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Abstract

Computational complexity is concerned with the complexity of solving prob-
lems and computing functions and not with the complexity of verifying circuit
designs. The importance of formal circuit verification is evident. Therefore,
a framework of a complexity theory for formal circuit verification with binary
decision diagrams is developed. This theory is based on read-once projections.
For many problems it is determined whether and how they are related with
respect to read-once projections. It is proved that multiplication can be re-
duced to squaring but squaring is not a read-once projection of multiplication.
This perhaps surprising result is discussed. For most of the common binary
decision diagram models of polynomial size complete problems with respect
to read-once projections are described. But for the class of functions with
polynomial-size free binary decision diagrams (read-once branching programs)
no complete problem with respect to read-once projection exists.
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1. INTRODUCTION

Computational complexity theory has been developed to measure the complexity of prob-
lems, more exactly the complexity of computing functions and solving problems. Func-
tions realized in hardware have circuits of small polynomial size and, therefore, are easy
to compute. The distribution of the faulty Pentium division circuit has underlined the
fact that new circuit designs should be verified formally. It has to be proved formally that
the new circuit meets the specification.

In general this problem is NP-hard even for simple functions, since it is no problem to
hide difficult problems in circuits for simple functions. Hence, a general approach for the
circuit verification problem has to be a heuristic one. We can expect that in practical
applications circuit designs for simple functions do not contain subcircuits which are quite
independent from the output function. A lot of verification tools exist. Nowadays, circuit
verification is performed most often with binary decision diagrams (for survey articles see
Bryant (1992) and Wegener (1994)).

The general approach can be described as follows. A representation (or data structure)
for Boolean functions is chosen. The variables should have simple and short representa-
tions. For two representations for ¢ and & it should be efficiently possible to construct a
representation for f = g ® h, where @ is an arbitrary binary Boolean operator. The spe-
cification of the Boolean function f* is translated with the synthesis algorithm described
above step by step into a representation of f* of the given form. Let f** denote the
function computed by the new circuit design. It should be formally proved that f* = f**.
Therefore, the circuit is translated gate by gate into a representation of f** of the given
form. Sometimes it can be checked directly for two representations whether they represent
the same function. Otherwise a representation of f* @ f** is constructed and checked for
non-satisfiability. This approach is correct, since f* = f** iff f* @ f** = 0. Circuits are
not suitable as representation, since the satisfiability test is NP-complete.

We will consider representations, where the synthesis and the satisfiability problem can be
solved in polynomial time. This does not lead to a polynomial time verification algorithm.
A sequence of synthesis steps may lead to an exponential blow-up of the representation size
even if a single synthesis step may cause only a small polynomial blow-up. The approach
is successful, if the function f* and all functions used in the specification and in the circuit
design have short representations. It may depend on the chosen representation whether
a verification can be accomplished within the given time and space resource bounds.
Often the functions computed at the gates of a circuit for f* have smaller representations
than f*. Because of these observations and since we cannot know which functions are
computed in new circuits for f*, the size of the representation of f* is taken as a measure
of the hardness to verify circuits for f*. Based on this notion we develop a framework
of a complexity theory for verification with binary decision diagrams. We always have to
remember that it is not possible to prove the statement that each circuit for ¢* is harder
to verify than each circuit for f*.

In Section 2 we introduce those variants of binary decision diagrams which are used as
representations in circuit verification. The notion binary decision diagram is standard



in formal verification. In complexity theory binary decision diagrams are well-known as
branching programs.

In Section 3 we discuss why the well-known reduction concepts including (monotone)
projections are not appropriate for our purposes. Read-once projections turn out to have
the desired properties of a reduction concept for all variants of binary decision diagrams
(but not for functional decision diagrams).

One might think that read-once projections are too restricted to be useful. Hence, we
show in Section 4 that a lot of known reductions between NP-complete problems and
problems in P/poly (polynomial circuit size), in particular the fundamental arithmetic
and sorting functions, can be modified to become read-once projections. Here we have to
note that practical verification is often concerned with arithmetic functions.

In Section 5 we derive negative results. It is possible to prove that f = (f,) is not a
read-once projection of ¢ = (¢g,) by proving that f is more than polynomially harder than
g with respect to quite restricted computation models. The most difficult and surprising
result is that squaring is not a read-once projection of multiplication although it is a
special case of multiplication. On the other hand multiplication is a read-once projection
of squaring. We discuss why squaring is for verification purposes harder (for this notion
see above) than multiplication.

In Section 6 a slightly more generalized reduction concept is discussed and a hierarchy
result is proved.

In order to obtain a framework of a complexity theory we ask whether the classes of func-
tions representable in polynomial size have complete problems with respect to read-once
projections for the different models. Although read-once projections are quite restricted
we prove in Section 7 that many of the considered complexity classes have complete prob-
lems. In Section 8 it is proved that the class of functions representable by polynomial-size
free binary decision diagrams (also known as read-once branching programs) does not
contain a complete problem with respect to read-once projections.

2. BINARY DECISION DIAGRAMS

We start with the well-known concept of general binary decision diagrams known in
complexity theory as branching programs.

Definition 1: A binary decision diagram is a directed acyclic graph with two sinks
labeled by the Boolean constants 0 and 1. The other nodes are labeled by Boolean
variables and have two outgoing edges one labeled by 0 and the other by 1. Each node
represents a Boolean function. The sinks represent the constant functions. If a node v
is labeled by z;, its 0-successor represents ¢ and its 1-successor represents h, then the
function represented by v is obtained by Shannon’s decomposition rule as f = z;¢9 V ;h.
The size of the BDD is the number of its nodes.

General BDDs are not used for formal circuit verification, since they have the same
problem as circuits that the satisfiability problem is NP-complete and no good heuristic



algorithm exists for the satisfiability problem. Hence, restricted models are used for formal
verification.

Definition 2: (i) A free BDD (FBDD or read-once branching program) is a BDD

where each path contains for each variable x; at most one node labeled by x;.

(ii) An ordered BDD (OBDD) is an FBDD, where the orderings of variables on all paths

are consistent with one ordering.
(iii) A k-OBDD consists of k layers of OBDDs respecting the same ordering.

(iv) A k-IBDD consists of k layers of OBDDs respecting perhaps different orderings.

OBDDs introduced by Bryant (1986) are the most popular representation for formal
circuit verification. If the ordering is fixed, all operations can be performed in linear time
with respect to input and output size. Since many functions have exponential OBDD
size, the more general models are also used. It is known (Sieling and Wegener (1995))
that a synthesis of two FBDDs may cause an exponential blow-up of the FBDD size.
We consider FBDDs, since typed BDDs (Gergov and Meinel (1994)) and graph driven
BDDs (Sieling and Wegener (1995)) have the same expressive power as FBDDs (if only
polynomial size is allowed) and allow efficient algorithms for many operations including
synthesis and satisfiability test. The satisfiability test is already NP-complete for 2-
IBDDs. Nevertheless, Jain, Abadir, Bitner, Fussell and Abraham (1992) have applied
IBDDs successfully for the formal verification of complex circuits, where OBDDs, k-
OBDDs and FBDDs would fail. They have combined an efficient synthesis algorithm
with a heuristic algorithm for the satisfiability test. The more restricted k-OBDDs (Bollig,
Sauerhoff, Sieling and Wegener (1994)) allow polynomial-time satisfiability checks, if k is
fixed to a constant.

Kebschull, Schubert and Rosenstiel (1992) have introduced functional decision diagrams
(FDDs). The syntax is the same as for BDDs. The Shannon decomposition rule is replaced
by the Reed-Muller decomposition rule f = g @ x;h. Ordered and free FDDs (OFDDs and
FFDDs) are defined similarly to OBDDs and FBDDs and are applied successfully for the

verification of certain circuits, although a single synthesis step may cause an exponential
blow-up of the size (Becker, Drechsler and Werchner(1995)).

3. REDUCTION CONCEPTS

A lot of reduction concepts have been introduced for various types of problems. Projec-
tions and monotone projections intensively investigated already by Skyum and Valiant
(1985) are perhaps the most restricted ones.

Definition 3: The function f = (f,), more precisely the sequence of functions, is a
(polynomial) projection of g = (g,), [ <proj 9, if

Fal@ s 20) = Goim (- Uy
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for some polynomially bounded function p and y; € {z1,%1,..., 2, T,,0,1}. For functions
with many outputs, each output of f, has to equal one output of g,(,). The number of
J such that y; € {x;,7;} is called the multiplicity of z;. The projection is monotone,

fgmpga lfyj € {$15"'a$n5071} .

In the rest of this paper a projection always means a polynomial projection. A reduction
concept <7 is useful for a representation type T only if f < ¢ implies that f has a
polynomial-size T'-representation if ¢ has a polynomial-size T-representation. Our first
result shows that projections are too general for our purposes.

Theorem 1: i) There exist functions f and g, where f <,,.,; ¢ for projections of
multiplicity 2, ¢ has OBDDs of linear size but f has only FBDDs and £-OBDDs

(for constant k) of exponential size.

ii) There exist functions f* and ¢*, where f* <,,,; ¢*, ¢* has OBDDs of linear size but
f* has for constant k only k-IBDDs of exponential size.

Proof: i) Let X,, and Y, be n x n matrices of Boolean variables and ¢,(X,,,Y,) = 1 iff
X, contains exactly one 1 in each row and Y,, contains exactly one 1 in each column.
This function has 2n? variables and an OBDD of size O(n?), if first the variables
of X,, are tested rowwise and then the variables of Y,, are tested columnwise. Let
fa(X5) = gn(X,, X)) be a projection of ¢, of multiplicity 2. The function f, tests
by definition whether X,, is a permutation matrix. An exponential lower bound
on the FBDD size of this function has been proved by Krause, Meinel and Waack
(1988) and an exponential lower bound on the k-OBDD size (for constant k) by
Krause (1991).

ii) Lower bounds for k-IBDDs have been proved by Bollig, Sauerhoff, Sieling and We-
gener (1994) based on communication complexity theoretical methods due to Nisan
and Widgerson (1993). We define f* as a pointer jumping function on a graph with
vertex set UUVUW | where U = {u}, V = {vg,...,v,_1} and W = {wy, ..., w,_1}.
The variables z;, z;;, y;;, 0 < 7 < [logn] — 1, 0 < ¢ < n — 1, describe pointers.
If |z| =, the pointer from u points to v;. If |z;| = [ (|y;] = 1), the pointer from
v; (w;) points to w; (v;). The further variables co, ..., c,—1 describe a coloring of
the vertices in V. The pointer jumping function has to compute the color of the
unique vertex v reached by the path of length 2k 4 3 starting at w. This function
has exponential £-IBDD size.

The number of possible paths is bounded by the polynomial n?**t3. Hence, the
pointer jumping function can be described as disjunction of at most n2*+3
of length L := (2k + 3)[logn] + 1 each.
2k+3

monoms

As g we define the disjunction of n monoms of length L each, where all Ln?*+3

variables are different. Therefore, g* has linear size OBDDs with respect to the
number of variables. It is sufficient to choose a variable ordering where the monoms
are tested monom after monom. By definition f* <,..; g*.

a



By Theorem 1 we cannot base complexity theoretical results for OBDDs, £&-OBDDs, &-
IBDDs or FBDDs on projections even it the multiplicity of each variable is bounded by
2. Theorem 1 i) contains also the result that it can be harder to verify a special case
of a function than the general case. Indeed a formal verification of typical circuits for ¢
will be successful with OBDDs and FBDDs but a formal verification of any circuit for f
with OBDDs, £-OBDDs or FBDDs leads to representations of exponential size. There is
another issue which we will discuss also in Section 5. A clever circuit for a special case
may take advantage of the special properties and may cause difficulties for verification.

Conclusion: A complexity theory for verification has to be different from computa-
tional complexity theory.

Definition 4: A projection is called read-once, f <,,, ¢, if the multiplicity of each
variable is bounded by 1.

Theorem 2: 1) <,.p is reflexive and transitive.

ii) If f <,., ¢ and ¢ has polynomial OBDD (FBDD, k-OBDD, k-IBDD) size, then f
has polynomial OBDD (FBDD, £-OBDD, k-IBDD) size.

iii) There exist functions f and g such that f <,.,,, ¢ (m stands for monotone), ¢ has
polynomial OFDD size and f has exponential FFDD size.

Proof: i) is obvious.

ii) is easy. If fo(z1,...,¥n) = Gp(m) (Y15 - - - Yp(n)), We obtain an OBDD for f, by taking
an OBDD for g,(,) and replacing the i-th variable by y; € {z1,%1,...,2n, Z,,0,1}.
The levels labeled by constants can easily be eliminated. A level labeled by z; can
be substituted by a level labeled by z;, if for each node the 0-edge and the 1-edge
are exchanged. Then we obtain an OBDD for f, whose size is not larger than the
OBDD for gp(n). The same arguments work for the other models.

iii) If an OFDD or an FFDD represents at node v with label x; the function f, the
0-successor represents ¢ and the l-successor h, then f = ¢ @& x;h and ¢ and h do
not depend essentially on x;. Therefore, fi;,=1 = g ® h. We define the function

gn On m = (g) + 1, where [ = [log (g)}, variables by its OFDD. The OFDD starts
with a complete binary tree T of depth [, where the levels are labeled by y1,..., .
The other (;) variables x,5, 1 < r < s < n, describe a graph G(z). Let A;; for
1 <@ < j <k <n decide whether G(z) consists of the triangle {¢, 5, k} and n — 3
isolated vertices. Then A;;; can be described by a single minterm. Hence, it is
easy to see that A; ;; can be described by an OFDD of size O(n?) for any variable
ordering. Each A;; is represented at some leaf of 7', the remaining leaves represent
0. This OFDD for g, has by definition size O(r®). Let f, be the restriction of g,,
where y; = ... =1y; = 1. Then f, is by definition a monotone read-once projection
of g,. By our first argument f, is the @-sum of all A;;;. Since at most one A, ;
can be equal to 1, f, is also the disjunction of all A;;; and computes 1 iff the graph
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(/(z) consists of an arbitrary triangle and n — 3 isolated vertices. Becker, Drechsler
and Werchner (1995) have proved that this function has exponential FFDD size.

O

Theorem 2 has the following implications. Read-once projections are a suitable reduction
concept for OBDDs, FBDDs, £-OBDDs and k-IBDDs and a complexity theory for these
models may be based on read-once projections. There seems to exist no natural reduction
concept adequate for functional decision diagrams.

4. READ-ONCE PROJECTIONS — POSITIVE RESULTS

Read-once projections are quite restricted. So one might be afraid that read-once pro-
jections are not powerful enough to compare many important problems. Therefore, we
present several read-once projections. We start with NP-complete problems, a P /poly-
complete problem and two famous problems with polynomial-time algorithms, although
these functions are not realized in hardware. Later we investigate the arithmetic functions
usually realized in hardware. For the problems we use the abbreviations of Garey and

Johnson (1979).

Theorem 3: (i) (NP-complete problems)
CLIQUE <,nrop SAT <pirop COLOR <o CLIQUE COVER,
CLIQUE <4 IP <,0p VC <,0p CLIQUE <, SUBGRAPH IS0,
DHC <pnrop HC <prop TSP,
DHP <,.,,, HP <., BOUNDED DEGREE SPANNING TREE,
SAT <parop 3DM <prop X3C,
3-PARTITION <,,, SUBFOREST ISOMORPHISM,
3-PARTITION <,,, SEQUENCING WITH INTERVALS,
BIPARTITE HC <,,.,,, PLANAR SUBGRAPH,
CLIQUE <,,.r0p MINIMUM NODE-DELETION BIPARTITE SUBGRAPH.

(i) BIPARTITE PERFECT MATCHING <,,,,, NETWORK FLOW.

(iii) (a P/poly complete problem)
For each function f of polynomial circuit size,i.e. f € P/poly, f <,.rop CVP (circuit
value problem).

Sketch of proof: (i) The coding of graph problems as Boolean functions is often ob-
vious. Numbers as the desired clique size are given in unary. For SAT we use the

coding of Skyum and Valiant (1985).

SAT,(X, V)= \/ AV [ Aali) V(g AaG)):

a:{l,...n}—{0,1}1<i<n 1<5<n

The function has 2n? Boolean variables and can describe all inputs for SAT with n
clauses and n variables zy, ..., z,. The variable z;; describes whether z; is contained

7



in the ¢-th clause, y;; does the same for z;. The function SAT computes 1 iff there
is a variable assignment a such that for all clauses there exists a literal set to 1.

CLIQUE <,.,0, SAT can be proved by adapting the sophisticated proof of Skyum
and Valiant (1985) for CLIQUE <,,, SAT. The read-once projections SAT <,.,0p
COLOR and SAT <,,,.,, 3DM are based on the polynomial-time reductions from
3SAT to COLOR and 3DM (see Garey and Johnson (1979)). There are some tech-
nical difficulties which have to be overcome to make the reductions read-once pro-
jections. The result BIPARTITE HC <,,,,, PLANAR SUBGRAPH is based on a
polynomial-time reduction due to Yannakakis (1978). All other results are direct
translations of known reductions (Garey and Johnson (1979)).

(ii) The well-known reduction from BIPARTITE PERFECT MATCHING to NET-
WORK FLOW (Even (1979)) is a monotone read-once projection.

(iii) This follows directly from Ladner (1975).
O

Next we consider the fundamental arithmetic and sorting functions which have been
investigated by Chandra, Stockmeyer and Vishkin (1984) for constant-depth reducibility.
Most of those reductions are not read-once projections and often not even projections.
We use the following abbreviations.

AND — conjunction of n variables.

COMP — the decision whether a binary number is smaller than another.

ADD, SUB, MUL, DIV — the usual arithmetic functions.

MULTADD — the addition of n n-bit numbers.

SQU — the squaring of an n-bit number.

INV — the computation of the n most significant bits of the inverse of an n-bit number.
IP — the inner product z1y; & ... & 2,y,.

BSUM/USUM — the binary/unary sum of n bits.

MAJ — majority, the decision whether the input has more ones than zeros.

SOR — the sorting of n n-bit numbers.

THR — threshold, where the threshold value is given in unary.

SUB*/SQU* — the highest bit of SUB/SQU.

Theorem 4: AND <,,,,, COMP <,,, ADD <,...,, MULTADD <,.,,, MUL <,.,,, SQU
< prop INV <,1010n DIV,

IP <,ur0p MUL.

COMP <,,,., SUB.

THR <nrop MAJ <,1r0p BSUM <,.,., MULTADD.

MAJ <prop USUM <,op SOR.

SUB* <prop COMP, SQU* <,10p COMP.

Proof: AND <,,,,, COMP: AND,(zo,...,2,-1) = COMP,(1,...,1,0,2,_1,...,20).



COMP Srop ADD*: COMPn(xn_l, e L0 Yn—1y ey yo) = ADD;(fn_h e ,3_30, Yn—-1,
.y Y0), since |z| < |y| iff x; =0, y; = 1 and z; = y; for j > ¢ and some 7. In this
case we obtain a carry in the addition of y and Z, since Z; = y; =l and Z; y; = 1
for 3 > 1. A carry can be produced only in this way.

ADD <,,,,, MULTADD: Obvious.

MULTADD <,,,,, MUL: If we want to add the n-bit numbers z',..., 2", we can mul-

tiply the number y which is the concatenation of z!,..., 2" separated in each case

by n zeros and the number z which contains n ones separated in each case by 2n —1
zeros. Using the school method for multiplication we see that we add z',..., 2"
and that this sum does not overlap with other sums, since we have separated the
numbers by enough zeros.

MUL <,.,,, SQU: The product of the n-bit numbers z and y can be found in the middle
of the square of (x,_1,...,20,0,...,0,yn-1,...,Y0), if we take n+2 zeros. This again
follows by considering the school method for multiplication.

SQU <,,, INV: This read-once projection is based on ideas from Wegener (1993) who
proved optimal lower bounds on the depth of polynomial-size threshold circuits. Let
z be the n-bit number we like to square. Let ¢t = 4n, T = 10n and y = 227t + 277,
Since
L=y) " =l+y+y' +y' +...,
we hope that we find 22 in the binary representation of (1 — y)~'. This is proved
by the following estimation.

(I—y)™" = I+ @2 427+ @2 +277) + (227 4277 + ...
= (14 227t 4 I22_2t) + rest.

Obviously, there is no overlap of z and z%. Hence, it is sufficient to prove that
rest < 27% = 278 We have, since z < 27",
rest = 277 42227 497 L (27t 4 27T 4
§ 2—10n + 2—12n + 2—20n + 9. 2—9n < 2—871’ lf n 2 2.
The number (1 — y) is a read-once projection of x. Let 0.y_1...y_r be the binary
representation of y and 0.y’ ...y’ ; the binary representation of 1—y. Theny’ , =1

and y';, = y_; for i < T. Since each z-bit is contained once in y, we are done. The
term 27 was necessary to obtain a read-once projection.

INV <,..0p DIV: Obvious.

IP <,.,., MUL: This read-once projection is similar to MULTADD <,,,,, MUL. The

first factor contains x,,, ...,z separated in each case by [logn] zeros and the second
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factor contains y1,...,y, separated by [logn]| zeros. Since we have used for = the
reversed order, we find in the product z1y1 + ... + 2,y, whose last bit is the inner
product.

COMP <,,.,, SUB: z < yiff 2 —y < 0. Hence, the sign of # —y is COMP(x,y). This
proves also SUB* <,,,.,, COMP.

The next read-once projections are lett to the reader, since they are easy. We mention only
that SQU* <,.,., COMP, since the first bit of 2 equals 1 iff 22 > 227~ i e. z > (227~1)1/2
or x> |27/, O

Ponzio (1995) has proved that the FBDD size of multiplication is exponential. The same
is known for k-OBDDs and constant k. As a corollary of Theorem 4 and Theorem 2 we

obtain the same bounds for SQU, INV and DIV.

Theorem 3 and Theorem 4 prove that read-once projections are powerful enough to com-
pare many NP-complete problems as well as many fundamental functions with polynomial
circuit size with each other.

5. READ-ONCE PROJECTIONS — NEGATIVE RESULTS

Theorem 2 ii) proves that if f <,,, ¢ and g can be represented efficiently with respect
to one of several models, then f can be represented efficiently with respect to the same
model. For negative results we can use the contraposition. This approach leads to concrete
results, since we are able to prove large lower bounds for explicitly defined functions with
respect to the considered models. The next theorem is a collection of such conditions
which have concrete implications. We recall that a function is called symmetric, if the
output depends only on the number of ones in the input, and that it is called unate, if it
is monotone increasing or monotone decreasing with respect to each variable z;.

Theorem 5: The function f is not a read-once projection of the function g, if one of the
following conditions is fulfilled.

1) ¢ is symmetric and f is not.
2) g is unate and f is not.

3) gn has an OBDD size s(n) and the OBDD size of f,, is not bounded by a polynomial
in s(n) (the same for k-OBDDs, k-IBDDs and FBDDs).

4) g» has an OBDD width w or w(n) (size of the largest level) and the OBDD width
of g, is not bounded by the constant w or not bounded by a polynomial in w(n)

(the same for k-OBDDs, k-IBDDs and FBDDs).

Proof: The result is obvious, since a read-once projection (but not necessarily a projec-
tion) of a symmetric function is symmetric. The same holds for unate functions. Condi-
tion 3 follows from Theorem 2 ii) and Condition 4 follows in the same way. O
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Conditions 3 and 4 can be generalized to a lot of other computation models like {A, Vv, —}-
circuits of depth d or threshold circuits of depth d. We list the applications concerning
the functions considered in Theorem 4. Additionally let MOD m test whether the number
of ones in the input is a multiple of m. Let DSA be the direct storage access function,
ISA the indirect storage access function and HWB the hidden weighted bit function (for
definitions see Wegener (1994)). From the following characterizations we obtain a lot of
negative results.

Among the considered functions exactly the following ones are symmetric: AND, THR

with fixed threshold value, MAJ, BSUM, USUM, and MOD m.

Exactly the following functions are unate: AND, COMP, THR, MAJ, USUM, ADD*,
SUB*, SQU*.

Exactly the following functions have polynomial OBDD size: AND, COMP, ADD, MULT-
ADD, IP, SUB, THR, MAJ, BSUM, USUM, SOR, SQU*, DSA, MOD m.

The function ISA has polynomial 2-OBDD size and polynomial FBDD size, the same
holds for HWB (see Sieling and Wegener (1995)), while MUL, SQU, INV and DIV have
exponential £-OBDD size and FBDD size.

Condition 4 has implications for functions with polynomial OBDD size. For the following
functions we know the optimal width.

Width 1: AND, SQU™.

Width 2: COMP, ADD, SUB, IP.

Width m: MOD m.

Width n/2: MAJ.

What can be done, if such simple results do not help? For very simple functions we can
describe all read-once projections, e.g., among the read-once projections of MOD 4 we
do not find MOD 2, although MOD 2 <,,, MOD 4. For more complicated functions
we need special arguments. This is also necessary for our main negative result, namely

SQU £,,, MUL.
Theorem 6: SQU £,,, MUL.

Proof: We know of no computation model, where the size of MUL is much larger than
that of SQU. The proof strategy is the following one. We assume that

(%) SQU, (2p—1,...,20) = MULy(n)(¥p(n)=1s - - - » Y05 Zp(n)=1, - - - 5 20,

where y;, z; € {xo,To, ..., Tu_1,Tn_1,0, 1}, the multiplicity of each z; is bounded by 1 and
p is a polynomial. We replace certain z-variables by constants such that the following
holds. Some bit of SQU,, is replaced by an inner product of input length ©(n/logn)
and one factor of MUL,,) has become a constant. Equality (*) holds also after this
replacement by constants. The multiplication with a constant factor is the projection
(not read-once projection) of MULTADD. Siu, Bruck, Kailath and Hofmeister (1993)
have shown that MULTADD can be realized with threshold circuits of polynomial size
and depth 2. This holds also for all projections. Hence, it follows from our assumption
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that IP can be realized with threshold circuits of polynomial size and depth 2. This is a
contradiction to the well-known lower bound due to Hajnal, Maass, Pudlak, Szegedy and
Turén (1987).

We have to make the ideas precise. We replace all x; by 0, where ¢ is not a multiple of
m := [logn] + 1. If we talk in the following about a variable z;, we assume always that ¢
is a multiple of m. Using the school method for multiplication and squaring we conclude
that SQU(z) contains for each k = Im, 0 <1 < 2|(n—1)/m], a block By, where the sum
of all z;x; with : + 7 = k 1s computed. The second last bit of By equals the ®-sum of
all z;x; with ¢ + 5 = k and ¢ < j, since these terms are counted twice. This is the inner
product of suitable vectors. Let N := |(n — 1)/m| + 1 be the number of still existing

x-variables. The (];7) products z;z; are spread over ©(N) inner products.

Since we have assumed that SQU is a read-once projection of MUL, each ; (or Z;) belongs
in (*) to the first and not to the second factor or vice versa. A pair (z;, ;) is called good,
if x; and z; belong to different factors, and bad otherwise. If r z-variables belong to the

first vector, we have
N —
(+(5) v

bad pairs. The bad pairs are also spread over ©(N) inner products. By the pigeon-hole
principle there exists one inner product containing Q(N) bad pairs. Even one of the two
factors contains Q(N) bad pairs. We replace all variables by the constant 0 which do not
belong to those Q(N) bad pairs which are all contained in the same factor and belong to
the same inner product.

Now we have achieved our aims. SQU, still realizes an inner product of input length
Q(N) = Qn/logn) and one factor of MUL,,) has become a constant. With the argu-
ments presented at the beginning of the proof we have proved our theorem. O

It is our intuitive feeling that squaring is simpler than multiplication, since it is a special
case. As we have already discussed after Theorem 1, special functions may be harder
to verify than the general case. Hence, we should not be too surprised that SQU(z) =
MUL(z, z), MUL <,,.p SQU but SQU £,,, MUL. For the known BDD variants we do
not know of any difference in the representation size of SQU and MUL. It is possible that
in some further variant MUL has polynomial size while SQU has exponential size. If a
variant fulfils Theorem 2 ii) it is not possible that SQU has polynomial size while MUL
has exponential size. With read-once projections we can distinguish SQU and MUL which
are equivalent with respect to monotone projections even if the multiplicity is bounded

by 2.

6. GENERALIZED READ-ONCE PROJECTIONS AND HIERARCHY RES-
ULTS

Read-once projections are suitable reductions for our purposes but already projections
with multiplicity 2 are too general. What about intermediate reduction concepts? First
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we investigate, how many variables may be used arbitrarily often such that the statement
of Theorem 2 ii) still holds. We say that f <,,,1r(n) ¢, if f is a projection of g such that
for f,, defined on exactly n variables, at most k(n) variables may have a mulitiplicity
larger than 1.

Theorem 7: i) The statements of Theorem 2 ii) hold also, if rop is replaced by rop+
k(n) and k(n) = O(logn).

ii) If k(n) = w(logn), there are functions such that f <,,,1t) ¢, ¢ has linear OBDD
size but f does not have polynomial FBDD size.

Proof: i) Let f. be a projection of g,(.), where at most k(n) variables have a mul-
tiplicity larger than 1. These variables are called repeated variables. Let (i) be
the OBDD (FBDD, £-OBDD, £-IBDD) of polynomial size for g,). We construct
an OBDD (FBDD, £-OBDD, £-IBDD) for f,. It starts with a complete binary tree
of k(n) levels labeled by the repeated variables. FEach of the 2% leaves corres-
ponds to a subfunction f,, where the repeated variables are replaced by constants.
These subfunctions of f, are read-once projections of g,(,) and can be represen-
ted by OBDDs (FBDDs, k-OBDDs, k-IBDDs), whose size is not larger than the
size of Gip(ny. Altogether we obtain for f, an OBDD (FBDD, k-OBDD, k-IBDD)

o)
k(n) = O(logn), the size is still polynomial.

whose size is bounded by 2+(*) + 2¥") | Since G'y(n) has polynomial size and

ii) As function ¢, on 3n variables y;;, | < <n, 1 <j <3, we consider the function
which decides whether in the matrix Y the number of rows consisting of ones only
is odd. Tt is obvious that ¢, has linear OBDD size, if we test the variables rowwise.
Let fr be a function on n = (T;) variables z;;, 1 < 1 < 3 < m, describing an
undirected graph G(z). The function f* decides whether the number of triangles
in G(z) is odd. It is easy to see that f* can be described as &-sum of (g) terms of
length 3 representing the possible triangles. Ajtai, Babai, Hajnal, Komlés, Pudlak,
Rodl, Szemerédi and Turan (1986) have proved that the FBDD size of f* is 29",
Let f. be defined on n variables and let f, realize fj,, for some k(n) = w(logn)
on its first k(n) variables. Hence, f, does not depend essentially on n — k(n) of its
variables. By our description above it follows that f, is a projection of gy, where

N = (g) Since f, depends essentially only on k(n) variables, this is a read-once

projection with k(n) exceptions. The FBDD size of f, is 20Uk which grows faster
than each polynomial in n.

O

Can our negative results of Section 5 be generalized to read-once projections with repeated
variables? This is indeed often the case. In particular, SQU &, p10n MUL for a < 1. The
proof of Theorem 6 works also, if we replace in advance an variables by constants.

Does the repetition of some variables help in some case? For this problem it is good to
investigate the inner product z1y; & ... & x,y,, since it is easy to see which functions we
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may obtain by projections. E. g., if we replace x4, ..., zx by 1, this is possible with one
variable which is repeated k times. It is easy to see that it is not possible to obtain this
function, if arbitrarily many variables can be repeated at most k& — 1 times.

Theorem 8: If 1 < k(n) < n, there exist functions such that f <, it ¢ but
f %rop+k(n)—1 g.

Proof: Let g, be the inner product of n variables, namely z1y1 @ ... ® z,/2¥,/2 and
Falzt, .o 2n) = 2120 @ 2223 B .. B Zk(n)=12k(n) D Zk(n)?1-

Obviously, f, is a monotone projection of gap(n), where k(n) variables have a multiplicity of
2. Let us investigate all possible projections of g,,. We can obtain terms 0, 1, z;, z; = z;&1,
2izj, Ziz; = ziz; © zj and z;2; = z;2; © z; B z; & 1. Each variable used once is contained
only in at most one term of length 2. Since f, contains k(n) variables contained in two
terms each and the representation as @-sum of positive monoms is unique, we conclude

that f $r0p+k(n)—1 g. a

This theorem establishes a tight hierarchy, the reduction concept <,,p1x(n) is essentially
more powerful than <, (-1

7. COMPLETE PROBLEMS

Are read-once projections powerful enough to allow complete problems for the class of
functions representable by polynomial-size OBDDs (FBDDs, k-OBDDs, k-IBDDs)? The-
orem 3 iii) gives us some hope, since the well-known result of Ladner (1975) that CVP
is complete for P/poly and P with respect to log-space reductions holds even under the
restricted model of monotone read-once projections. CVP is a structurally defined prob-
lem which ‘includes’ all problems of P/poly by construction. We obtain similar results
for P-OBDD (the class of all sequences of functions with polynomial OBDD size), P-k-
OBDD, if k is fixed, P-k-IBDD, if k is a constant, and P-OFDD. For P-OFDD we obtain
a complete problem, although this class is not closed under read-once projections, see
Theorem 2 iii).

Theorem 9: The complexity classes P-OBDD, P-k-OBDD, if £ is fixed, P-k-IBDD, if k
is a constant, and P-OFDD have complete problems with respect to monotone read-once
projections.

Proof: We start with the class P-OBDD. Our aim is to construct the complete problem
f = (fu) in such a way that each function g, on m < n variables representable by
an OBDD of width w < n is a monotone read-once projection of f,. We define f, on
N = n(2n[logn] + 1) variables by an OBDD of size O(r?). This is sufficient, since for
g € P-OBDD the OBDD width of g, is bounded by a polynomial p(n). Hence, g, is a

monotone read-once projection of f4z(np(n)}-
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The variables of f,, are divided into n ‘true’ variables z1, ..., x, and 2n?[logn] control
variables ¢; jz, 1 <1< n,1 <j <2n,1 <k < [logn|. The function f, is defined by its
OBDD consisting of n layers of depth 2n[logn| 4 1 each. The first level of the i-th layer
contains n nodes and is labeled by z;. There are 2n edges leaving these n nodes. For each
edge we have reserved [logn] levels, the control variables ¢; ;. are exclusively used on the
[log n] levels for the j-th edge leaving the z;-level. These levels build a binary tree with
n leaves. These leaves are identified with the n nodes of the z;,1-level. The last layer can
be even smaller. We need only trees with two leaves, which have to be identified with the
two sinks. The size bound O(r?) follows from the construction.

We show that each OBDD G* on m < n variables whose width is bounded by n is
‘contained’ in the OBDD G, for f,. We only need the last m layers of ¢,,. The true
variables &, 41, ..., T, are identified with the m variables of G* using the same ordering
as in G*. We still have to organize the connection between the levels labeled by the true
variables. If in G* the j-th edge leaving the i-th level reaches the [-th node on the next
level, we can organize this in (&, by replacing the control variables for the j-th edge leaving
the x,_n1i-level by appropriate constants.

Almost the same construction can be used for £&-OBDDs. In the different layers we use
the same variables but different control variables.

For k-IBDDs we use the same construction with n* tentatively true variables and a suitable
number of control variables. According to the actual variable ordering used in the different
layers we will choose the n actually true variables. The layers for the tentatively but not
actually true variables are replaced by constants in such a way that the j-th node on the
first level of the layer is identified with the j-th node on the first level of the next layer.
We still have to prove that we can realize with n* variables Ti(1),i(k)y 1 < i(j) <nforl <
7 < k, all variable orderings in the different layers. In the [-th layer we choose an ordering
such that ).k precedes x;),..;), if ¢({) < j(I). If a k-IBDD uses the variable
orderings 7y, ..., 7 in the different layers we choose the variables @, (1), r,(1),..cmn(1)s - - - 5
Ty (n),ma(n),nmn(n) @ actually true variables. These variables are ordered in the [-th layer
according to m;. Hence, our k-IBDD contains a ‘copy’ of each k-IBDD on n variables

whose width is bounded by n.

For OFDDs we use the same ideas as for OBDDs. The only difficulty results from the
control levels. In an OBDD the replacement of a control variable by the constant a is
equivalent to the identification with the a-successor. This holds in OFDDs only for a = 0.
If a =1, the ®&-sum of the 0-successor and the 1-successor is realized according to the
Reed-Muller decomposition rule. For each control level 7 for OBDDs (see Fig. 1) we now
use two control levels labeled by ¢! and ¢?. This enables us to choose the represented
functions among the functions ¢ and h represented at two nodes. If ¢! = ¢? = 0, the
function g is realized. If ¢! = ¢ = 1, the function ¢ ® ¢ B 0 & h = h is realized. O
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OFDD

Fig. 1

8. COMPLETENESS — A NEGATIVE RESULT

In OBDDs, OFDDs, and £-OBDDs we may use only one variable ordering which in &-
OBDDs may be repeated k£ times. In £-IDBDs we may use different variable orderings in
the different layers. In FBDDs we may choose different variable orderings on all paths.
This freedom implies that we cannot obtain complete problems for P-FBDD on a way
similar to the constructions used in the previous section. Since P/poly, a superclass of
P-FBDD, has complete problems with respect to read-once projections, it is not evident
whether P-FBDD has complete problems with respect to read-once projections. We can
prove that no complete problem exists.

Theorem 10: The complexity class P-FBDD has no complete problem with respect to
read-once projections.

Proof: Let us assume that f = (f,) represented by FBDDs G = (G,,) of polynomial size
is complete for P-FBDD with respect to read-once projections. We can assume that f, is
defined on n variables and w. 1. 0. g. that each variable is tested on each path of GG,,. This
increases the size of G, at most by a factor of O(n). Then it is possible to talk about the
different levels of (¢, and, therefore, of the width as the maximal size of a level. We also
can assume that the width of G, is bounded by n. Since the width is smaller than the
size, the width is bounded by a polynomial p(n). We may add p(n) —n dummy variables
and may renumber our sequence. Since the numbers are changed only in a polynomial
way, we still have a complete problem with respect to polynomial read-once projections.

Our aim is to describe a class of functions in P-FBDD such that we can find functions
on n variables in this class which are not even read-once projections of f,, for m < ont/?,
For this purpose we discuss properties of the disjoint quadratic form DQF, computing
r1x9Vaszzg V...V ax,_1x,. This function has obviously linear OBDD size for the variable
ordering z1,x,,...,x,. For small size it seems to be necessary that the variables of many
pairs x9;_1x9; are tested shortly one after the ofter. We call x9; the partner of x9;,_; and
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vice versa. If some variable z; is tested with different results on two computation paths in
an FBDD, the partner of x; is not yet tested and no pair is tested to equal 1, then these
two computation paths cannot lead to the same node. The simple reason is that we have
to reach different sinks, if the partner of z; equals 1 and all other untested variables equal
0. We consider a random variable ordering = for DQF, . A variable is called a singleton, if
it is tested according to 7 among the first n/2 variables while its partner is tested among
the last n/2 variables.

Claim 1: According to a random variable ordering the probability that the number of
singletons is at least n/6 is 1 — 2790,

Proof of Claim 1: There are (752
variable ordering. In order to have exactly k singletons, we have (

) possibilities to choose the first n/2 variables in the

n/2
k

choose the pairs for which we want to choose singletons. Then there are 2% possibilities

to choose the singletons and (7;;4/12_7;;2) possibilities to choose the pairs among the first n/2

variables. The probability to obtain exactly k singletons is 0, if n/2 — k is odd, and
. n/2—k

(n/z) i)
£ ()

if n/2 — k is even. We know that the trinomial coefficient

(k, nf4 — k%?n/zx - k/-z) - (néz) <nT/LA/I2—_k];2)

is maximal, if & = n/6. Then it equals ©(3"/2n~") and <n72) = O(2"n~'/?). If we sum

the probabilities over all k¥ < n/6, we obtain as upper bound

) possibilities to

0(272/6372/2”—1”1/22—71) — O(n—1/22an>
foroz:%log3—g<0. O

With DQF7, we denote the function DQF7(zrx1),...,%r(n)). We may interpret Claim 1
in the following way. Each of the variable orderings leads only for a small fraction of all
DQF7 to an OBDD of small size. The function DQF7*~"™ for permutations 7q,..., 7,
on {1,...,n} is defined on n + [logn] variables x1,...,Zn,co,. .., Cfogn]—1- 1f the control
vector (Crogn]-1,- - -,Co) is the binary representation of ¢, the function DQFJ" ™ realizes
DQFTi+r if ¢ <n—1, and 0 otherwise. We consider the class of all functions DQF1 ™.
For fixed n these are (n!)" = 20(n*logn) fynctions. Each of these functions can be realized
by an FBDD of size O(n?). It is sufficient to start with a complete binary tree for the
control variables. For the value ¢ of the control vector, the variable ordering 7,41 is used
to realize DQF7#! in linear size.

We want to find functions DQF7"»™ which are not read-once projections of any f,,,

1/2

where m < 2" This will contradict the assumption that f = (f,) is complete for
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P-FBDD. W. L. 0. g. we replace (7, by G} on n + [logn]| variables. The FBDD G starts
with a complete binary tree of the [logn| new variables and the leaves are sources of
disjoint copies of G,. If DQF ™ is a read-once projection of f,,, then it is also a
read-once projection of f* realized by G . Furthermore, we can assume that the control
variables are mapped to the complete binary tree. By renumbering we again denote the

FBDDs of the complete problem by G, and assume that (&, works on at most n variables
and has a width bounded by n.

Now we estimate the number of functions DQF7! ™ which are read-once projections of

fm. We have
(m)n!2n < (2mn)"
n

possibilities to choose the variables which are replaced by x4, ..., z, (remember that the
control variables are already mapped to the first variables), the ordering of these variables
in the read-once projection and the set of variables which are negated in the read-once
projection. We fix one of these possibilities. Then we only have the freedom how we
replace the remaining variables of f,, by constants. Since (7, is levelled, we can consider
the cut through G,,, where exactly n/2 z-variables have been tested.

Claim 2: The number of permutations 7 on {1,...,n} such that DQF7 is a read-once

projection of Gy, after one possibility is fixed, is bounded above by n!2=%") i m < on'/?

Proof of Claim 2: We consider a random permutation = and some node v on the cut of
(3,,. The size of the cut is by our assumptions bounded by m?. We have proved in Claim 1
that the set of variables tested before v contains at least n/6 singletons with probability
1 — 279 With probability 1 — m?2=%%) = 1 — 27%) this holds also for all nodes on
the cut simultaneously. It is now sufficient to prove that DQF] cannot be represented, if
there are at least n/6 singletons for each node on the cut. We fix an assignment of the
variables not already replaced by z1, ..., z,. Then we have 2/ paths between the node,
where DQF7 is assumed to be represented, and the cut. Hence, there is one node on the
cut reached by at least 2/2/m? paths. Each path represents one assignment of the n/2
tested x-variables. We consider only assignments where pairs have the value 0. Then we
know that two different assignments to the singletons cannot lead to the same node wv.
Since we have at least /6 singletons, at most 2"/2/2%/6 = 27/3 paths may lead to v. Since
23 < 272 /m? we have a contradiction to the assumption that DQFT is presented. O

We conclude from Claim 2 that the number of functions DQF7" ™ which are read-once
projections of (7,,, where m < 2”1/2, is bounded above by (n!)”Q‘Q(”Q). Multiplied by
the number of possibilities (2mn)” and summed over all m < 27" this is much less than
(n!)™, the number of all considered functions. Hence, a lot of the functions DQF ™

which all are in P-FBDD, are not read-once projections of any f,,, m < on'/? Hence, we
have a contradiction to the assumption that Theorem 10 is wrong. O

It can be proved by similar arguments that P-FFDD does not contain a complete problem
with respect to read-once projections. The proof is based on results of Becker, Drechsler
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and Werchner (1995) that graphs where each variable is tested on each path exactly once
represent for some easily describable operator 7 the function 7(f) as FFDD, if the graph
represents f as FBDD. Hence, we can use the proof of Theorem 10 also for FFDDs.

Conclusion

Is has been shown that a complexity theory for verification has to be different from compu-
tational complexity theory. Circuits for special cases may be harder to verify than circuits
for the general case. Complexity theoretical results for verification with binary decision
diagrams can be based on read-once projections. For many problems and functions it
can be decided whether one is a read-once projection of the other or not. Squaring is a
special case of multiplication but not a read-once projection of multiplication while mul-
tiplication is a read-once projection of squaring. Many natural complexity classes have
complete problems even with respect to monotone read-once projections. But for some
natural complexity classes it can be proved that they do not have complete problems with
respect to read-once projections.
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