).

If |ST| = Q(L(n,m,¢€)), we can state that ST is not so efficient since our upper bound for L(n,m, €)
implies that there is a circuit S of size O(L(n,m,€)) which gives the same approximation degree. In
other words, the use of table T is not relevant. On the other hand, if |ST| = o( L(n, m, €)), our lower
bound for L(n,m, €) implies that, in this case, the use of table T in deriving ST is useful (although a
further analysis is required to establish upper and lower bounds on the size of T').

- Techniques adopted: the probabilistic method and linear approzimation

Although the lower bound in Theorem 1.1 is obtained by standard counting arguments, another
contribution is the technique herein proposed to derive the upper bound. This technique consists in the
use of the probabilistic method (see [1]) for deriving the existence of some particular linear operators
which can be applied for approximating boolean functions. We first introduce a natural algebraic
property on the set of boolean domains: a set A C {0,1}" is 4-regular if, for any choice of four
pairwise different vectors in A, their sum (i.e. the @ operation performed component by component)
yields a non zero vector. We then prove that if we choose randomly a linear operator f(i.e. a vectorial

% According to [10], a function f is not approximable by a circuit C if Pr (f # S) > nl—k, for some k > 0



linear function) defined on a 4-regular domain A then, with high probability, it is ‘well-distributed’
(i.e. there are not too many elements in A having the same image according to l_j From this algebraic
result, we show how to use linear operators for approximating partial boolean functions defined on
4-regular domains. We thus obtain the upper bound of Theorem 1.1 in this restricted case. The next
step consists in extending the upper bound for 4-regular domains to general domains. For achieving
this aim, we prove the existence of an injective vectorial function J,, having linear circuit complexity,
which maps the set {0,1}" into the set {0,1}" (for some constant ¢ > 1), such that the resulting
subset J,,({0,1}") is 4-regular. The technique for the case of general domains is still based on linear
operators; indeed, the function J, is a convenient composition of linear operators which maps each
nonzero element of {0,1}" to an element of {0,1}" having a large (i.e. linear) number of 1’s. We
then show that this property yields a 4-regular domain. Finally, for any functlon f defined on A,
we use the injectivity of J, in order to construct a new function [ defined on J,({0,1}") such that
L(f,€) < L(f*,€) + O(n). Since J,({0,1}") is 4-regular, we obtain the upper bound for the general
case.
We believe that our rather general approximation method, based on linear operators, will give
potential tools also in providing non trivial upper bounds on the circuit-depth complexity for approx-
imating boolean functions.

2 Upper Bounds

2.1 Linear approximation on 4-regular domains

In this section we show some interesting properties of linear boolean functions. In particular, we first
introduce a particular class of boolean domains denoted in the sequel as 4-regular domains. We then
prove an upper bound for the function L(n,m,€) restricted to partial boolean functions defined on
4-regular domains.

A boolean function I(z1,. .., ,) is linear if it can be represented in the following way: I(z1,...,z,)
= a1 D ... D ayx, O B, where aq,...,a,, 3 are boolean constants. Moreover, the set of all linear
functions with n variables is denoted as L,,.

Definition 2.1 A domain A C {0,1}" is 4-regular if for any 4-tple (a1, a3, a3, ay) of veclors in A,
such that a; # a; (i # j), the three vectors a1 @ dy, di & d3 and dj @ dy are linear independent.

Observe that requiring the linear independence of the above three vectors is equivalent to the
following statement: @i @ a3 @ d3 & dx # (0,...,0). Our next goal is to extimate the degree of
approximation achieved by a randorn linear function with respect to a boolean function f: A — {0,1}
(A C {0,1}"). when its domain A is 4-regular. We thus consider a linear function as a random element
selected from the space £, with uniform probability. For any @ € A, we introduce the ‘agreement’
function defined on the space L£,,: &z(1) = I(d) @ f(@) & 1 (notice that &z(1) = 1 iff f(a@) = I(@)). We

then consider the following sum:

=Y &) =Hae A : f(a)=1a)}].

acA

In the following lemma, we provide some properties of the expected value of = 4 (for the proof see
Lemma A.1 in Appendix A).

Lemma 2.1 Let E(Z4) denote the expected value = 4 in L,,. Then, for any set A of size m we have:



E(Z4) = % and E((E4-E(24)) =

Moreover, if A is j-reqular then:

B(Ea-BED") = 22wt Pr(Ea-BED < B (E-BE)) S @

The above results are now used in determining the portion of linear functions yielding an approxi-
mation degree not smaller than a positive value € for a boolean function f defined on a ‘small’ 4-regular
domain. Let us describe this fact in a formal way. For any boolean function f we denote as £,(f,¢)
the set of all linear functions I € £, such that Pr(f =1) > } +e.

Lemma 2.2 Let A be a 4-reqular domain of size m < Le™%, where 0 < ¢ < 1/2. Then, for any

8
boolean function [ defined on A, we have

1Ll S )l

Sketch of the proof. From Lemma 2.1, we have

Pr (_ m| \/_) 1
Pr (= = —ux), we have

A__ _2\/— o

1, [ 1
Pr(24 > m(=+y/—])) > =.
r(*‘—m(2+ 8m))_96

48
m
2
Moreover, the inequality m < Lle=2 implies that Pr (EA > m (% + e)) >
the definition of =4 we obtain

_ 1 1La(fie)] 1
A 2 — = = s
Pr( Az m<2+€)> L~ 96

The above result can be interpreted as follows. A boolean function f having 4-regular domain can
be approximated by a ‘large’ number of linear functions if the domain size is ‘sufficiently small’ with

Since Pr (24— % = z) =

91—6. Finally, from

|

respect to the desired quality of approximation. Roughly speaking, our next step consists in defining
a suitable partition for 4-regular domains. This partition will permit us to reduce the approximation
problem for general 4-regular domains to the same problem restricted to 4-regular domains satisfying
the ‘size’ condition required by Lemma 2.2. Our partition technique is based on the use of linear
operators. Consider a linear operator [ = (Ii,l3,...,15) € (£,)° and an element b € {0,1}°. We then
define the {0,1}"-subset I~ (b ) ={a : ( i) = b}. Moreover, for any partial boolean function f with
domain A C {0,1}", we define the following partial boolean function: frg = flayifa e An f_l(g)

and not defined otherwise. It is easy to verify that®: f(@) = Vp(A(li(@) @ bi @ 1)) A frz(a).

Swe assume that 0 A* =0 and 1V % = 1, where « is the undefined value



Lemma 2.3 If the domain A of a boolean function f is 4-regular and a linear operator [ e (L,)°
exists such that, for any b € {0,1}° (s > 1), the domain size of function f~~ is at most %6_2 (i.e.

ANTH(B)] < Le?), then
L(f.e) =0 (2 >+0( )

Sketch of the proof. Counsider the set partition constructed as follows. Let @ C {0,1}°. Since for
any b € Q the domain size |A ni- 1(b)| of function f~~ is at most 1 € 2, we can apply Lemma 2.2 thus

obtaining |L,(frz, €)|/|Ln] > 1/96. Consequently a (at least one) hnecu' function hg exists such that:

Iy

- 1 1
Hb 1 beQ, Pr(fy; = ho) > §+e} > ool (4)

Let us define Qf = {0,1}° and consider the corresponding linear function hg: as defined above;
by induction, we can then construct the following sequence of pairs (Q;, h;) (i > 0) as follows:

= {071}8\ (U QJ) ) hi+1 = hQ:‘ 5
7=1

and

o 1
Qi1 = {b :beQr, Pr(fip = hip) > §+€} '

We have thus constructed a set partition Q= (Q1,Qy,..., Q) having the following properties. For
any ¢ > 0 and for any b € Q;, Pr (ffE = hz-) > %—}— €. Observe also that the process terminates on the

first step & > 0 for which @ = () and, by Eq. 4, it is not hard to prove that ¥ = O(logn). Furthermore,
we have that Q; N Q; = 0 (i # j) and observe also that Eq. 4 implies |Q;| > 4= E?:i—u |Q;].

Let us now consider the following ‘selector’ operator F's g1, 25) = (fQ 10 [ .), where f3. (_))

is equal to 1 if be Q; and 0 otherwise. The properties of the set partition a implies that the circuit
complexity of FQ is O(% = ) The proof of this fact is shown in Lemma A.2 in Appendix A. We can now
define the function f,,, which approximates f. Indeed, for any @ € A, we define:

k
Fapr(@) = \/ (Jou(l{@)) A hi(i{@))) . (5)

=1
By construction of the components of f,,,, it follows that
1
Pr(f = fopr) > 9 + e
From Definition (5), we have the following upper bound on the circuit complexity of f,,,:

L(fapr) < L(Fg)+ L() + L((h1, ha, .. b)) - (6)

Moreover, the circuit complexity of linear operators satisfies the following upper bounds (see [8]
for a proof):

i) = 0 (1(;';571) +0(m),  L((h, hay.hy)) = O <k')”g’fn) +0(n) . (7)



Finally, Eq. (6), Eq. (7) and the bound k = O(logn) imply
L(fapr)20<2—>+0< o )+0< fon ) :O<2—>+0(n)-
e log n log n S

For any @ € {0,1}" and for any be {0,1}*, consider now the ‘agreement’ function £,z : (£,)" —
{0,1} defined as fa’g(lﬁ) = T5_,(I;(@) ® b; ® 1), where I = (Iy,ly,...,15). Consider also the sum of
points in {0,1}" on which [ is equal to a fixed value b:

EA,E(Z_B = Zfa,g(l_j'

acA

a

—

Notice that, according to the definitions adopted in Lemma 2.3, the value of =, (1) is the size of
the domain of function frz. The linear operator required by Lemma 2.3 is thus given by the following

result (which is proved in Lemmas A.3 and A.4 in Appendix A).

Lemma 2.4 Let A be a 4-reqular set of size m and let s > 1; then a linear operator [e (L,)° exists

such that
> Bl <20
d:2, 40 >227m 41

In 1989, Andreev [3] proved the following result.

Lemma 2.5 The circuit complexity of any partial boolean function with n variables and domain size
equal to m satisfies the following upper bound

L(n,m) = 0(n) + (14 o(1))

logm’
The above lemmas permit us to achieve the main result of this section.

Theorem 2.1 If a partial boolean function f of n variables is defined on a 4-regular domain A of
size m then, for any positive €, we have:

L(f.e) = O (bg(;’ﬁ) +0(n) .

Sketch of the proof. If € is greater than some constant independent of n, then the thesis is an
immediate consequence of Lemma 2.5. Consequently, we can assume that ¢ < %. Let us consider an
integer s such that 32me? < 2° < 64me?. Since (1/16) €2 > 1, the definition of s implies that
2 27%m 4+ 1 < (1/8) ¢ 2. We can apply Lemma 2.4 thus obtaining a linear operator [ € (£,)* such
that:

> 24D <20 (8)



e Forany a € A: fo(d) = f(a@)if =, fa) > +e7% and undefined otherwise.

We now need to introduce another ‘selector’, that is the function ¢ : {0,1}° — {0, 1} defined as

-

gb) = 1if 2, < (1/8) ¢ ? and g(b) = 0 otherwise. Tt is then easy to prove that the function f
can be defined as f(@) = [f1(@) A g(I{@))] V [f2(@) A (~g(I(@)))]. Consequently, the following inequality
holds:

—

L(f,e) < L{fi,)+ L(f2) + L(g) + L(D) + O(1) . (9)

Let Ay be the domain of function f;. By definition, we have that EA1 p < %e_Q, for any be {0,1}°.
Consequently, by Lemma 2.3 we have L(f1,€) = O(%)+O(n). Moreover, Eq. (8) implies that the size
of the domain of function f is at most 2°. Consequently, by Lemma 2.5 we have L(f2) = O(£)+0(n).
From Lemma 2.5 it follows that L(g) = O(%) + O(n). Concerning the circuit complexity of linear

operators, we have (see [8] for a proof) L(I) = Olpen) = O(%) + O(n). Finally, by introducing the
above bounds in Eq. (9), we obtain the thesis

S

I(f,e) = O (2 >+O(n).

S

2.2 Upper bound for general domains

The aim of this section is to extend the upper bound for 4-regular domains stated in Theorem 2.1 to
general domains. The main technical result consists in proving the existence of an injective function
J, : 40,1} — {0,1}*'™ (for some constant ¢ > 1) having linear circuit complexity and such that the
resulting subset J,,({0,1}") is 4-regular. The technique adopted here is still based on linear operators.

Lemma 2.6 For any n > 1, a function J,, : {0,1}" — {0,1}'" ewists such that L(jn) < ean oand
the set J,({0,1}") is 4-regular, where ¢; and ¢y are some positive constants.

Sketch of the proof. We first observe that if J, is injective then it is not hard to see that the set
J. ({0,1}") is 4-regular if and only if for any different choice of (a1, a3, a3,ds) (a; # aj, ¢ # j)* we
have: J,(di) & J,(a3) & Jo(d3) & J,(d3) # 0. Furthermore, it is possible to prove that, for any
n > 1, a linear operator Q, = (Q1,...,Q6n) € (L£,)®" exists such that: ) Qn(ﬁ) = 0; ii) for any
non zero vector @ € {0,1}", ‘Qn(&') > én, for some § > 0; iii) the circuit complexity of Q,
is linear in n (more precisely L(Qn) < 10n). The existence of Q.. is shown in Appendix B (see

Lemmas B.1 and B.2). Let 7 > 0 and consider a random index sequence (i(1),4(2),...,2(r)) such that
1<4(1)<i(2) <...<i(r) <6n. If dj,a3 € {0,1}" (@1 # d3), then it is easy to prove that

-1
Pr (Qi(j)(a_i) = Qiy(a2) , j = 1,2,---,7‘) < ( b= on ) ( o ) < e (10)

T T

If ¢ is a random boolean function of r variables then, for any (a1, a3, d3, @), we have that

4
1 1
Pr (EBQ (Qi@)(@%@i(z)(@),---,Qi(r)(cfk)) = 0) < ( 5 )6_55’" +3
k=1

in the sequel, we will always consider 4-tple satisfying this condition



We can thus choose a positive constant r such that the above probability is bounded by %. We now

apply the same reasoning on a ‘vectorial’ system having R components. Let i(j1,72) (j1 = 1,..., R and
Jj2 = 1,...,r) be aset of random sequences such that 1 < i(j,1)< ... <i(j,r)<6n(j=1,...,R)and
consider a set of R random boolean functions g;(z1,...,2,) (j = 1,..., R); notice that the random

choices are made independently and uniformly. Hence, we can define the random boolean operator
G = (Gh,...,GR) where, for any @ € {0,1}", we have G;(@) = ¢;(Qi(j1)(@),-..,Qi(j)(@)). In this

case, for any (a1, ds,ds,ds) we have that Pr (@%:1 Gliy) = 6) < (%)R. Furthermore, if we choose

R = 16n we obtain the following inequalities

N A 3\ F 3\" _ 3
P ar) = 0] < (=) @) < (=) < =.
E (@de0 - a)< (e < (3) <
(a1,d%,a%,d%) k=1

Notice that Eq. 10 implies also the injectivity of G. Consequently, an injective operator G :
{0,1}" — {0,1}'°" exists such that, for any (d1,dy, d3, dy), we have @i_, (Eik) # 0. This implies
that the subset G({0,1}") is 4- regular Finally, we observe that the operator G has linear complexity
since R is linear and r is a constant. The thesis is then proved by defining J, = G. a

Theorem 2.2 For anyn >0, 0<m < 2" and € > 0, we have:

me? 2n 2

L(n,m,e) = O (W) + O(n), thus Lo(n,e) =0 (W) + O(n).

Sketch of the proof. Let f: A — {0,1} be a boolean function with |A|] = m. Consider the operator
J, : {0,1}" — {0,1}" defined in Lemma 2.6 where R is linear in n. Then, we define the partial
boolean function f* : {0,1}F — {0,1} as follows: for any b € {0,1}", f*(g) = f(a)if J,(a) = b
for some @ € A and undefined otherwise. From Lemma 2.6, f* has a 4-regular domain and, thus, by
Theorem 2.1 we have (notice that the size of the domain of f* is also equal to m):

2 me2

Mﬁ¢):0G£é§aﬂ)+om):0<@@:E§ﬂ+omy (11)

Since J,, is bijective from the f-domain to the f*-domain, we have that L(f,e) < L(f*, )—I—L(j ).
Finally, by (11) and Lemma 2.6 we obtain

MﬁQ:O(@é$E§)+mm.

2.3 Upper bound for the hardness function

The upper bound shown in Theorem 2.2 gives a non trivial upper bound for the hardness function
introduced in [10]: H(f) = min{l : App(f,1) > %} We first observe that Theorem 2.2 implies that,
for any [ > n?,

I —
Appo(n,1) > %- (12)
Then, for the ‘general’ hardness function H(n) = maxy (g, o, . o, H(f) we have the following

result.



Corollary 2.1 H(n) < 234+ 0?4+ 0(1).

Sketch of the proof. From Eq. 12, for any boolean function f(zq,...,2,) we have that App(f,1) >
Appo(n, 1) > /(T=0(n))2=". Thus, for | = 2*/3 4 n? and for almost every n, we obtain
1

App(f,1) > 273 > T

Consequently, H(f) <.

3 Lower bounds for Ly(n,e) and L(n,m,e€)

Theorem 3.1 For anyn >0,0<m < 2" and 0 < ¢ < 1/2, we have:

1)
me2

L(TL,’”L,G) = Q (W

)) + O(n);
2)

2n 2

Lo(n,e) =Q (W) + Qn) .

Sketch of the proof.

1) Observe first that if me? < nlogn then (me?)(log(2 + me?))”" = O(n) and, thus, we obtain
the thesis. We now assume that me? > nlogn. Let A C {0,1}" with |A| = m, then from Stirling’s
formula, the number of partial boolean function defined on A which can be approximated with degree

-1

€ by a fixed circuit satisfies the following bound.

3y ( 71?) < gmo—ee’m (13)

k< (%—e)m

—1
where ¢ is some positive constant. Consequently, by Eq. (13), at least (Qm)(QmQ_“zm)
circuits are required for approximating all boolean functions defined on A. Furthermore, the number

of circuits with size not bigger than [ is at most (clnl)l+n, for some positive constant ¢; (see [7]).

- 2ce2m

Consequently, the required number of circuits, with size not bigger than [, must satisfy the following
inequality: (cynl)“'n > 2°€m and we finally obtain

2
=" )
log(2 4+ me?)

2) We first observe that Lo(n,€) > n—1. Indeed, consider the boolean function f = z1Pza® ... Bap;
if a boolean function g (and thus a circuit) has at most n—1 ‘significative’ variables, then Pr(f = ¢) =
%. The bound
To(n,¢) =0 (ﬂ) + On).
’ log(27€2)
is thus a consequence of the above fact and of the lower bound for L(n,m,€) proved in part (1) of this

proof.
a
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Appendix

A Proof of lemmas in Section 2

- Linear functions

Lemma A.1 For any set A of size m we have:

E(S4) = g and E((E4-E(E4)) = % (14)

Moreover, if A is 4-regular, we then have

E((E4-BEL)) = T -5 (15)
Pr <(EA—E(EA))2 < %E ((EA—E(EA))2)> < %. (16)

.Pﬁf)(ifany @€ Awehave Pr(é;=0) = Pr(&=1) = % and also
B&) = 5. B(G-B@&)) = ;. ()

This implies E(E4) = 4. Observe that if @, beAand @ # b then the random functions £z and
£y are independent. Then, Eq. (17) implies that

E(E4-BEA)) = YE(G-EE)) = Y1 -2

aeA acA
- Observe that if any four pairwise distinct random functions in the sum =4 are independent then
Eq. (15) holds (see for example [1])). Consequently, our next step consists in proving that if a set A
is 4-regular then, for any choice of four pairwise distinct elements dy,...,d4 € A, the corresponding
random functions £z, ...&z, are independent. Since these functions are binary, the probability of the
event £z, = ug A ...A &gz, = uq is equal to the portion of those linear functions ayz1 @ ... S apz, &S
such that the following equation is true

(¢3}
(_il 1 @2 U1
52 1 ' _ Us
i 1| * : = | (18)
ay 1 an U4
g
Since A is 4-regular it follows that the four vectors (a1, 1),..., (@, 1) are linear independent and,
consequently, the portion of linear functions satisfying Eq. (18) is equal to 11—6, i.e.
1
Pr(éz, =ui N... Nz, = u4) = 16 - Pr({z, = u1)xPr(&z, = ua) XPr(&z, = us)xPr(&z, = uyq) .

This proves Eq. (15).



- Consider the values © = (24 — E(24))° and o = 1 — Pr (@ < iE (@)) If @ > § then Eq. 16 is

true. In the sequel we then assume that a < i. Then Eq. 14 implies that @ = (S4 — m)Q. It

follows that the values of @ can be written either as 7% in the case of m even or as i%/4 in the case of
m odd, for some integer i. Then, for any positive integer i, we define V(i) = 2 in the ‘even’ case

and V(i) = % otherwise. Moreover, consider the probability p(¢) = Pr(® = V(i)). We obtain
E(0) = > 2, p(i)V(i). Consider the following ‘partition’ of E(0©):

L= Y p@V(), L= Y pOV(E) and Ez= Y p(i)V(i)
i1 1<V(i)<s i : S<V(i)<N i V(i)>N
where § = 1E(©) and N = .-E(0). By the definition of a, we obtain that Pr(® < §) = 1 — a and
thus ¥y < (1—-a)S§ = (— — %) E(O)andalsoPr(S <O <N) < Pr(@>5) =1-Pr(0<S) =

a. Consequently, we have

1 1
Yy < aN = a—E(0) = -E(0) .
2 < @ a~E(0) = JE(©)

Since E(0) = £; + X3 + ¥3 we have that Y3 > %E(G)) and thus

2 N2 PR 1 _ 1 2
E (0?) > Z PV >N Z p(V(i)) = NZs > N E(0)= 1 —(E(0))".
i: V(i)>N i: V(i)>N
We have just proved that E(Q) = % and E ((@) ) 162 —m < 3 Finally, since % > %(%)2
we obtain a > - which proves Eq. (16). O

- Linear operators

In the proof of Lemma 2.3, we use the fact that the ‘selector’ operator ﬁQ‘ has circuit complexity

O(L). The following lemma provide a formal proof of this fact. Let Q= (Q1,...,9k) be a system of
pairwise disjoint subsets of {0, 1}" (i.e. a partition of some subset of {0, 1}*). We introduce the boolean
operator Fiz(zy...,25) = (f5s--+5[5,), Where f3. (b b) is equal to 1if b € Q; and 0 otherwise.

Lemma A.2 If Q is a partition of some subsel of {0,1}® and a constant C' (0 < C' < 1) exists such
that

k
10l > ¢ > 191, =12 k-1, (19)
j=i+1
_ 5
then L( é) < 0 (;)
Proof. Let g; denote the restriction of function fQ on the set U —;9Q; and define also the functions
h; = \/;zlfQ,J We have that fg,z = (=hi—1) A g; and, consequently7 we can compute the operator
Fg using the following recursion. Let hy = fé,l then
fQ"72 = (_‘hl)/\g2 hy = h1 Vv fQ"72;
fg”’g = (_‘h2)/\93; h3 == h2 V fg‘jg;

for = Che1) Age hy = hx—1 V f5, -

ii



Observe that this construction immediately implies that L(ﬁé) < O(k)+ Y5 Ligy). If my
denotes the size of domain of g;, we have that m; = Zfzz |Q;| and condition (19) implies that |Q;| >
ci—! Z;C:Z |Q;| or, equivalently, m; < 2°C'~*. It follows that & = O(s) since 1 < my, < 25C1=F.

By Lemma 2.5 we finally have

0 2 3 (et o) - o (%)

1

1

a

For any @ € {0,1}" and for any d € {0,1}°, consider now the ‘agreement’ function £ 7 (Ln)’ —
0,1} defined as £, 1) = TI5_ l;(d) @ d; & 1), where [ = l1,15,...,1;). Consider also the sum of
{ 9 } a.d =1 9 9 Y2y ’
points in {0,1}" on which [ is equal to a fixed value d:
SO UR
aeA
In order to prove Lemma 2.4, we will use the following preliminary result which can be proved in

a way similar to that for Eq. 2 of Lemma A.1.

Lemma A.3 Let A € {0,1}" of size m; then we have

2
E<:A,d") = 27°m, E((:A,d*_E(:A,d*)) ) =(1-27%)2"°m..
Lemma A.4 If the set A of size m is J-regular and s > 1 then a linear operator e (L) exists such
that
> Bl <27

d: 2, 40 > 227 m+1

{_) =1}. Forany b €
(d@,d). We also define
7ar

e independent,

Proof. Consider the set A(@) = A—{a} and define (£,,)*(@,d) = {l € (L,)* €24
A(d@) we denote as E ;7 the random function {; rrestricted to the subspace (£, )’

the sum :‘1 . 4 7 Since for any b € A(a) the random functions &,
FeA(a) Y i

. L\ 2 2
we have that E ( 1) =B(g) = v ad B ((g,-e(g))) =& <(5w— B(64)°) =
(1 —27°)27°. Observe also that E ( 4, d) 27%(m —1).

Since A is 4-regular, for any different by, by € A(@), the random functions a0 & g and & 7 are

independent and, thus, also the random functions 52* 7 and £b~ Jare independent. Conbequently, the
1, 2,

function Ei I satisfies the following equation

)
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—

—27°m|>2"°m+ 1) < 5=-—. We now define the function 6()

2=sm*’

Thus, Pr (|EA i)
2 27%m 4 1 and 0z(I) = 0 otherwise. We then have that E(6;) < s=-— and thus E (3 cabz) <20

27%m

l
—_
=
[1]

3
IN

It follows that, for any linear operator l_; we have

> 0a(0) = >

dicA d:2, ; >22 m41

[1]

Ad

This immediately implies that there exists at least one linear operator [ for which

E A,J(T) 2° .

d:2,4 >227°m+l

[1]

INA

B Proof of lemmas in Section 2.2

In the proof of Lemma 2.6, we have assumed the existence of the linear operator Qn In this section,
we provide a formal proof of this fact. Let us introduce the uniform probability function on the set

', of all permutations of n elements. If y € T',, and @ = (aq,...,a,) € {0,1}", we can define the new
vector: 7(@) = (ay(1)s @y(2)s -+ Gn(n))- We introduce the following linear operator H"(z1,...,2,) =
(Hy,...,Hy) where Hi(x1,22,...,2,) = @%—;2;. In the sequel, the terms |a| will denote the number
of 1’s in a.

Lemma B.1 Let @ € {0,1}" such that |d| =k > 1 and lett < {%; then

pr(|fi"((a@)| < 1) < @)m_

n

Proof. Observe first that

) - Hz}'e{o,l}” : ‘5‘:]@ and ‘f_f”(l_)‘)‘:r}.

pr (| (n(@)| = (20)

n

k
Let b € {0,1}" such that |b] = k > 1 and assume that biy = -+ = by = 1, where (1) < ... <
i(k). Tt is not hard to verify that, for k even, we have |I17”(I;)| = Zfﬁ(z(?g) —i(2j — 1)) and, for k&

odd, [A™(D)] = n+1 - i(k) + TV 2(i(24) - i(25 - 1).

If k is even we can then choose the integer numbers 1 < i(1) < i(3) < ... < i(2k—1) < n in at

most k72 distinct ways. If ‘ﬁ”(g)‘ < ¢ we then have that, for any fixed sequence 1 < i(1) <
i(3) < ...,< i(2k — 1) < n, the number of choices for the numbers i(2),i(4),...,(2k) is bounded by
the number of positive integer sequences ny,na, ..., ny/, satisfying the condition ng n; < t. The

. t . .
number of such sequences is at most ( k2 ) From the above facts we obtain (here we omit some

computations):

v



{Feon” =k, A6 <t}|< < k72 ) < kj? ) < < ; ) <%>’“/2.

By applying the same counting arguments, we have the following upper bound for the case of k

odd:
n g\ (k+1)/2 3 N NLE
k n =\ k n '

From Eq. (20), the lemma is proved. O

Lemma B.2 Let L denote the set of all linear function | € L, such that 1(6) = 0. Then, for any
n > 1, there exists a positive constant § such that a linear operator Qn € (£2)6” exists such that
1Q..(@)| > én for any vector @ # 0. Furthermore, L(Q,) < 10n.

Proof. Suppose, that v1,72,...,75 are permutations selected at random and independently from T',
and v is, instead, a permutation selected at random from I's,. For any positive constant § < 21@,

define kg = [én| and, for any @ € {0,1}", consider

. 1 ,
p(a,k) = Pr <‘H”(’)Z((i))‘ < Ek\/%,for any 1 = 1,2,3,4,5) , k=1,... ko .

We use the notation p(k) for any @ with |@| = £ since in this case the above probability depends only
on k. By Lemma B.1, we have (here we omit some computation)

s ((42)7) <))

Consequently,
ko ko k/4 ko k/4
n ](70 1 1
Z<k>P(k)SZ<E> SZ(%) <3
k=1 k=1 k=1
It follows that there exists at least one sequence of five permutations v1,72, ..., 75 such that, for any
Ei € {0,1}" with |a@| =k (1 <k < ko) there is at least one index ¢ € {1,...,5} for Which |Hn(vi(@))| >
\/; It follows that | Z(@)| > k[ where Z(@) = (H™(71(@)), H“(*/g( @)),...,H"(y5(@))). Since

Ek 7 < EkO« /E < ko, Lemma B.1 implies that

8k0> k\/— <@) J—Qk\/?

Pr (‘ﬁSn(7(Z(6)))‘ < ko) < <5n D

[
=3

IN

=k
We can then choose a constant § such that (%) o2

-1
( Z ) 4% Tt follows that

ol
o
—_

ko
S Pr(3ae {01y« |al =k, [H(v(Z@)| < ko) < Y475 < 2.
k=1 k=1

w

Consequently, there exists at least one permutation vy € T's,, such that, for any @ € {0,1}" with || = &
(1 <k < ko), we have |H™(y(Z(@)))| > ko. Finally, we define



Qu(@) = (@ 8% (v (A" (3:(@)), B"(72(@)), ... A(15(a)))) )

thus obtaining ‘Qn(&')‘ > én for any @ € {0,1}". Observe that the upper bound 10n for L(Q,,) is an

immediate consequence of the construction of Q. O

vi



