Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 043 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Non-Commutative Arithmetic Circuits: Depth

Reduction and Size Lower Bounds*

Eric Allendert

Department of Computer Science
Rutgers University
Hill Center, Busch Campus, P.O. Box 1179
Piscataway, NJ 08855-1179, USA

allender@cs.rutgers.edu

. . +
Jia Jiao*

Department of Computer Science
Rutgers University
Hill Center, Busch Campus, P.O. Box 1179
Piscataway, NJ 08855-1179, USA

jjiao@paul.rutgers.edu

Meena Mahajan

The Institute of Mathematical Sciences,
C.I.T. Campus,
Madras 600 113, India

meena@imsc.ernet.in

V Vinay?

Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore 560 012, India

vinay@csa.iisc.ernet.in

7 August 1995

*The results in this paper were originally announced in papers in Proc. 25th ACM Sym-
posium on Theory of Computing and in Proc. 14th Conference on Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in Computer Science 880.

tSupported in part by National Science Foundation grants CCR-9204874 and CCR-
9509603. Part of this work was done while on sabbatical leave at Princeton University.

!Supported in part by National Science Foundation grant CCR-9204874.
$Work done while with the Institute of Mathematical Sciences, Madras 600 113, India.



Abstract

We investigate the phenomenon of depth-reduction in commutative and
non-commutative arithmetic circuits. We prove that in the commutative
setting, uniform semi-unbounded arithmetic circuits of logarithmic depth
are as powerful as uniform arithmetic circuits of polynomial degree; earlier
proofs did not work in the uniform setting. This also provides a unified
proof of the circuit characterizations of LOGCFL and #LOGCFL.

We show that AC! has no more power than arithmetic circuits of
polynomial size and degree nCUcslogn) (improving the trivial bound of
nO(IOg”)). Connections are drawn between TC! and arithmetic circuits of
polynomial size and degree.

Then we consider non-commutative computation, and show that some
depth reduction is possible over the algebra (¥*, max, concat), thus es-
tablishing that OptLOGCFL is in AC!. This is the first depth-reduction
result for arithmetic circuits over a noncommutative semiring, and it com-
plements the lower bounds of [Ni91, Ko90] showing that depth reduction
cannot be done in the general noncommutative setting.

We define new notions called “short-left-paths” and “short-right-paths”
and we show that these notions provide a characterization of the classes
of arithmetic circuits for which optimal depth-reduction is possible. This
class also can be characterized using the AuxPDA model.

Finally, we characterize the languages generated by efficient circuits
over the (union, concat) semiring in terms of simple one-way machines,
and we investigate and extend earlier lower bounds on non-commutative

circuits.

1 Introduction

One of the most striking early results of arithmetic circuit complexity is the
theorem of [VSBRS83], showing that any arithmetic circuit of polynomial size
and polynomial algebraic degree, with + and x gates defined over a commu-
tative semiring, is equivalent to an arithmetic circuit of polynomial size having
depth logZn. (In fact, if the + gates are allowed to have unbounded fanin,
the depth is logarithmic, as was observed in [Vi91].) Unfortunately, the con-
struction in [VSBR83] is not uniform. The results of [VSBR83| were extended
in [MRK88] by providing fast parallel algorithms for evaluating arithmetic cir-



cuits. However, these algorithms involve a component that is hard for NLOG,
so no logspace uniform construction was known.

One of the first uniform depth reductions was shown in [Ve91] (improving
[Ru81]) for the Boolean ring. Vinay [Vi91] showed a similar result for cir-
cuits over integers, by using LOGCFL machines (that is, AuxPDA’s running
in polynomial time and logarithmic space [Su78]) to achieve depth reduction.
The proof crucially uses the fact that the given circuit may be simulated by a
LOGCFL machine with small pushdown height.

In section 3, we build on these techniques, to give a direct uniform depth
reduction result over any commutative semi-ring, while staying within the cir-
cuit model. We show that any polynomial size polynomial degree circuit has an
equivalent polynomial size semi-unbounded logarithmic depth circuit. In Sec-
tion 4, we include some related results concerning arithmetic circuits over com-
mutative semirings, and connections to Boolean complexity classes. We show
what can be viewed as essentially a degree-reduction result: every function in
AC! can be reduced to a function computed by a polynomial size arithmetic

O(loglogn)

circuit of degree n over the natural numbers, improving the trivial

degree upper bound of nOQogn)

[MRKS88] also raised the question of whether analogous results could be
proved in the presence of non-commutative multiplication. Motivated by this
question, [Ko90] and [Ni91] showed that commutativity is crucial for the results
of [VSBR83, MRK88]. Namely, it was shown in [Ko90, Theorem 1] that for
the particular semiring of 2*° with x denoting concatenation and + denoting
union, there is a circuit with linear size and degree that is not equivalent to any
circuit with sublinear depth. An essentially equivalent example is presented in
[Ni91, Theorem 4]. Although fast parallel algorithms were shown for certain
limited sorts of non-commutative algebras (e.g., finite semirings) in [MT87], no
examples were known of non-commutative semirings where depth reduction can
be accomplished within the arithmetic circuit model.

We show, in section 5, that for polynomial degree circuits, a limited sort of
depth reduction can be carried out in the particular case of the algebra on ¥*
where X is concatenation and + is lexicographic maximum. We do not have

an interesting characterization of the class of algebras to which our techniques



apply. However, this particular algebra is of interest for two reasons.

e Concatenation is in some sense the canonical example of a non-commutative

multiplication operation.

e Natural classes of optimization problems (in particular the classes OptL
[AJ93, AJ92] and OptLOGCFL [Vi91]) can be characterized in terms of

arithmetic circuits over (max,concat).

It is important to note that we show only that over this algebra, arithmetic
circuits of polynomial size and degree can be simulated by unbounded fanin cir-
cuits of logarithmic depth. An optimal result would do this for semi-unbounded
fanin circuits.

We also give, in section 6.1, an augmented set of sufficient conditions (since
polynomial degree alone is not known to suffice) for depth reduction in general
non-commutative settings. We identify two structures called short-left-paths
and short-right-paths. We prove that if a circuit is intertwined with these struc-
tures in a reasonable way, depth reduction is possible in a non-commutative set-
ting. Interestingly, we use mirror reflections of circuits as a technique to handle
non-commutative circuits, making some of the proofs very simple. These con-
structions syntactically characterize circuits with equivalent semi-unbounded
logarithmic depth circuits, whereas the construction of section 5.2 yields only
unbounded fanin circuits.

We introduce generalized LOGCFL machines (section 6.2), which can per-
form computations over any specified algebra. (For instance, over (max,concat),
such machines define precisely OptLOGCFL.) We show that restricting the
pushdown height in such machines precisely captures the short-left-paths prop-
erty; thus pushdown-height-bounded generalized LOGCFL machines have equiv-
alent semi-unbounded logarithmic depth arithmetic circuits. Note that in both
the commutative cases of the Boolean ring and of integers, restricting the push-
down height does not result in any weakening of the class.

In section 7, we generalize some of the lower-bound results on the size of skew
(union,concat) circuits. Skew circuits have been used to characterize NLOG
[Ve92] as well as the complexity of the determinant [To92]. In [Ni91], Nisan

shows lower bounds on the size of left-skew circuits generating certain languages.



(The lower bounds are proved for size of Algebraic Branching Programs; it is
easy to see that these programs correspond exactly to left-skew circuits.) He
further shows that if a set is hard to generate in left-skew circuits, then it must
have high formula complexity and consequently high circuit depth complexity.
Thus the resulting lower bound on depth is absolute. However, there is no
corresponding lower bound on circuit size, or even on skew-circuit size.

In section 7.2, we extend this argument to show lower bounds on circuit size
when the circuits are allowed to be more general than left-skew. In particular,
we define a regular skewness pattern called clone skewness and show clone-
skew-circuit size lower bounds for some problems. We also establish that the
generalization is indeed proper; there are problems provably hard for left-skew-
circuits (i.e. requiring exponentially sized left-skew circuits) which have small
clone-skew circuits.

By way of proving these results, we establish, in section 7.1, formal con-
nections between one-way language acceptors and (union,concat) circuits. This
gives us some intuition in choosing candidate languages to exhibit the limita-

tions and the power of clone-skew circuits.

2 Preliminaries

A semiring is an algebra over a set § with two operations +, X satisfying the
usual ring axioms, but not necessarily having additive inverses. (For more
formal definitions see [JS82].) There is an additive identity denoted L and a
multiplicative identity denoted A (At times it will be more convenient to denote
1 by 0, and to denote A by 1. When we have an alphabet ¥ = {0,1}, we will
try to avoid confusion by using boldface symbols to denote elements of X£.) We
will usually be interested mainly in finitely-generated semirings (meaning that
there is a finite set G = {g1,...,9m} C S generating all of §), although many of
our results hold for circuits over semirings that are not finitely-generated (such
as the real numbers).

An arithmetic circuit over this semiring consists of gates labeled with the
operations + and X. The fanin of each gate may be bounded or unbounded,
giving rise to three kinds of circuit classes: (1) bounded fanin circuits (unless

otherwise stated, circuits are assumed to have bounded fanin gates), (2) un-



bounded fanin circuits, and (3) semi-unbounded circuits, where the 4 gates
have unbounded fanin but the x gates have bounded fanin. The inputs to the
X gates are assumed to be ordered. Thus each X gate with fanin two has a left
input and a right input. A circuit has one output node. A circuit family is a
set of circuits {C,, : n = 1,2,...}, where C,, has n input variables.

Several different notions of algebraic circuit have been considered in the lit-
erature; often the most important difference between models concerns the type
of inputs to the circuits that are considered. One popular model (for instance,
the model studied in [VSBR83]) allows a circuit with n input variables to com-
pute a function defined on S&%; that is, an input variable can be assigned the
value of any element from the semiring; and thus a single circuit may compute
a function on an infinite domain. Although this is an interesting model, and
although many of the proofs in this paper carry over to this model (particu-
larly the proofs of Theorem 3.1 and Lemmas 6.1 and 6.4), our motivation in
this paper comes primarily from machine-based complexity classes such as #L,
#LOGCFL, OptL, and OptLOGCFL. These classes have appealing characteri-
zations in terms of arithmetic circuits, where a circuit C),, with n input variables
now has the restriction that variables can take on only values of “length” n,
where there is some meaningful notion of the “length” of a semiring element.
For the finitely-generated semirings that we find most interesting, elements of
“length” n can be efficiently constructed from the generators, and thus it is no
loss of generality to allow the inputs to a circuit to take on only values from
the list of generators. (This also highlights the similarity between arithmetic
circuits and Boolean circuits, where Boolean circuits take inputs only from the
set {0,1}.)

The discussion in the preceding paragraph motivates the following aspect of
the arithmetic circuits considered in this paper. The leaf nodes of an arithmetic
circuit are labeled either with some element of {A, L } UG, or with a predicate of
the form [z;, a, b, ¢|, where z; is an input variable z;, and {a,b,c} C {A\, L}UG.
(G is the set of generators.) If labeled by such a predicate, the leaf evaluates to
bif 2z; = a and to ¢ otherwise.

The convention that leaves are labeled by predicates of the form [z;, a,b, ]

has not been used previously, and may require further justification. In par-



ticular, it might not be completely obvious to the reader that this convention
allows the circuit to even pass on the value of the input #;. To see that this is

possible, note that this can be computed by a sub-circuit of the form

Z H([miaaa/\a J—] X CL)

acg

We use this convention because it is quite essential in the special case of (¥,
max, concat ), which is of particular interest to us in characterizing OptLogCFL.
We cannot hope to characterize OptLogCFL without leaf predicates of this
sort; in many semirings, denying this sort of function at the leaves of a circuit
essentially forces the circuit to be monotone. Circuits where the leaves evaluate
only to the value of the input variable z; are of course a special case, as indicated
above.

The size of an arithmetic circuit is the number of gates in it, and the depth
is the length of the longest path from an input to the output. We will also need
the notion of the (algebraic) degree of a node (which should not be confused
with the fanin of a node). The degree is defined inductively: a leaf node has
degree 1, a + node has degree equal to the maximum of the degrees of its inputs,
and a X node has degree equal to the sum of the degrees of its inputs. The
degree of a circuit is the degree of its output gate. A circuit family is uniform
if the function 1™ — C,, is logspace-computable. (Note that uniform circuit
families have polynomial size.)

NC*, SACF and ACF refer to the classes of functions computed by uni-
form families of O(log®n) depth circuits with bounded, semi-unbounded and
unbounded fanin respectively, over the Boolean ring. #SAC* and #AC* refer
to analogous classes over natural numbers.

A circuit is skewif each x gate has at most one non-leaf input. It is left-skew
if the x gates have bonded fanin and the left input of each x gate is a leaf.

By a proof tree in a circuit we mean a sub-circuit represented as a tree

(duplicating gates if required) such that
e The output gate of the circuit belongs to the subcircuit.

e Exactly one input of each + gate in the sub-circuit is present in the sub-

circuit.



¢ Both children of each x gate in the sub-circuit are present in the sub-

circuit.

LOGCEFL is the class of problems logspace reducible to context-free lan-
guages. It is characterized by the machine class of nondeterministic logspace-
bounded AuxPDAs running in polynomial time [Su78], and also by the circuit
class SAC! [Ve91]. Without loss of generality we assume that LOGCFL ma-
chines are in a normal form where they push or pop O(logn) symbols (one
meta-symbol) at a time. (Such a conversion can be achieved by letting the
LOGCFL machine store up to logn top-of-stack symbols on its tape.) In this
normal form, we define “height” of the stack in terms of meta-symbols; the
machine runs in stack height hA(n) if the number of symbols on the stack is at
most h(n)logn. This convention is not completely standard, but it simplifies
the exposition and clarifies certain relationships. Essentially, we feel that this
is the “right” way to view stack height in this model.

A surface configuration is a description of the AuxPDA’s state, input tape
head position, worktape contents, worktape head position, and top-of-stack
meta-symbol. A pair of surface configurations (P, Q) forms a realizable pair if
there is a computation of the AuxPDA which when started on P leads to ), and
the pushdown height at P and @ are identical, and the pushdown height at any
intermediate step never goes below the pushdown height at P. For the original
definitions of “surface configuration” and “realizable pair,” see [Co71]. Further
details (standard notation and definitions) about LOGCFL may be found in
[CoT1, Ve91, Viol].

3 Depth Reduction in Commutative Rings

It is known [VSBR83, MRK88| that polynomial degree polynomial size circuits
over any commutative semi-ring have equivalent logarithmic depth unbounded
fanin polynomial size circuits. However, the argument provided in [VSBR83]
requires that the degree of each gate be known a priori. Although this can
be computed quickly in parallel [MRKS88], it is easy to see that this is hard
for NLOG, and thus cannot be assumed in the logspace-uniform circuit model.

For the particular case of the Boolean ring, a uniform depth-reduction result



is proved in [Ve91], and for the integers it is proved in [Vi91]. We present
here a uniform depth reduction algorithm for the case of general commutative

semirings.

Theorem 3.1 Let R be any commutative semiring. The class of functions
computed by uniform arithmetic circuits over R of polynomial degree is equal to

the class of functions computed by uniform semi-unbounded arithmetic circuits

over R of depth O(logn).

Proof: The first step is to convert the given circuit to the normal form guar-

anteed by the following lemma:

Lemma 3.2 For any uniform polynomial-degree circuit family there is an equiv-

alent one with the property that each gate is labeled with its formal degree.

Proof: Let C be an arithmetic circuit. Assume that there are no consecutive
+ gates in C. (If necessary, insert “x1” gates between each two consecutive
+ gates; this does not cause the degree to become non-polynomial.) Now let
C' be the circuit constructed as follows: for each gate g in C, build gates
(9,1),(g,2),...,(g,n*) (where n* is an upper bound on the degree of C). If g
is a 4 gate, then (g,7) is a + gate with children {(k,?) : h is a child of g}. If
g is a x gate, then (g,%) is a + gate with children that are x gates of the form
(h1,7) X (ha,i— j), where h; and h, are the children of g, and 1 < j <¢—1.
If h is not a leaf, then make (h,1) a leaf with value 0. If h is a leaf and 7 > 1,
then make (h,%) the root of a trivial subcircuit with degree ¢ and value 0, and
make (h,1) a leaf connected to the same input variable as h is connected to.
The output gate of C’ is the sum of all gates (g, ), where g is the output gate
of C.

It is easy to prove by induction on ¢ that each gate (h,7) in C’ has as its value
the sum of all monomials of degree 7 in the formal polynomial corresponding to
gate h in circuit C. Thus C' is equivalent to C. |

The following technical definition will be useful later in the argument. Say
that g and h are +-adjacent if there is a path from g to h where all intermediate
nodes are + gates. Note that the circuit C’ constructed in Lemma 3.2 has the

property that if g and h are +-adjacent, then the path of + edges connecting



g and h must be unique and have length at most 3, and there is not any path
from g to h through a x gate. Among other things, this guarantees that it is
easy to check in O(logn) space if g and h are +-adjacent.
Also, note that it is easy to re-write C’ so that the first child of any x gate
has degree no more than the degree of the second child (since R is commutative).
An ezploration of gate g is a depth-first search of a subcircuit rooted at g,

with the property that
e For each + node, a child is chosen nondeterministically to explore.

e For each X node the second child is put on the stack and the first child

is explored.

e When a leaf is encountered, the stack is popped and the node on top of the
stack is explored (unless the stack is empty, in which case the exploration
stops). The leaf that is the last node visited is the terminal node of the

exploration.

Note that, by our guarantee that the degree of the first child of a x node is no
more than half the degree of its parent, it follows that the degree of the node
being explored decreases by 1/2 each time the stack height increases. Thus the
stack height is logarithmic on any exploration. Let the ezploration height of a
node be the maximum stack height of any exploration of the node.

Clearly the value of g is the sum (over all explorations e of g) of the product
of all leaves encountered on e. (This can be verified by an easy induction
starting at the leaves.)

Given gate g and leaf [, define [g,[] to be the sum over all explorations e
of g having terminal leaf I of the product of all leaves encountered on e. (To
clarify: in the case that no exploration of g has terminal leaf [, [g,!] = 0. Thus
the value of g is the sum over all leaves [ of [g,].

More generally, for any two gates g and h where h is not a leaf, let [g, k]
denote the value determined by the definition in the preceding paragraph, where
gate h is replaced by a leaf with value 1. We will show how to build a circuit
computing the values [g, k] for all h (leaf and non-leaf).

If g is a leaf, then [g, g] is a leaf returning the value of g, and for all other
h, [g, k] is a leaf with value 0.

10



If g is a + gate, then [g, h] is simply the sum of all [¢’, k], where ¢’ is a child
of g.

If g is a X gate and g and h are +-adjacent and h is a leaf, then [g, h] should
simply return h x (the value of g;), where g; is the first child of g. (This
is because there is a one-to-one correspondence between explorations of g and
explorations of g1, because of the uniqueness of the + path connecting g and
h). Thus if g is a X gate and g and h are +-adjacent and A is a leaf, then [g, h]
is b x (the sum over all leaves [ of [g1,1]).

Similarly, if g is a X gate and ¢ and h are +-adjacent and h is not a leaf,
then [g, h] is the sum over all leaves [ of [g1,!]. (This is because h is treated as
a leaf with value 1.)

If g is a x gate and g and h are not +-adjacent, then the definitions imply
that [g, k] is equal to 0 unless there is an exploration of g with h as a terminal
node (where h is treated as a leaf). For each such exploration there is a unique
sequence of gates ¢ = go,91,---,9m = h such that the second child of g; is
+-adjacent to g;11, and each g; is a X gate (except possibly g,, = k). (That is,
being the terminal node of an exploration is equivalent to being reachable via a
path using only 4 gates and the second edges out of x gates.) In such a sequence
there is ezactly one g; such that' degree(g;) > (degree(g) + degree(h))/2 >
degree of the second child of g;. The product of the leaves encountered along
this exploration is the product of the leaves encountered before g; and those
encountered after g;. It follows that [g, k] is the sum over {g; such that degree(g;)
> (degree(g) + degree(h))/2 > degree of the second child of g;} of ([g,g:] x
(9, ).

Clearly the resulting circuit is of polynomial size, and is semi-unbounded.
To analyze the depth of the circuit, observe that the subcircuit evaluating [g, k]
when g and h are +-adjacent depends on subcircuits of the form [¢’, A'], where
the exploration height of g’ is one less than the exploration height of g. Also
note that if g and h are not +-adjacent, then the subcircuit evaluating [g, h|
depends on subcircuits of the form [¢’, A'] where degree(g’) — degree(h’) is no

” refers to the degree of g in circuit C’, not its degree in the

'In this expression, “degree(g)
subcircuit being explored (where h is a leaf). Similarly, “degree(h)” is the degree of h in C'.
Note that by the construction of C’, we can assume that these degrees are explicitly encoded

in the names of g and h.

11



more than half of degree(g) — degree(h). It follows that the depth is O(logn).
|

4 Relating Arithmetic and Boolean Complexity Classes

Computing the determinant of integer matrices is known to be hard for NLOG,
and it can be done in TC! (TC! denotes the class of functions computable by
threshold circuits (equivalently, MAJORITY circuits) of polynomial size and
depth O(logn)). However, no relationship is known between SAC' or AC' and
the determinant. In this section we review some known results about arithmetic
circuits that bear on these questions, and present some new inclusions and

characterizations.

Definition 4.1 #L is the class of functions of the form #accp(z), where M
is an NLOG machine. (#accpr(z) counts the number of accepting computations
of M on input z.)

#LOGCFL is the class of functions of the form #accpr(z), where M is a

polynomial-time bounded nondeterministic AuzPDA.

Vinay has shown (see [Vi91]) that #LOGCFL is precisely the class #SAC?,
and is also precisely the class of functions computed by uniform poly-degree
arithmetic circuits over the natural numbers.

It is known that the complexity of the determinant is roughly determined
by #L. More specifically, f is logspace many-one reducible to the determinant?
iff it is the difference of two #L functions (see [Vi9la, Da91, To91al; an essen-
tially equivalent result is also proved in [Va92, Theorem 2]). Also, this class
of functions is precisely the class computed by polynomial-size skew arithmetic
circuits over the integers [To92]. For additional related results, see [AO94].

The question of the relationship between #L and #LOGCFL is thus ex-
actly the question asked in [VaT79], concerning the relationship between the
determinant and circuits of polynomial size and degree.

It is worth mentioning that Immerman and Landau [IL95] have conjectured

that TC! is exactly the class of sets reducible to #SAC?; in fact they make the

*That is, there is a logspace-computable g such that f(z) = determinant(g(z)).

12



stronger conjecture that computing the determinant is hard for TC!. Here, we

point out that there is a tantalizing connection between TC! and #SAC!.

Theorem 4.2 A function is computed by TC' circuits iff it is computed by
arithmetic circuits over the natural numbers, with depth O(logn), polynomial

size, with unbounded fanin + gates, and fanin two X and + gates.

Here, + is integer division, with the remainder discarded.

Proof: Since unbounded fanin +, and x and + can be computed by TCY
circuits [RT92], inclusion from right-to-left is straightforward. (This is true
even for logspace-uniformity, since it follows from [BCH86] and [RT92] that
division can be done in uniform TCY if the number N is given, where N is the
product of the first n? primes. But N can be computed in TC!.)

To see the other direction, note that the MAJORITY of z4,...,z, is equal
to (X8, z;)+2 [logn| | The subcircuits computing powers of 2 can be re-used;
thus O(logn) layers of MAJORITY gates can be simulated with O(logn) levels
of arithmetic gates. |

We note that other (less trivial) connections between TC® and classes of
arithmetic circuits over finite fields are also known [RT92, BFS92].

In spite of Theorem 4.2, it is not known if TC! or even AC! can be reduced
to arithmetic circuits of polynomial size and degree (#SAC!).3 Tt is a trivial
observation that AC! can be reduced to arithmetic circuits over the integers of

O(logn)

polynomial size and degree n .4 The following result improves this trivial

O(loglogn)

bound to n . (Note that arithmetic circuits of nonpolynomial degree

3In this context, when we say that a complexity class can be “reduced to” a class of
functions, we mean that for every language A in the complexity class, there is a function f in
the class of functions, and a logspace-bounded oracle Turing machine that, on input z, can
determine if ¢ € A by computing a query y, and receiving from the oracle the result f(y),
and then using this information to decide whether to accept or reject. In fact, our results deal
equally well with the setting where only one bit of f(y) is requested from the oracle. Note in
particular that SAC' can be reduced to #SAC! in this way, by the same observation showing
that NLOG is contained in probabilistic logspace (and thus the high-order bit of a #LOGCFL

function can determine if a LOGCFL machine accepts).

*The circuit can first be made “unambiguous” by replacing each OR of gates g1,...,gm by
an OR of m gates testing, for each ¢, if the condition “gate g; = 1 but for all j < z,¢; = 0”.
Now replace each AND by x and each OR by +; the low-order bit of the answer is the answer

we seek. The degree bound is easily seen to hold.

13



can produce output of more than polynomial length. The following proof does
not make use of this capability; only the information in the low-order O(logn)

bits is used.)

Theorem 4.3 ® Every language in AC" is efficiently reducible to a function

computed by polynomial-size, degree n®(1°81087) grithmetic circuits over the nat-

ural numbers.

Proof: First we need the following lemma, which follows directly from the
results of [CRS93] and [IZ89]. (This improves earlier constructions in, for ex-
ample, [VV86, To91, AH93, KVVY93], which also showed how to simulate AND
and OR by parity gates and ANDs of small fan-in. It would also be possible to
use constructions by [NRS94] or [Gu95], instead of that of [CRS93].)

Lemma 4.4 For each l € N, there is a family of constant-depth, polynomaial
size, probabilistic circuits consisting of unbounded-fan-in PARITY gates, AND
gates of fan-in O(logn), and O(logn) probabilistic bits, computing the OR of n
bits, with error probability < 1/n!.

Proof: (To see why the claim is true, first observe that the construction in
[CRS93] gives a depth 5 probabilistic circuit that computes the NOR correctly
with probability at least % and uses O(logn) random bits. More precisely, using
the terminology of [CRS93], let m = [logn], let S = {1,...,m}, and let F be
the collection of subsets of .5, such that A € F iff the bit string k of length logn
representing the characteristic sequence of A corresponds to a binary number
k < n such that the k-th bit of the input sequence 1, ..., 2, has value 1. That
is, the OR of 24,...,2, evaluates to 1 iff F is not empty. The strategy of
[CRS93] is to use probabilistic bits to define a way of assigning a ”weight” to
each set A € F so that if F is not empty, then with high probability there is
a unique element of F having minimum weight. The next paragraph explains

how this is done.

®This improves a theorem of [AJ93a], where a similar result for nonuniform circuits was

proved.

14



Let ¢ = [logm] and let ¢ = [m/c|. For any ¢ < m and j < ¢ — 1, define b, ;

as follows:

b = { 2i=ieif 9J¢ < 2F < 2(iH1)e
0 otherwise

(It may help the reader’s intuition to think of the m-bit number 2° as being
divided into “blocks” b;1,b;2,... of ¢ bits each. Thus all of these blocks b; ;
will be zero, except for the one block containing a single 1.) Choose ¢ numbers
70,...,7¢—1in therangel <r; < log® n uniformly and independently at random
(and note that this amounts to choosing O(logn) random bits). Finally, define
w; to be equal to E;‘;%) b jrj. The weight of a set Ay is then 3,4 w;. By
Proposition 2 of [CRS93|, if F is not empty, then there is a unique minimal
weight set in F.

This paragraph explains how to implement this system as a constant-depth
circuit. Note first that for any k£ < n and for any constant I < log” n there is
a depth 2 circuit of PARITY gates and small-fan-in AND gates that evaluates
to one iff the weight of Ay, is equal to I. (The only inputs to this circuit are the
O(logn) probabilistic bits. The DNF expression for this function thus can be
computed by a polynomial number of AND gates feeding into a PARITY gate
Since this subcircuit depends only on O(logn) bits, the fan-in of each AND
gate is trivially O(logn).) Taking the AND of this circuit with the input bit
zy, results in a depth three circuit that evaluates to one iff Ay € F and the
weight of Ay is equal to I. Thus there is a polynomial-size depth-4 circuit with
a PARITY gate at the root that evaluates to one iff there are an odd number of
sets in F that have weight [. Hence there is a uniform depth-5 circuit with an
OR at the root that evaluates to 1 iff there is some weight [ such that there are
an odd number of sets in F having weight [. By the remarks in the preceding
paragraph, if the OR of z4,...,z, evaluates to one, then with probability at
least one half, our depth-5 circuit will also. (Clearly, if the OR is zero, then
the depth-5 circuit also evaluates to zero.) If we replace the OR gate at the
root with AND and negate each of the PARITY gates that feed into that OR
gate (by adding a constant 1 input to each) we obtain our desired circuit for

the NOR function. Let us denote this circuit by C(z,r).

1

It remains only to reduce the error probability from % to =, without us-
n

ing too many additional probabilistic bits. Consider a graph with vertices for

15



each of our O(logn) probabilistic sequences, the edge relation is given by the
construction of an expander graph presented in [GG79], where each vertex has
degree five. Inspection of [GG79] shows that there is a uniform circuit of PAR-
ITY gates and small-fan-in AND gates of polynomial size and constant depth
that takes as as input one of our original probabilistic sequences r as well as

cllog™ (for some constants ¢ and

a new probabilistic sequence s € {1,2,3,4,5}
l) and outputs the vertex »’ reached by starting in vertex » and following the
sequence of edges indicated by s. (Since this function depends on only O(logn)
bits, it suffices to express the DNF using PARITY and AND.) Let this circuit
be denoted by R(r,s).

Thus we can construct a constant-depth circuit that computes the AND for
all ¢ < cllogn of C(z, R(r, s[1..7]) (where s[1..7] denotes the prefix of s of length
i, where r and s are probabilistically chosen. By Section 2 of [IZ89], this circuit
computes the NOR correctly with probability 1 — % Adding a PARITY gate
at the root allows us to compute the OR, as desired. This completes the proof
of the lemma. ||

Using this claim, take an AC! circuit, replace all AND gates by OR and
PARITY gates (using DeMorgan’s laws), and then replace each OR gate in
the resulting circuit with the subcircuit guaranteed by the claim (for ! chosen
so that n! is much larger than the size of the original circuit), with the same
O(logn) probabilistic bits re-used in each replacement circuit. The result is a
probabilistic, polynomial-size circuit that, with high probability, provides the
same output as the original circuit. Note that replacing AND gates by x and
PARITY gates by +, one obtains an arithmetic circuit, the low-order bit of
whose output is the same as the output of the original AC! circuit with high
probability. The degree of this circuit is O(logn)?(087) = pO(loglogn)

It remains to make the circuit deterministic. First we make use of the
“Toda polynomials” introduced in [To91]. For example, there is an explicit
construction in [BT91] of a polynomial P, of degree 2k — 1 such that Pi(y) mod
2F = y mod 2. (A nice alternative construction is presented in [Ko94].) If we

implement this polynomial in the obvious way® and apply it to the arithmetic

Tt is observed in [AG94] that this polynomial can be implemented via uniform constant-

depth circuits.

16



circuit constructed in the preceding paragraph, we obtain an arithmetic circuit

O(loglogn) and polynomial size, whose low order bit is the same as the

of degree n
output of the original AC? circuit with high probability, and with the additional
property that the other clog n low-order bits of the result are always zero (where
¢ is the constant such that there are clogn probabilistic bits).

Now we merely make n® copies of the circuit, with a different sequence of
probabilistic bits hardwired into each copy, and add the output gates of each of
those circuits. Note that the bit c¢logn positions to the left of the low-order bit

is exactly the majority vote of these circuits, and thus is equal to the output of

the original circuit. |

5 Optimization Classes

The class OptP was defined by Krentel [Kr88] as the class of functions that can
be defined as f(z) = max{y : there is some path of M that outputs y on input
z}, where M is a nondeterministic polynomial-time Turing machine. The anal-
ogous class OptL was defined in terms of logspace-bounded nondeterministic
machines [AJ93, AJ92]. Vinay considered the analogous class defined in terms
of LOGCFL machines (nondeterministic logspace-bounded AuxPDAs running
in polynomial time). Since LOGCFL is precisely the class SAC?, he called this
class OptSAC!. However, this notation is misleading, as will be illustrated in
this section. So in this paper we refer to this class as OptLOGCFL.

For any alphabet ¥, one obtains the semiring (¥* U {1}, 4, X) where x
denotes concatenation (and L x 2 = 2 X L = 1 for all ) and + denotes lexico-
graphic maximum (where z + L = L + 2 = z for all ). We will usually denote
this semiring as (2*,max,concat). We use the notation OptNC*, OptSACF and
OptAC* to denote uniform O(loglc n)-depth bounded, semi-unbounded and un-
bounded (max,concat) circuits.

While the Opt classes consist of functions from ¥* to ¥*, the Boolean classes
map ¥* to {0,1}. Nonetheless, we may talk of an optimizing function f be-
longing to a Boolean class of functions B in the following sense: f € B if the

language Ly = {(,%,b) : the ith symbol of f(z) is b} is in B.

17



5.1 Relating Optimization Classes and (max,concat) Circuits

It is shown in [AJ92] that OptL is contained in AC! (a later proof may be found
in [ABP92]); it is also shown in [AJ92] that iterated matrix multiplication over
(¥*,max,concat) is complete for OptL. As was pointed out by Jenner [Je93], it
is not hard to use the techniques of [Ve92, To92] to show:

Proposition 5.1 OptL is the class of functions computed by uniform families

of skew arithmetic circuits over (¥£*, maz,concat).

In [Vi91] it was claimed that OptLOGCFL coincides with OptSAC!, but
this claim was later retracted [Vi9la]. Instead, the following is easy to show

(using the techniques of e.g., [Vi91, Ve91]):

Proposition 5.2 OptLOGCFL is the class of functions computed by uniform

families of arithmetic circuits of polynomial degree over (£*, maz,concat).

Proof: (C) Let AuxPDA M be given; it can be assumed that the worktape of
M keeps track of

e the number of output symbols that have been produced thus far in the

computation, and
e the number of steps executed so far.

Also assume that each time an output symbol is produced, it is preceded by a
push and followed by a pop, and that the stack changes height by one on all
other moves.

The circuit we build will have gates with labels of the form (C, D, 1,7, a,b),
which should evaluate to the maximum of all words w that can be produced as
bits ¢ through j of a string output in a segment of computation beginning at
time @ and ending at time b, beginning in surface configuration C and ending
in surface configuration D, where (C, D) is a realizable pair. The leaves will be
of the form (C, D,%,i+ ¢,a,a+ 1) (where ¢ € {—1,0}) which will evaluate to
o € TU{A}if M can move in one step from C to D outputting o (and %, ¢ and
a agree with C' and D) and will evaluate to L otherwise; note that this leaf will
depend on the input. (Strictly speaking, this “leaf” will be implemented by a

subcircuit of the form ¥,ex(z;, a, 04, L].)

18



Non-leaf nodes of the form (C, D, 1, j,a,b) are the maximum over all E, F,
k,and ¢ (a+1 < e <b-2)of concat((C, E,i,k,a,c),(E,D,k+1,j,¢c+ 1,b))
and (E, F,i,7,a+ 1,b — 1) (where in this last expression only those E and F
are considered where C' - E via a push and F F D via a pop of the same
meta-symbol). Standard analysis ([Co71]) shows that gates defined in this way
have the properties outlined in the preceding paragraph. The output of the
circuit is the maximum over all m of (Cinit, Daccept, 1, ™, l,nk). The degree of
any node (C, D,1,j,a,b) can be seen to be b — a, and thus is polynomial.

(C) This direction is also completely standard. The AuxPDA will start
exploring the circuit C,, at the root. To explore a x gate, put the right child on
the stack and explore the left child. To explore a + gate, nondeterministically
choose a child and explore it. To explore a leaf, output the value of the leaf (this
might depend on the input); then pop the top node off the stack and explore
it. (If a L is encountered, halt and reject.)

It is easy to see by induction that the time required to explore a gate g is
O(depth(g)x degree(g) xt(n)) where t is the time required to check connectivity
between gates. Thus the entire running time is polynomial. |

Since OptSAC! has polynomial degree, it is contained in OptLOGCFL. We
investigate below the extent to which OptLOGCFL itself can be characterized
in terms of circuits of small depth. No parallel algorithm for OptLOGCFL
is presented in [Vi9lal, and in fact this is explicitly listed as an open problem
there; instead, attention is drawn to the negative results of [Ni91, Ko90] showing

that depth reduction is not possible in general for non-commutative semirings.

5.2 Depth Reduction for (max,concat) Circuits

In this section we show that (max,concat) circuits of polynomial size and degree
can be simulated by (max,concat) circuits of polynomial size and logarithmic
depth, when unbounded fanin gates are allowed. In other words, we show that
OptLOGCFL is contained in OptAC!, and hence in OptNC2. Since functions
with quasi-polynomial degree can be computed in OptAC! (and hence there
are functions f € OptAC! with |f(z)| not polynomial in |z|), OptLOGCFL C
OptAC! is a proper containment.

Our first proof of this depth reduction was rather complicated, and was

19



similar in spirit to the proof given section 3 for the commutative case. Although
we feel that a proof in this vein is instructive, the proof given below is extremely
simple, and is very similar to the argument in [ABP92]. Further, the proof we
give here explicitly uses the algorithm from [MRKS88] to construct individual
bits of the output; it thus follows from this construction (Lemma 5.5) that
OptLOGCFL is in AC!.

Note that, in order to achieve logarithmic depth, we see no way to avoid
using unbounded fanin concat gates; it remains an open question if the equalities
LOGCFL = SAC' and #LOGCFL = #SAC! translate to the (max,concat)
setting as OptLOGCFL = OptSAC!. In section 6.4 we will describe a restriction
on the AuxPDAs that characterizes OptSAC!.

Theorem 5.3 If f is computed by a family of arithmetic circuits over (¥*,
maz, concat) of polynomial size and degree, then f is computed by a family
of arithmetic circuits over (¥£*, maz, concat) of polynomial size with depth
O(log®n). (In fact, f is computed by a family of unbounded-fan-in arithmetic

circuits of logarithmic depth, and f is also in the Boolean class AC'.)

Proof: The outline of our proof is as follows: Given an input z and a polyno-
mial size, polynomial degree circuit, we first convert the circuit to a normal form
guaranteed by Lemma 5.4. We then build an equivalent circuit over the (com-
mutative) semiring (Z,max,plus), and evaluate this circuit using the [MRK88]
algorithm (which in this setting can be implemented in AC'). This is described
in Lemma 5.5. Finally, we turn this AC! algorithm into a family of arithmetic
circuits.

The following definition is similar to the notion of a proof tree or “accepting
subtree” studied in [VT89]: Let g be a + gate, and let h be an input to g, and
consider the behavior of the circuit when given some input . We say that h
contributes to the value of g if the value of h is equal to the value of g (that is,
the value of h is the largest value that is input to g). More generally, we say
that a gate g contributes to the value of g’ (where ¢’ is not necessarily adjacent
to g) if there is a path from g to g’ such that every edge h — h’ on this path
(where A’ is a + gate) has the property that A contributes to the value of A'.
We say that g contributes to the value of the circuit if it contributes to the

value of the output gate. A contributing subcircuit at h is a subcircuit where

20



each + gate has one child and each x gate has two children, and all nodes in
the subcircuit contribute to the value of h.

The following lemma is immediate from the proof of Proposition 5.2.

Lemma 5.4 For any circuit family of polynomial size and degree, there is an
equivalent circuit family of polynomial size and degree such that each node (other
than the output node) is labeled with a pair i,j, and if node h is labeled with
1,7, then it contributes to the value of the circuit only if the value of h is equal
to symbols i through j of the output. (For convenience later on, we will number

symbols from the right, starting with position 0 at the rightmost end.)

Assume that the alphabet ¥ = {0,1}; the argument for other alphabets is

similar.

Lemma 5.5 If f is computed by a family of arithmetic circuits over (¥*,

maz, concat) of polynomial size and degree, then Ly is in AC .

Proof: Let input z and circuit C; be given. Replace each leaf of C; that
evaluates to 1 (0) with a pair of leaves evaluating to 11 (10); this has the effect
of forcing any output of non-zero length to have some 1’s in it. Call this new

circuit C. Let n* be an upper bound on the number of bits in the output of

C(z) (this follows from the degree bound on C).

Now build a (max,plus) circuit (operating over the integers) as follows.”
Recall that each leaf node of C is labeled with a pair as in Lemma 5.4. For
each leaf labeled with pair (%,%) that evaluates to 1, change that leaf to the
number 2¢. (Note that 2° can be computed by a subcircuit of depth logi.) Any
leaf that evaluates to | will be replaced by a leaf evaluating to —2l+n® Al
other leaves receive the value 0. Call the new circuit C’.

It is now easy to observe that the output of C’ is the number whose binary
representation is the value of the output gate of C.

The individual bits of the output of circuit C’ can be evaluated using the

algorithm of [MRKS88|, which consists of O(logn) applications of a routine called

Phase. A single application of Phase consists of matrix multiplication over

"Formally, it is necessary to include the element —oo in order to make this structure a

semiring. This is irrelevant for our purposes.

21



(Z,max,plus), and hence can be done in AC®. Thus O(logn) applications of
Phase can be done in AC!, resulting in an AC?! circuit computing the function
computed by C’.

This shows that the language Ly = {(z,%,b) : the ith bit of C'(z) is b} is
in AC!. A trivial modification now shows that L; = {(z,1,b) : the ith bit of
f(z)is b} isin AC. 1

Now we can build log-depth arithmetic circuits over (max,concat) for Cy
in an essentially trivial way. Namely, note that ({ L, A} ,max,concat) is isomor-
phic to ({0,1},V,A). Thus we can build log-depth arithmetic circuits (using
unbounded fanin max and concat gates) of the form [z, b] that evaluate to A if
(z,4,b) is in Ly, and evaluate to L otherwise. The final arithmetic circuit is
the maximum (over all output lengths m) of the result of concatenating (for

m > 1 > 1) the maximum over all bits b of concat(b, [¢,5]). |

6 Depth Reduction in Non-Commutative Settings

In the commutative setting, any poly-degree uniform circuit can be depth-
reduced (Theorem 3.1). In the non-commutative case, we know of one semi-ring
where this holds (the (max,concat) circuits, described in Section 5), and another
where it does not (the (union,concat) circuit lower bounds from K090, Ni91]).
Where exactly does the proof of Theorem 3.1 break down in this setting?

Let us say that a circuit is “right-lopsided” if at each X gate, the degree of
the left child does not exceed the degree of the right child. The construction
in Theorem 3.1 (in fact, all depth-reduction constructions so far) uses right-
lopsidedness to make depth reduction possible — the heavier child on the right
is stacked while the left child is processed. Since the circuit is of polynomial
degree, this ensures that the stacking level is only logarithmic. (In general, the
stacking or recursion level is log(degree).) This then is the role commutativity
plays — it allows any x gate to be rewritten in a right-lopsided way (as we
assumed in the proof of Theorem 3.1).

Clearly, then, in the non-commutative case, if we are given a circuit which is
of polynomial degree and is already right-lopsided, the same construction goes
through.

In this section, we show that for non-commutative circuits, right-lopsidedness

22



is not necessary (though sufficient) for depth reduction. We identify a prop-
erty called short-left-paths (of which right-lopsidedness is a special case), and
show that poly-degree circuits with this property can be depth-reduced. We
even show that the symmetric property of short-right-paths (and hence left-
lopsidedness) suffices. The resulting depth-reduced circuits are semi-unbounded,

and we also characterize them via generalized AuxPDA machines.

6.1 Sufficient Conditions for Depth reduction

We consider a generalization of left-skewness called short-left-paths, defined in
terms of a new labeling scheme. For any proof tree in an algebraic circuit,
consider the labeling of each gate by an integer according to the following rules.
The root gate is labeled 0, all children of a 4 gate labeled k are labeled k, the
right child of a x gate labeled k is labeled k, and the left child of a x gate
labeled k is labeled k + 1. It is easy to determine the label of any node in a
given proof tree according to this scheme: Label each edge by N or L or R if
the edge is from a + gate to a child, or from a X gate to its left child, or from
a X gate to its right child respectively. Then the label of the gate is simply the
number of edges labeled L. on the unique path from the root to this gate in the
tree. (Note that in the circuit, the gate to which the node corresponds might
be reachable by more than one path.)

In a left-skew circuit, all gates in any proof tree get labels 0 or 1. General-
izing this, we say that an algebraic circuit has short-left-paths if for every proof
tree in the circuit, the maximum label used by this labeling scheme is O(logn).

If this labeling is extended to the circuit, then the label of a gate may not be
uniquely defined. In this case, we make multiple copies of the gate, each with a
unique label. This does not cause the size of the circuit to be non-polynomial,
since the number of labels required is small.

Short-right-paths are similarly defined.

It is easy to see that for circuits of polynomial degree, right-lopsidedness
implies short-left-paths, and left-lopsidedness implies short-right-paths.

The next lemma shows that lopsidedness is not necessary for depth reduc-
tion. (Recall that all previous depth-reduction results have used the notion of

lopsidedness; hence lopsidedness is sufficient for depth reduction.) We show

23



that it is sufficient that the proof trees be reduced in one direction: hence
short-left-paths. Omne should notice that the final depth-reduced circuit has
both short-left and short-right paths.

Lemma 6.1 Let R be any semi-ring. The class of functions computed by
uniform polynomial size semi-unbounded arithmetic circuits over R of depth
(O(logn)) s equal to the class of functions computed by uniform polynomial

size arithmetic circuits over R of polynomial degree, with short-left-paths.

Proof: The inclusion from left to right follows from the observation that semi-
unbounded logarithmic depth circuits have both short-left-paths and short-
right-paths. This holds even after they are converted to bounded fanin equiva-
lents, since the conversion only increases the depth through + nodes, which do
not affect our labeling.

The inclusion from right to left: Let C' be the polynomial-degree circuit
with short-left-paths. Then by a trivial modification of the proof of Lemma 3.2
there is an equivalent uniform circuit C’ where each gate description carries the
unique label of the gate under the short-left-path labeling scheme, as also the
algebraic degree of the gate, and no path in the circuit contains more than two
consecutive + gates, and if there is a path from one gate g to another gate h
that encounters no x gates, then there is ezactly one path from g to h.

Let us understand how we may accomplish the depth reduction. The task
is to make all proof trees into small depth trees. Note that the proof trees are
already short in one direction. So it is the other direction (the right paths)
that needs to be compressed. The task will be accomplished by dividing the
proof tree into smaller subtrees. In general, we can talk of a proof tree rooted
at one gate g and terminating at another gate h, which is not necessarily a leaf.
Such a proof tree evaluates to [g, k|, as described in the proof of Theorem 3.1.
As further described there, being the terminal node of an exploration from g
is equivalent to being reachable from g via a path using only + gates and the
second edges (labeled R) out of x gates. We call such a path the current focus
path (CFP), and concentrate on compressing this path.

Note that the length of a CFP can be a polynomial. To achieve logarithmic
depth, a divide-and-conquer scheme is called for; this is precisely what the

algebraic degree tag on each gate allows us to do. Consider two gates g and

24



h with degrees dg and dh respectively. By assumption, g and h are on a CFP
rooted at g. Now, either there are X gates between g and h or there are none.
In the latter case, they are said to be adjacent to each other.

Consider the former case. All x gates on the path from g to h have degrees
in the range [dg, dh| in decreasing order. Consequently, there are adjacent gates

z1 and zs such that their degrees satisfy

dg + dh
2

dz, > > dzs (*)

(It is possible that z is g or z; is h, but obviously not both at the same time.)
These gates are unique to a proof tree. The output of the proof tree (which
is the product of the leaves in left to right ordering) may be decomposed into
three parts: leaves encountered while traversing the tree from (1) g to z; (2) z
to z2 (3) 2z to h. The product of the leaves in this ordering is the product of
the leaves in the traversal from g to h.

In the latter case, i.e. when ¢ and h are adjacent, then if g is a X gate,
then the leaves encountered in traversing the pruned proof tree from g to h are
precisely the leaves encountered while traversing the proof tree rooted at the
left child of g. So we move the CFP down by one level; the new CFP represents
the proof tree rooted at the left child of g. (If g is a + gate, then the leaves
encountered are exactly the same as those encountered when traversing the
proof tree at some gate g’ adjacent to g; recall that without loss of generality
the path from g to ¢’ has length at most 2.)

Let [g;dg, Lg] denote the function computed at g where dg is the degree of
the gate and Lg is the number of L’s in a path from the root to g. Though this
information is implicit in the gate labels, making it explicit makes it easy to
analyze the construction. Let [g, h; dg — dh, Lg] denote the function computed
at [g; dg, Lg| if the proof trees are pruned at h. [g, h,0;dg — dh, Lg] is the same
as [g,h;dg — dh, Lg] except that additionally, g and h are adjacent on some
CFP. Note that it is easy to verify the adjacency of two X gates because the
number of consecutive + gates on any path is bounded.

A schematic diagram of the construction is shown in Figure 1.

We may summarize the above discussion by:

l9;dg,Lgl= > [g,l;dg—1,Lg]if gis a x gate
I: leaf

25



[9;dg, Lg] = Z [h;dh,Lh)if g isa + gate

h: leaf or X gate adjacent to g

l9,h; dg — dh, Lg] =
Y lg,21;dg — dz1, Lg] X |21, 23,0;dz1 — dza, Lz1] X [23, h; dzy — dh, Lzo]

21,221 as in (%)

l9,h,0;dg — dh, Lg]= > [gz,l;dgr — 1, Lg +1]
I: leaf

[9,9;0,Lg] = g if g is a leaf. 1 otherwise.

This describes the semi-unbounded circuit construction.

We need to argue that the circuit has small depth. Consider the potential
function ¥ of a gate [g;dg, Lg], defined as ¥ = (log(dg), ht). Assuming that
the degree of the circuit is n*, and that left-paths do not exceed clogn, the
potential function at the output gate is (klogmn,0). (The output gate has zero
left-path length.) The leaves have a potential of (0, clogn). As we come from
the root to any leaf in the constructed circuit, at each x gate (i.e.. at alternate
levels) either the first component decreases by 1 (the degree comes down by a
factor of 2) or the second component increases by 1 (left-path length increases
by 1). Consequently, the depth of the circuit is no more than (2¢ + 2k)logn.
|

Remark: This proof is very similar to the proof of Theorem 3.1. We
represent a collection of potential proof trees, using O(logn) bits, by specifying
the “root” and by the “leaf” on the CFP. Though many proof trees may have
the same representation at some level, this is irrelevant because at some point of
the compression, two distinct proof trees must necessarily differ. A discerning
reader would notice that this representation is precisely the so-called realizable

pair of surface configurations.

26



‘+: g, h; dg—dh,Lg‘

\ Guess all adjacent z;, 2o

such that

dz; > % > dzs

+1 g,z dg—dzlaLg‘ ‘+: 23, h; de—dh,Lzz‘

‘+ D 21,29,0; dzg — dzz,LZ1‘

Guess the rightmost leaf [
in the (21, z9) proof tree.

(z1z = left child of z)

+: zir,l; dzip — 1, Lz + 1‘

Figure 1: Depth reduction of a circuit (Lemma 6.1)

27



The proof of the next lemma requires a technical strengthening of the result
of Lemma 6.1. Lemma 6.1 shows how to construct a log-depth semi-unbounded
family {D,} equivalent to a given family {C,,} with short-left-paths, in the
sense that for all z of length n, C\,(z) = D,(z). In fact, we have established
a somewhat stronger notion of equivalence, and this becomes important for us
below. For this we need some additional definitions.

For any circuit C' and input z, let C,, denote the circuit which results from
replacing each leaf node [z;, a, b, ¢| by the element of R to which this leaf eval-
uates on input 2. Thus C, has no input variables, the leaves are labeled by
constants, and hence it computes a constant function. Corresponding to C,
is a formal polynomial P(C,z) = Y, ¢; [1(¢); the next few sentences provide a
definition of P(C,z). As in the proof of Theorem 3.1, the value of C, can be
expressed as Y. [[(e), where the sum is taken over all explorations e, and [](e)
denotes the product of all the values encountered at leaves of C, along that
exploration. Note that some two explorations e and e’ may encounter exactly
the same sequence of values at the leaves they visit. In this case, we say that
there is some term ¢ such that [[(¢) = [1(e) = [I(¢’). Thus we may group these
terms, and express the value of C; as Y, ¢; [[(¢), where ¢; is equal to the ring
element (1414 ...4 1) that results by adding 1 j times, where j is the number
of distinct explorations e such that [[(¢) = [[(e). It will cause no confusion
to think of ¢; as being the natural number j. (Also note that this sum is an

infinite sum over all terms ¢ in G*; for all but finitely many ¢,c; = 0.)

Definition 6.2 Two circuits C; and Csy are said to be strongly equivalent if,
for all , and all terms t, the coefficients of term t in P(Cy,z) and P(Cs,z)
differ only if 0 appears in the term t.

To illustrate, consider the three circuits with one input variable z over the

(max,concat) semiring:
Ci1 = max{(1-z),(z-1)}

Cy = max{(1-2),(0-0),1}

C3 = max{(1-z),(z-1),(L-z)}

28



All three of these circuits give the same output on all inputs z € {0,1}. However,
C1 and Cj are strongly equivalent, whereas C; and C5 are not.

If two circuits give the same output but are not strongly equivalent, then
the proof that they are not strongly equivalent usually requires detailed analysis
of the underlying structure of the semiring R. Thus it is not surprising that

examination of the proof of Lemma 6.1 shows that we have actually established

Lemma 6.3 For any uniform family {C,} of polynomial-size arithmetic cir-
cuits over R of polynomial degree, with short-left-paths, there is a uniform famaily
{D.,.} of semi-unbounded arithmetic circuits over R of depth O(logn), such that

for alln, Cp, and D,, are strongly equivalent.

In general, the above construction converts a polynomial size circuit of
degree d and largest left-path-label I to a semi-unbounded circuit of depth
O(logd + 1), provided d € O(poly). So some depth-reduction can be achieved
even if left-path-labels are polylogarithmic.

A short-right-path non-commutative circuit can obviously have high push-
down height when simulated on an AuxPDA. But we show below that it can be
depth-reduced! This shows that it is sufficient for paths to be short in one of
the two directions, either left or right. It also indicates the weakness of showing
depth-reduction via the AuxPDA model, and the advantages of staying entirely

within the circuit model, as in section 3.

Lemma 6.4 Let R be any semi-ring. The class of functions computed by
uniform polynomial size semi-unbounded arithmetic circuits over R of depth
(O(logn)) s equal to the class of functions computed by uniform polynomial

size arithmetic circuits over R of polynomial degree, with short-right-paths.

Proof: The inclusion from left to right follows from the observation in the
previous lemma.

To show the inclusion from right to left, consider a function f computed
by a uniform polynomial size arithmetic circuit C' over R of polynomial degree,
with short-right-paths. Let C’ be the circuit that results by swapping the right
and left inputs of each x gate (like a mirror image of C). It is clear that C’ has
short left paths, and thus, applying Lemma 6.1, there is a strongly equivalent
C" of logarithmic depth. Now, by swapping left and right inputs of all the x

29



gates again, we get a circuit C"””. We show below that C""” computes the same
function f that the original circuit C' does. (This is easy to see intuitively.
However there are some subtle points that require the formal proof below. In
particular, it is important that C’ and C" be strongly equivalent, instead of
merely producing the same output. The examples C; and C; given above show
that taking the mirror images of two circuits that produce the same output may
produce two circuits that do not compute the same function.)

As in the discussion preceding the definition of strong equivalence, for any
input z, we obtain “constant” circuits C,,CL,C! and C!' such that for each
z, C, evaluates to the same element of R as does the circuit C on input z, etc.

Let >, ¢ [I(¢) be the formal polynomial P(C,z). (Note that the coefficient
¢; actually depends on z. However, to simplify notation below, we supress this
additional subscript.) For any term ¢, tf denotes the same term multiplied in
reverse order. The following simple inductive argument shows that the formal
polynomial associated with C/, P(C', z) is precisely 3, c:([T(t).

Basis: C, is a single leaf: Trivial.

Inductive step: Case 1: C, has a + output gate, whose inputs are several
smaller circuits C, ;, where P(C;,z) = 3, ¢; +([1(¢F).

Then the formal polynomial associated with Cy, say >, ¢; [[(¢), is equal to
i (i [1(¢)). Thus ¢, = >, ¢;+. Similarly, considering the formal polyno-

!/

: ! __ /
mial for C; ;, we have ¢; =}, c; ;.

By the induction hypothesis, the formal polynomial associated with each
Cl;is Yy cit [1(#7). Thus ¢, = ¢;;», and the claimed result follows.
Case 2: C,, has a X output gate, whose inputs are sub-circuits C; ; and C; ».
Then the formal polynomial associated with C., Y, c¢: [[(¢), is precisely
(241 1,1 T1(£1)) X (34 2,42 [1(22)), which equals 35,1, y5( 1,41 X e2,42) [1(£1 X £2).
Doing the same analysis for C., shows that it has formal polynomial
ixea(ern - c2e0) (27 x £17)
This completes the induction. Note that this also establishes that if P(C"’, z)
is equal to 3, ¢/’ 1(¢), then P(C",z) = 3, /' TI(t?).

Now, for every input z, the value of C(z)is P(C,z) = Y, c:(I](¢)), and the
value of C"'(z) is P(C"',z) = Y., ¢/"(II(t)). To prove that C and C" produce

the same output on each input, it thus will suffice to show that for any term ¢

30



that does not contain 0, for each z, the coefficients ¢; and ¢;” in P(C,z) and
P(C", ), respectively, are equal.

But we do know this, because P(C',z) = 3, ¢;([1(t?)), and P(C",z) =
3 e(I1(t7)), and C’ and C” are strongly equivalent, meaning that for any

term ¢ that does not contain 0, ¢; and ¢}” are equal.

Theorem 6.5 Qver any semiring, the classes of functions computed by the

following are equal.
1. Polynomial size circuits of polynomial degree, with short-left-paths.
2. Polynomial size circuits of polynomial degree, with short-right-paths.

3. Polynomual size semi-unbounded circuits of logarithmic depth.

In particular, for left-skew or right-skew circuits, depth reduction is always
possible. This cannot be extended to skew circuits, since the linear depth lower

bound given by [K090, Ni91] is for a function with skew circuits.

6.2 The Generalized LOGCFL model

In the case of the Boolean ring and computation over integers, we know the
relationship between SAC? circuits and LOGCFL machines (AuxPDAs) [Ve91,
Vi91l]. To extend the analogy to the general setting, we consider a gener-
alized definition of LOGCFL machines. The machine computes a function

f(z1,...,2,) in the following manner.

¢ The machine takes zi,...,z, as input, where z; belongs to the (finite)

set of generators of the appropriate semi-ring.

e The output symbols produced by the machine belong to the finite set of
generators or constants of the semi-ring, or are projections of some input

value.

e Let p be a computation path of the LOGCFL machine. Let pips...pm

be the sequence of output symbols written along this path. Then, over

31



any semi-ring, the generalized LOGCFL machine is said to compute the

function

Z P1 X p2 X ... X P
p: a valid path

Recall that the LOGCFL machine is said to be hA(n)-height-bounded if, on
all computation paths of the machine, the height of the pushdown never exceeds
h(n)logn (ie, the stack never contains more than h(n) meta-symbols, each log n
symbols long).

We show that bounding pushdown height in LOGCFL machines to O(logn)
meta-symbols corresponds exactly to restricting circuits to having short-left-
paths. This then gives a machine characterization of SAC! circuits over the

appropriate semi-ring.

Lemma 6.6 Let R be any semi-ring, not necessarily commutative. The class
of functions computed by uniform polynomial size arithmetic circuits over R
of polynomial degree, with short-left-paths, is equal to the class of functions

computed by generalized log n-height-bounded LOGCFL machines.

Proof: (1) Left-to-right inclusion:

From Lemma 6.1, it suffices to show that semi-unbounded logarithmic depth
circuits can be simulated by logn-height-bounded generalized LOGCFL ma-
chines.

The generalized LOGCFL machine begins with the description of the root
gate on its worktape. Let the gate described on its worktape be g. If g is a
+ gate, it nondeterministically chooses a child ¢’ of g, and replaces g on its
worktape with this gate. If g is a X gate with children g;, and g¢gr, it stacks gp
and replaces g on its worktape with gz. If g is a leaf evaluating to a (this may
depend on the input), it outputs a, and replaces g on its worktape with the
gate label topmost on the stack. The machine halts when it has just processed
a leaf and the stack is empty.

Clearly, this machine computes the same function as the circuit. Each explo-
ration of the LOGCFL machine corresponds to a proof tree in the circuit. Since
the circuit has polynomial degree, any exploration of the LOGCFL machine is

polynomial-time-bounded. Also, since the circuit has logarithmic depth, it is

32



straightforward to see that the LOGCFL machine so defined is logn-height-
bounded. (Only right children are stacked, so the stack has at most one gate
at each level.)

(2) Right-to-left inclusion:

Fix a LOGCFL machine. Without loss of generality assume that (a) the ma-
chine halts in a unique configuration, Cy¢;, (b) the machine pushes or pops
on every move, so the total number of moves is even, (c) the machine outputs
something only on peak configurations. (A configuration is a peak configuration
if the previous step is a push and the next step is a pop.)

The circuit has gates with labels of the form (P, Q, h,p, ¢). The labels have
the following interpretation: P is a surface configuration at time p, @ is a
surface configuration at time ¢, and (P, Q) is a realizable pair with common
pushdown height h.

If ¢ — p = 2, then in the circuit the gate (P,Q,h,p, q) is represented by
a constant-depth sub-circuit. This sub-circuit uses predicates [z;,a, A, L] to
simulate the LOGCFL machine’s access to its input. The entire sub-circuit
evaluates to L if there is no legal sequence of 2 moves from P to ) on the given
input. Otherwise, there is a peak configuration between P and @; this peak
configuration produces a symbol ¢, or A, as output. In this case, the sub-circuit
also evaluates to ¢ or A. The construction of this sub-circuit is straightforward
but tedious and is omitted here.

If ¢g—p > 2, then we focus on the profile of the potential computation.
A profile of a computation sequence is a graph depicting the behaviour of the
pushdown height over time for that computation sequence. Fix a profile for the
realizable pair (P, @, h,p, ¢). There are now two possibilities.

Firstly, the pushdown height may be strictly greater than A throughout the
computation from P to @ (excluding the endpoints, of course). In such a case,
we can find a realizable pair (Z, Z3), such that P pushes some meta-symbol
b to reach Z; in one step, and Zs pops the same meta-symbol b to reach @ in
one step. Besides, there will be at least two moves in the sequence from Z; to
Zs (since ¢ — p > 2), and both Z; and Z, will have pushdown height A + 1.
In the circuit, we represent this possibility by a sum (guess), over all choices

of Z; and Z,, of the product of two sub-circuits: the right sub-circuit has its

33



root labeled by (Z1,Zs,h+ 1,p+ 1,9 — 1), and on the left is a constant-depth
sub-circuit evaluating to A if P push(b) Zy and Z, pop(®) Q (where b is the top-of-
stack symbol in Z; and Z,) and to L otherwise. (The left sub-circuit validates
the moves from P to Z; and from Z, to Q).

Secondly, there may be a surface configuration Z such that (P, Z) and (Z, Q)
are realizable pairs. In such a case, there is a Z closest (in time) to P; let this
Z occur at time ¢, p < ¢ < ¢. While it is quite correct to say that (P, Q, h,p, q)
should evaluate to the product of (P, Z, h,p,t) and (Z,Q, h,t,q), this will not
ensure that Z is closest to P. We would like to ensure this, because it will let
us keep the circuit depth down. So in this product, we directly represent the
left term by its expansion, assuming that there is no surface configuration at
the same height as, and between, P and Z. The expansion is as described in
the previous paragraph. In other words, we represent this possibility by the
sum, over all choices of Z;, Z5, Z and ¢t where p < t < ¢, of the product of
the following 3 terms: (1) (Z1,Z2,h+1,p+1,t —1), (2) a constant-depth sub-
circuit evaluating to A if P push(p) Zy and Z, ropl}) Z (where b is the top-of-stack
symbol in Z; and Z;) and to L otherwise, and (3) (Z,Q, h,t,q).

There is one case where the above construction will not work. If the guessed
Z is just 2 moves away from P, then by expanding the P-to-Z computation
one step further, we end up with a gate labeled (Z1, Zo,h+1,t—1,t—1). This
means that Z; should be the same as Z,, and is a peak configuration which
could potentially produce some output. This output symbolis not accounted for
in the above construction. To avoid this situation, we allow, in the above sum,
only configurations far away from P; ¢ should satisfy p+2 < ¢ < ¢q. We also have
a third independent possibility, when ¢ = p+ 2. This is represented by the sum,
over all choices of Z, of the product of (P, Z,h,p,p+ 2) and (Z,Q,h,p+ 2,q).

Finally, the gate (P, Q, h,p, ¢), is the sum of the three circuits described in
the preceding three paragraphs.

We have described how to build up a circuit rooted at a gate labeled
(P,Q,h,p,q). To complete the construction, we observe that the output gate
of the desired circuit carries the label (Ciy, Ctin, 0,0, n%).

It is clear that the resulting circuit has polynomial size and polynomial

degree and computes the same function as the AuxPDA. (The degree of each

34



gate is related to the number of output symbols accounted for by the sub-circuit
rooted at that gate.) The labels have been assigned so that at each X gate, the
left child is either a constant-depth sub-circuit, or has an increased value of the
parameter h. Note that h increases as we go down from root to leaf. Since the
AuxPDA is O(logn)-height-bounded, the value of h is bounded by O(logn); it
follows that every proof tree in the circuit has short-left-paths. ||

Theorem 6.7 Quer any finitely-generated semiring, the classes of functions

computed by the following are equal.
1. Polynomial size circuits of polynomial degree, with short-left-paths.
2. Polynomial size circuits of polynomial degree, with short-right-paths.
3. Polynomual size semi-unbounded circuits of logarithmic depth.

4. logn-height-bounded generalized LOGCFL machines.

6.3 Short Paths in Different Directions Intertwined

In the next theorem, we show that a small number of nested subcircuits that
alternately satisfy the short-left-paths and short-right-paths conditions allow
depth reduction. This allows many circuits to be depth-reduced.

Given a circuit C with a gate g in it, let C; denote the subcircuit of C
rooted at g. Then by [C : C,], we mean the circuit in which the subcircuit
C, is excluded from C. This circuit has, as circuit inputs, the circuit inputs
of C' and new variables representing the outputs of gates in Cy. If C, has size
s(n), then [C : C4] has n 4 s(n) circuit inputs. We restrict our attention to
polynomial-size circuits, so s(n) is always bounded by a polynomial.

If gates g1, ..., g: are gates in C such that Cy,, ..., C}, are mutually disjoint,
then the notation [C : Cy,,...,C,,] is the natural extension of [C' : C; it
represents the circuit where Cy ,...,C,, are excluded and outputs of gates in
these subcircuits are replaced by new variables.

Now consider the case when [C' : Cy,,...,C,,] has short-left-paths but
Cy ..., Cgy, have short-right-paths. We say that the circuit C' has intertwining
depth 1. Similarly if [C : Cy,,...,C,,] has short-right-paths but C,,,...,C,,
have short-left-paths, then again the intertwining depth is 1. (A circuit which

35



has short-left- or short-right- paths has intertwining depth zero.) If Cy,, ..., Cy,
themselves have intertwining depth k, then C has intertwining depth &k + 1.

Theorem 6.8 Let C be a polynomial size polynomial degree circuit with inter-
twining depth k(n). Then there is an equivalent polynomial size semi-unbounded

circuit C', of depth O(k(n)logn), computing the same function.

Sketch of proof: We consider the case when the intertwining depth is 1 and
there is only one nested gate g (i.e. £ = 1). The construction of Lemma 6.1 can
be applied to reduce the depth of [C : C,], giving circuit [C' : C,]. For each
gate h in Cy, consider the circuit Cy(h) which is the same as C; but has h as the
output gate. Lemma 6.4 can be applied to each such circuit to reduce its depth,
giving circuit Cy(h). Patch the circuit [C" : Cy] by putting a copy of the circuit
C;(h) at those inputs which correspond to the variable representing gate h.
The resulting circuit is still of polynomial size, and its depth is depth([C’ : C,])
+ maxpdepth(Cj(h)). |

Note that the above construction is nonuniform because the intertwining
structure has to be given as an advice to the constructor of the depth-reduced

circuit.

Corollary 6.9 Let C be a polynomial size polynomial degree circuit.
(1) If C has O(1) intertwining depth, it has an equivalent log-depth circuit.
(2) If C has O(logo(l) n) intertwining depth, it has an equivalent polylog-depth

circuit.

This result cannot be further improved to circuits which have linear inter-
twining but sublinear depth, because, referring back to the function cited in

[K090, Ni91], the corresponding skew circuit has O(n) intertwining depth.

6.4 A New Optimization Class and its Circuit Characterization

Consider a restricted version of OptLOGCFL, where the underlying AuxPDA
transducer’s pushdown height is bounded by O(logn). (Recall that each stack
symbol is assumed to be O(logn) bits long. Thus effectively the stack holds
O(log® n) bits.) We denote this class by R-OptLOGCFL. If we consider the

Boolean or counting versions of LOGCFL, then restricting the pushdown to

36



logarithmic depth does not make the class any weaker; see [Vi91, Lemma 3.1].
However for the optimizing functions it may make a difference.

From the resource bounds on the transducers computing these optimizing
functions, it is clear that OptL C R-OptLOGCFL C OptLOGCFL. The next
result follows from Theorem 6.7, and gives a circuit characterization of the class

R-OptLOGCFL as OptSAC!.

Theorem 6.10 R-OptLOGCFL = OptSAC"; a function is computed by a uni-
form family of polynomial size log depth semi-unbounded (maz,concat) circuits
iff it is computed by a generalized LOGCFL machine, over (maz,concat), whose

pushdown height is bounded by O(logn).

Recall, from section 5.1, that OptL corresponds to skew circuits, and Opt-
LOGCFL to polynomial degree circuits. Thus, in terms of circuits, the contain-
ment OptL C R-OptLOGCFL C OptLOGCFL says that skew (max,concat)
circuits can be converted to semi-unbounded logarithmic depth (max,concat)
circuits, which in turn, are of polynomial degree.

Note that a (max,concat) circuit can be converted to a family of Boolean
circuits in a trivial way: replace max gates by equivalent AC® circuits, and
represent concat by juxtaposition of wires. (We need to assume that the length
of the output of each concat gate is fixed and known.) This operation, on an
OptSAC! circuit, yields an AC? circuit, giving an alternative proof that OptL
and OptSAC! are in AC!. This direct conversion predictably fails for OptAC?;

we end up with a log depth but quasi-polynomial size circuit.

7 Circuit Size Lower Bounds for (union,concat) Gen-

erator Circuits

For any alphabet X, consider the semiring (2%, 4, x), where + denotes set
union and X denotes set concatenation. We will consider arithmetic circuits
over this semiring, where each gate in the circuit evaluates to a subset of ¥*.
We consider ¥ = {0,1}. The empty set () is the additive identity or bottom
element 1, and {e}, the set containing the empty string, is the multiplicative
identity A. {{0}, {1}, L, A} is a finite set of generators, and the input gates are
labeled by elements of this set.

37



As in previous work on this semiring ([K090, Ni91]), our interest will focus on
the ability of circuits of this sort to generate languages, as opposed to computing
functions. More precisely, consider a circuit family {C,,} over this semiring
where each C,, computes a constant function. (That is, none of the n variables
for C,, are connected via any path to the output gate; note that for different n,
the circuit C,, may be computing a different output, and fairly large size may
be required to compute this output.) If each C,, produces a set 4,, C X" as
output, then we will say that the family {C,} generates the language J,, A,..

Note that if {C,,} generates a set A, then the formal polynomial P(C,,, w)
does not depend on the word w (because C,, has no input variables) and thus we
will denote this formal polynomial as P(C,,), and we can write this polynomial
as P(C,) = Uy cw{w}, where ¢,, is the number of distinct explorations of C,,
that visit leaves whose product is the set {w}. (Although in this semiring,
0=1L=0Pand1=1+1=...= {e} = A, it will be more useful to us to
continue to view ¢, as a natural number.) Thus for every word w of length
n, w € A iff the coefficient ¢,, in the formal polynomial P(C,,) is greater than
Zero.

We say that {C,,} generates A unambiguously if w € A implies ¢,, = 1, and
¢w = 0 otherwise.

The reason we are interested in (union,concat) generators is that the only
explicit depth lower bounds known for non-commutative computation have been
shown for such generators [Ko90, Ni91]. In particular, in [Ko90] and [Ni91] it
is shown that the language L; = {ww®|w € {0,1}*} has no sub-linear-depth
generator of any size. Nisan further extends the argument to show that there
are no sub-linear-depth generators for the non-commutative permanent and
determinant, or even for any function weakly equivalent to these functions.
The proof technique used is to relate the branching program size B(f) of a
homogeneous degree d function f, the formula size F(f), and the depth D(f)
as follows: B(f) < O(dF(f)), and F(f) < 2P(f). Then, through matrix rank
arguments, a lower bound on B(f) is shown.

The above technique does not yield any lower bound on circuit size. How-
ever, we observe that a branching program is nothing but a left-skew circuit;

thus the matrix rank argument does give a lower bound on left-skew circuit size.

38



In this section, we extend this argument to skew circuits which are not neces-
sarily left-skew but nonetheless have a fixed pattern among the x gates. We
call such circuits clone-skew circuits, since each proof tree of the circuit shows
the same pattern of skew gates. However, before formally defining clone-skew
circuits, we first establish some useful connections between one-way language

acceptors and (union,concat) generators.

7.1 One-way Acceptors and (union,concat) Generators

In this subsection we explore the connection between language acceptors with
one-way read-only input tapes and (union,concat) generator circuits. The fol-
lowing lemmas show that left-skew generators generate exactly the languages
accepted by 1-NLOG machines, and the languages generated unambiguously
are exactly the languages accepted by 1-ULOG machines (where 1-NLOG (1-
ULOG) refers to logspace-bounded machines that have a one-way input head,
and are nondeterministic (respectively, nondeterministic with at most one ac-
cepting path on any input)). (This is similar to the relationship between skew
circuits and NLOG or OptL). The one-way read-only nature of the input tape

guarantees left-skewness.

Lemma 7.1 A language L is accepted by a 1-NLOG machine iff there is a

uniform polynomial size left-skew (union,concat) circuit that generates it.

Proof: Let M be a 1-NLOG machine accepting L. We construct a polynomial
size circuit C generating L as follows. Without loss of generality we assume
that in each non-halting configuration of M, M either reads an input bit and
changes state, or changes the scanned tape symbol and state, but not both.
Thus each configuration is either a Read configuration or a Move configuration.
We further assume that Read configurations are deterministic.

The circuit C has gates labeled by configurations of M; there are polynomi-
ally many of them. Let ¢ be a Move configuration with successors {cy,...,cx}.
Then in C, ¢ is a union gate with children labeled by {ec1,...,¢x}.

If ¢ is a Read configuration, let ¢; be the resulting configuration when the
input bit read is 7 (¢ € {0,1}). Then in C, ¢ is a union gate with two children,

¢y, and cj. Each ¢} is a concat gate with left child receiving the constant ¢ and

39



right child the gate labeled ¢;. If ¢ is a Halt configuration, then the gate ¢
is an input gate, receiving the constant A (L) if ¢ is an accepting (rejecting)
configuration. (Note that the machine would actually know that it has reached
the end of its input by reading an end marker. In our setting we will label
a “move” configuration as accepting or rejecting depending on whether the
machine would accept if it were to read the end-marker after reading the nth
symbol; we can assume that the machine records the number of symbols read.
Details are routine and are left to the reader.)

It is straightforward to see that this circuit is left-skew and logspace uni-
form. Let w € L. Then there is at least one computation path of M leading
to acceptance. The corresponding path in C ensures that ¢,, is a non-zero co-
efficient in the formal polynomial of C. In fact, the coefficient ¢,, in P(C) is
exactly the # L function computed by M on w.

For the converse inclusion, let {C, } be a uniform family of left-skew circuits
generating L. Our 1-NLOG machine will guess the length n of its input, and
will store the output gate of C,, on its tape. It then begins an exploration of
C,, as follows. If the current gate g being explored is a 4+ gate, then it guesses
a gate that is input to g and stores that on its tape. If the current gate g is
a x gate, then if the left input of g does not match the next input symbol,
the machine halts and rejects. Otherwise, it stores the gate h that is the right
input to g on its tape, and proceeds to explore g. If g is a leaf, then we halt
and accept iff the symbol input to g is the next unread symbol, as well as being
the nth and final input symbol. It is straightforward to verify that accepting

computation paths correspond to explorations evaluating to words in L. |

Corollary 7.2 A language L is accepted by a 1-ULOG machine iff there is a
uniform polynomial size left-skew (union,concat) circuit that generates it un-

ambiguously.

Since left-skew circuits have short-left-paths, it follows from Theorem 6.7
that all languages in 1-NLOG have polynomial size logarithmic depth semi-
unbounded generator circuits. (The reduced-depth circuit is no longer left-skew;
in fact it is not even skew.)

As an example of the computational power of left-skew circuits, we mention

the by-now-standard example from [AJ93]: the set of all unsatisfying assign-

40



ments of a 3SAT formula can be computed by the above circuits. This is because
a 1-NLOG machine can recognize (F,u), where u is an assignment that does
not satisfy the 3SAT formula F.

Similarly, we can relate AuxPDAs with one-way inputs to polynomial-size
generators. The algebraic degree of the generators is related to the run-time of
the AuxPDAs. Let 1-AuxPDA denote the class of languages accepted by one-
way nondeterministic logspace-bounded auxiliary pushdown automata, and let
1-LOGCFL denote the class accepted by 1-AuxPDAs that run in polynomial

time.

Lemma 7.3 A language L is be accepted by a 1-LOGCFL machine iff there
is a polynomial size, polynomial degree circuit generating L. A language L
is be accepted by a 1-AuzPDA machine iff there is a polynomial size circuit

generating L.

Proof: Let L be accepted by a 1-LOGCFL machine M. We sketch how to
modify the proof of Lemma 6.6 to build a polynomial degree circuit generating
L. Note first that Lemma 6.6 shows how to build a log-depth circuit to simulate
an AuxPDA that has a small height bound. If the AuxPDA is not assumed
to have a small height bound, then the circuit constructed is still correct, but
it will no longer have small depth. (However, small depth is not required for
this lemma.) Another problem that must be addressed is that our AuxPDA
is accepting a language, and we are supposed to build a circuit that generates
the language, which is different from what is required in Lemma 6.6. The only
change that is required to address this problem is to change the constant-depth
circuit constructed in the case ¢ — p = 2 in the proof of Lemma 6.6; instead
construct a constant-depth circuit that evaluates to the set of all strings «
such that (P, Q) is a realizable pair because the machine can start in surface
configuration P and reach configuration () consuming input z. Details are left
to the reader.

For the converse, let L be generated by {C,,}. Then our 1-LOGCFL machine
will first guess the length of the input, put the output gate of C), on its worktape,
and begin an exploration, much as in the proof of Lemma 7.1. To explore a +
gate, nondeterministically guess a child to explore. To explore a x gate, put the

right child on the stack and explore the left child. When a leaf is encountered,

41



match it against the next input symbol, and then explore the node stored on
top of the stack. If the degree of the circuit is small, then the runtime will be
polynomial.

If the degree of the circuit is not small, then the same routine will work,
showing that anything that can be generated by polynomial-size circuits can be
accepted by a 1-AuxPDA.

To complete the proof, we need only show that every set accepted by a 1-
AuxPDA can be generated by a poly-size circuit. The crucial observation here
is that if a 1-AuxPDA doesn’t run in polynomial time, then it makes many
moves without moving its input head. Thus we can build a poly-size circuit
that evaluates to A if (P, Q) is a realizable pair via a computation that consumes
no input, and evaluates to () otherwise. The rest of the construction is simi-
lar to the construction sketched above for 1-LOGCFL. (Related observations
concerning AuxPDAs that have limits on the number of times they move their
input heads are made in [A189, ABP92]; providing a full proof is routine, using
ideas presented there.) |

Corollary 7.4 A language L is accepted by an unambiguous 1-LOGCFL ma-
chine iff there is a polynomzial size, polynomial degree circuit generating L unam-
biguously. A language L is be accepted by an unambiguous 1-AuzPDA machine

iff there is a polynomial size circuit generating L unambiguously.

7.2 Lower Bounds for Circuits with Restricted Skewness Pat-

terns

Given a semi-unbounded generator circuit C,, and a string w of length n, con-
sider the problem of determining whether the coefficient ¢,, in the polynomial
P(C},) is non-zero. If the coefficient is non-zero, then the circuit must have a
proof tree for this monomial w.

For the purpose of analyzing how the tree constructs (or parses) the mono-
mial, the union gates can be ignored; the parse structure is determined by the
subtrees rooted at concat gates. If the circuit is left-skew, then all proof trees
look identical, since each concat gate has its left subtree anchored to a leaf

node. The same is true for right-skew circuits. Now consider classes of skew

42



circuits which satisfy the following constraint: “All proof trees in the circuit
are identical.” We call this class the class of clone-skew circuits.

In any proof tree of a skew circuit, all concat gates lie on a single root-to-leaf
path, with the leaf inputs of the concat gates hanging off this path on either
side. Label a concat gate L (R) if it is left-skew (right-skew). (The L’s and R’s
are not to be confused with the LR labeling in Section 6.) Now the sequence
of the labels of the concat gates from root to leaf gives the parse structure of
the proof tree. These sequences are the same for all proof trees in a clone-skew
circuit. Let o denote this sequence; we can then refer to o-clone-skew circuits.

Consider a o-skew tree computing a monomial m, and let N be some node on
the tree computing the partial monomial v. Then we can write m = [-v-r, where
[ (r) is the product of the symbols seen at left-skew (right-skew, respectively)
gates on the path from the root to N. Note that as we travel from root to leaf,
all symbols in [ as well as in r are seen before we reach the node N. Let u
be the sequence of symbols seen on the root-to-N path, written in the order
in which they are seen. Now, the sequence o tells us how to obtain / and r
from u. Namely, index symbols of u by elements from the sequence o (a prefix
of suitable length). [ is the product, in left-to-right order, of the symbols of u
that get indexed L. And 7 is the product, in reverse order, of the symbols of u
indexed R.

Given the symbols in the order in which a root-to-leaf traversal sequence
scans them, and given sequence o, we can construct the monomial. We can do
the same if part of the monomial is given directly. Given u and v as above, and
sequence o, we can splice © and v together to correctly construct m. Let us
denote this by o(u,v) = m.

The results in this section extend Nisan’s results on non-commutative com-
putation [Ni91], and thus it is necessary to express his framework using the
circuit models we have used thus far in this paper. Nisan’s work is motivated
by the desire to understand the extent to which efficient computation of the
permanent and determinant rely on commutativity. To explore this, he consid-
ers the non-commutative ring formed by adding non-commuting indeterminates
z1,22,... to the reals. (The indeterminates commute with the reals, but not

with each other.) In this setting, then, the n X n permanent is defined to be

43



the polynomial on n? indeterminates 21 1, ..., 2, given by

> 206

ocES, 1

and the n X n determinant is defined similarly, with the sign of & multiplied in.

Thus, just as in the case of (union,concat) circuits, Nisan’s focus is on circuit
families {C), } where C,, is computing a constant function (i.e., there are no input
variables). It is perhaps counterintuitive to think of the n X n permanent or
determinant as being a constant function; however in Nisan’s setting a circuit C,,
computing the n X n determinant is a circuit with no input variables, but having
leaves labeled by indeterminates (which are semiring elements) and having the
n X n determinant as its formal polynomial. (He does allow reals to appear
as constants labeling leaves in the circuit; in his setting the formal polynomial
P(C,) = ¥, cw [I(w) where w is a finite sequence of indeterminates, and ¢,
is obtained by grouping together all terms having the same sequence w and
adding those coefficients. (This is a departure from earlier sections, where the
formal polynomial of a circuit would have constants embedded in the middle of
terms.))

For language L, define functions fr(n); fo(n) = Y, ez xo(w)w, where
xr(w) evaluates to one of the semiring constants 0 or 1. (We drop the subscript
n where it is obvious). Thus all coefficients in f, are 0 or 1 (0 or {e}).

Now we follow notation and definitions from [Ni91].

Definition 7.5 ([Ni91]) An Algebraic Branching Program (ABP) is a directed
acyclic graph with one source and one sink. The vertices of the graph are
partitioned into “levels” numbered from 0 to n, where edges may only go from
level i to level i + 1. n is the degree of the ABP. The source is the only vertez
at level 0, and the sink is the only vertex at level n. FEach edge is labeled with
a homogeneous linear function of the form >, c;x;. The size of the ABP is the

number of vertices.

An ABP computes a homogeneous polynomial of degree n; the function
is the sum over all source-to-sink paths of the product of the linear functions
labeling the edges on the path. Here each z; is an element of ¥, and each

coefficient ¢; is one of the semiring constants 0 or 1.

44



ABPs are essentially leveled left-skew circuits. To generalize this to clone-
skew circuits, we generalize the definition of ABPs as follows. Each edge (e) is
labeled by a linear function f, as well as a tag ¢, € {L, R}. The tag indicates
whether f, should pre-multiply (tag L) or post-multiply (tag R) the partial
function already constructed.

Formally, the generalized ABP (GABP) computes a function which is the
sum, over all source-to-sink paths p, of the function computed on the path
p. The function computed by a path is defined as follows: Let o, denote the
sequence of tags on the edges in path p, and let s, denote the sequence of
labels on the edges. Then the function computed by p is 0,(s,, €), where e is
the empty sequence. In other words, the labels on the edges of the path are
rearranged according to the sequence o, and then multiplied.

It is easy to see that a o-clone-skew circuit corresponds to a GABP where
for any source-to-sink path p = ey ...eg, t(e1)...t(ex) = 0.

We can define, analogous to Nisan’s matrices My(f), matrices of the form
My -(f). Matrix My, ,(f) has rows indexed by monomials of degree k, and
columns indexed by monomials of degree n — k. The entry at (u,v) is the
coefficient of the monomial o(u,v) in f.

The following lemma is an easy extension of Theorem 1 from [Ni91].

Lemma 7.6 The size of the smallest o-clone-skew circuit generating L unam-

biguously is ezxactly Ei:o rank( My, »(fr))-

It is worthwhile observing that we can strengthen Lemma 7.6 slightly by
deleting the word “unambiguously”. The proof amounts to slightly modifying
the notion of what it means for an ABP to compute a function.

An ABP is said to compute the function f which is the sum (in the appro-
priate semiring) over all source-to-sink paths, of the product of the labels of
edges on the path. Here we are interested only in (union,concat) circuits, and
the formal polynomial counts the number of explorations. So, for the ABP too,
it makes sense to instead associate a function f which is defined as a formal
polynomial: for word w, the coefficient of w in f is the number of source-to-sink
paths in the ABP that evaluate to w. Of course, the same definition can be

used for GABPs. If we use the new definition, then we have an equivalence

45



between formal polynomials of o-skew (union,concat) circuits and o-GABPs.

Now use Nisan’s proof, with appropriate L, and Rj matrices.

Lemma 7.7 The size of the smallest o-clone-skew circuit generating L with

the formal polynomial f is exactly

Ei:omnk(Mk,a(f))

Theorem 7.8 The class of languages generated unambiguously by left-skew cir-
cuits s strictly contained in the class of languages generated unambiguously by

clone-skew circuits.

Proof: Consider the language L; = {wwR | w € {0, 1}*} In [Ni91, Theorem
4.2] it is shown that any left-skew circuit generating this language unambigu-
ously must have exponential size. However there is a linear size circuit gen-
erating this language, and it is easily seen that this circuit is clone-skew and
generates the language unambiguously. (¢ = LRLRLR. . . for proof trees in this
circuit.) |

The skewness pattern required for generating this language follows from the
fact that the language is a linear context-free language. If we consider context-
free languages which are not linear, then it is reasonable to expect that skew
circuits for the languages must be large. We give one such instance; the lan-
guage Ly = {& € {0,1}* | z is not of the form ww} has no sub-exponential size
unambiguous clone-skew generators. However, the lower bound heavily relies

on unambiguity; the language does have polynomial size left-skew generators.

Lemma 7.9 Any clone-skew circuit generating Lo unambiguously must have

exponential size.

Sketch of proof: Let f be the function corresponding to L, for words of length
n. First, we illustrate the proof idea by considering the case when the proof
tree must have concat gates on any root-to-leaf path labeled ¢ = LRLRLR. . .,
as described in the previous proof. Now consider the matrix M,, /5 ,(f). This
matrix has exactly one zero in each row and one zero in each column; it thus has

rank 2"/2. The lower bound follows from Lemma 7.6; no o-clone-skew circuit

46



of sub-exponential size can generate L,. This argument can be extended to
o-clone-skew circuits, for any o. Thus no clone-skew circuit of sub-exponential

size can generate L,. |
Proposition 7.10 L, can be generated by a polynomial-size left-skew circuit.

Proof: This language can be accepted by a 1-NLOG machine which guesses
an integer ¢ and then verifies that the input bits at positions 1 and 7 4 n/2 are
distinct. The proposition now follows from Lemma 7.1. ||

Thus unambiguity is a proper restriction:

Theorem 7.11 The class of languages generated unambiguously by clone-skew
circuits is strictly contained in the class of languages generated by clone-skew

cireuits.

However, it is not true in general that non-linear context-free languages re-
quire large skew circuits. For instance, let Lz be the Dyck language of balanced
parentheses, where 0 (1) is interpreted as an opening (closing) parenthesis. This
set is easily seen to be in 1-DLOG, and thus has polynomial-size unambiguous
left-skew circuits.

Lemma 2 of [Ni91] indicates that computing the permanent or determinant
in a non-commutative setting via left-skew circuits requires at least exponential
size. We show that this lower bound holds even if arbitrary skew circuits are
allowed.

We need the following definition: A function f is said to be weakly equivalent
to a function g if, for each monomial in g with a non-zero coefficient, there is
a monomial in f with the same variables (though not necessarily in the same

order) with a non-zero coeflicient, and vice versa.

Theorem 7.12 Any skew circuit family computing the permanent or determi-

nant i a non-commutative setting must have at least exponential size.

Proof: Consider any skew circuit computing the permanent. By treating the
gates as commutative gates, the circuit can trivially be converted into a left-
skew circuit of the same size. The function computed by such a circuit is clearly
weakly equivalent to the permanent. By Theorem 2 of [Ni91], any function

weakly equivalent to the permanent has exponential size. |

47



A cknowledgments

The first author thanks Shiyu Zhou and David Zuckerman for helpful dis-

cussions.

References

[AdT78] L. Adleman, Two theorems on random polynomial time Proc. 19th
FOCS (1978) pp. 75-83.

[A189] E. Allender, P-uniform circuit complezity, J. ACM 36 (1989) 912-
928.

[ABP92] E. Allender, D. Bruschi, and G. Pighizzini, The complezity of com-
puting mazimal word functions, DIMACS tech report 92-15.

[AG94] E. Allender and V. Gore, A uniform circuit lower bound for the per-
manent, SIAM J. Comput. 23 (1994) 1026-1049.

[AH93] E. Allender and U. Hertrampf, Depth reduction for circuits of un-
bounded fan-in, Information and Computation 112 (1994) 217-238.

[AJ93a] E. Allender and J. Jiao, Depth reduction for non-commutative arith-
metic circuits, in Proc. 256th Annual Symposium on Theory of Com-
puting, 1993, pp. 515-522.

[AJ92] C. Alvarez and B. J enner, A note on log space optimization, report,
L.S.I., Universitat Politécnica Catalunya, Barcelona, 1992.

[AJ93] C. Alvarez and B. J enner, A very hard log-space counting class, The-
oretical Computer Science 107 (1993) 3-30.

[AO94] E. Allender and M. Ogihara, Relationships among PL, #L, and the
determinant, Proc. 9th IEEE Structure in Complexity Theory Con-
ference, 1994, pp. 267-278.

[BCH86] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for
division and related problems, SIAM J. Comput. 15 (1986) 994-1003.

[BT91] R. Beigel and J. Tarui, On ACC, Proc. 32nd FOCS (1991) 783-792.

48



[BFS92]

[CRS93]

[CoT1]

[Da91]

[GGT9]

[Gu95]

[TL95]

[1Z89]

[Je93]

[7582]

J. Boyar, G. Frandsen, and G. Sturtivant, An arithmetical model of
computation equivalent to threshold circuits, Theoretical Computer

Science 93 (1992) 303-319.

S. Chari, P. Rohatgi, and A. Srinivasan, Randomness-optimal unique

element isolation, with applications to perfect matching and related

problems, Proc. 25th STOC (1993) 458-467.

S. Cook, Characterization of pushdown machines in terms of time-

bounded computers, J. ACM 18 (1971) 4-18.

C. Damm, DET = L#L?, Informatik-Preprint 8, Fachbereich Infor-
matik der Humboldt-Universitat zu Berlin, 1991.

O. Gabber and Z. Galil, Ezplicit constructions of linear size super-

concentrators, Proc. 20th FOCS (1979) 364-370.

S. Gupta, Isolating an odd number of elements, linearly restrictable
sets, and applications in complexrity theory, manuscript, Virginia

Technical University.

Neil Immerman and Susan Landau, The Complezity of Iterated Mul-
tiplication, Information and Computation 116, (1995), 103-116.

R. Impagliazzo and D. Zuckerman, How to recycle random bits, Proc.

30th FOCS (1989) 248-253.
B. Jenner, personal communication.

M. Jerrum and M. Snir, Some ezact complezity results for straight-

line computations over semirings, J. ACM 29 (1982) 874-897.

[KVVY93] R. Kannan, H. Venkateswaran, V. Vinay, and A. Yao, A circuit-

[Ko94]

based proof of Toda’s theorem, Information and Computation 104

(1993) 271-276.

J. K&bler, Eztension of Toda’s theorem to middle bit classes, Proc.
Workshop on Algebraic Methods in Complexity Theory (AMCoT),
December 11-13, 1994, Institute of Mathematical Sciences, Madras
(Technical Report IMSc-94/51).

49



[Ko90]

[Kr88]

[MRKSS]

[MTS7]

[NRS94]

[Ni91]

[RT92]

[Ru81]

[Su78]

[To91]

[To91a]

[To92]

S. R. Kosaraju, On the parallel evaluation of classes of circuits, Proc.
10th FST&TCS, Lecture Notes in Computer Science 472 (1990) 232-
237.

M. Krentel, The complezity of optimization problems, JCSS 36 (1988)
490-509.

G. Miller, V. Ramachandran, and E. Kaltofen, Efficient parallel eval-
uation of straight-line code and arithmetic circuits, SIAM J. Comput.

17 (1988) 687-695.

G. Miller and S.-H. Teng, Dynamic parallel complezity of computa-
tional circuits, Proc. 19th STOC (1987) 478-489.

A. Naik, K. Regan, and D. Sivakumar, Quasilinear time complezity
theory, Proc. 11th STACS, Lecture Notes in Computer Science 778
(1994) 289-300.

N. Nisan, Lower bounds for non-commutative computation, Proc.

23rd STOC (1991) 410-418.

J. Reif and S. Tate, On threshold circuits and polynomial computa-
tton, SIAM J. Comput. 21 (1992) 896-908.

W. Ruzzo, On Uniform Circuit Complexity, J. Comput. and System
Sci. 21 (1981) 365-383.

I. H. Sudborough, On the tape complezity of deterministic contert-
free languages, J. ACM 25 (1978) 405-414.

S. Toda, PP is as hard as the polynomial-time hierarchy SIAM J.
Comput. 20 (1991) 865-877.

S. Toda, Counting problems computationally equivalent to the deter-

minant, manuscript.

S. Toda, Classes of arithmetic circuits capturing the complezity of
computing the determinant, IEICE Trans. Inf. and Syst., vol. E75-D
(1992) 116-124.

50



[VaT79]

[Va92]

[VSBRS3]

[VVS86]

[Ve9l]

[Ve92]

[VT89)

[Vi91]

[Vi9la]

L. Valiant, Completeness classes in algebra, Proc. 11th STOC (1979)
249-261.

L. Valiant, Why is Boolean complezity theory difficult? in Boolean
Function Complezity, edited by M. S. Paterson, London Mathemat-
ical Society Lecture Notes Series 169, Cambridge University Press,

1992.

L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel
computation of polynomials using few processors, SIAM J. Comput.

12 (1983) 641-644.

L. Valiant and V. Vazirani, V, NP s as easy as detecting unique

solutions Theoretical Computer Science 47 (1986) 85-93.

H. Venkateswaran, Properties that characterize LOGCFL, JCSS 42
(1991) 380-404.

H. Venkateswaran, Circuit definitions of nondeterministic complezity

classes, STAM J. Comput. 21 (1992) 655-670.

H. Venkateswaran and M. Tompa, A new pebble game that character-

izes parallel complezity classes, SIAM J. Comput. 18 (1989) 533-549.

V. Vinay, Counting auziliary pushdown automata and semi-
unbounded arithmetic circuits, Proc. 6th IEEE Structure in Com-

plexity Theory Conference (1991) 270-284.

V. Vinay, Semi-unboundedness and complezity classes, doctoral dis-

sertation, Indian Institute of Science, Bangalore.

51



