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Abstract

We introduce the model of conservative one-way multiparty complexity and prove lower and
upper bounds on the complexity of pointer jumping.

The pointer jumping function takes as its input a directed layered graph with a starting
node and k layers of n nodes, and a single edge from each node to one node from the next layer.
The output is the node reached by following k edges from the starting node.

In a conservative protocol Player ¢ can see only the node reached by following the first ¢ — 1
edges and the edges on the jth layer for each j > i (compared to the general model where he
sees edges of all layers except for the ith one). In a one-way protocol, each player communicates
only once: first Player 1 writes a message on the blackboard, then Player 2, etc., until the last
player gives the answer. The cost is the total number of bits written on the blackboard.

Our main results are the following bounds on k-party conservative one-way communication
complexity of pointer jumping with & layers:

(1) A lower bound of Q(n/k?) for any k = O(n'/3=%). This is the first lower bound on
multiparty communication complexity that works for more than logn players.

(2) Matching upper and lower bounds of @(n]og(k_l)
protocols are known, even if we consider non-conservative ones.

n) for k < log" n. No better one-way
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1 Introduction

Multiparty games were introduced by Chandra, Furst, and Lipton [6] and have found curious
applications as means of proving lower bounds on the computational complexity of explicit Boolean
functions. However, in spite of many results since then, no lower bounds for multiparty games with
more than log n players have been proved. Attacking the barrier of log n is especially interesting,
since by the result of Hastad and Goldmann [11] such bounds are connected to lower bounds on

ACC circuits.

In this paper we introduce a restricted model of conservative one-way protocols, and prove lower
bounds for pointer jumping with up to about n'/3 players. Due to the restriction to conservative
protocols, our lower bounds do not imply new lower bounds in circuit complexity. However, they
constitute a partial step in that direction and show the current barriers in lower bound techniques.
We also give optimal conservative protocols for pointer jumping with constant number of play-
ers. This shows that even the restricted model can perform nontrivial computations; in fact, our
protocols are the best one-way protocols known.

The pointer jumping function is defined as follows. The input is a directed layered graph with
a starting node and k layers of n nodes, where each node (except for the nodes on the last layer)
has exactly one outgoing edge (a pointer) which points to a node from the next layer. The goal is
to compute the node on the last layer which is reached by following k pointers from the starting
node.

For multiparty games with k players the input is divided into k£ pieces. In case of pointer
jumping the pieces are the layers of pointers: the first piece is the single pointer from the source
to the first layer of nodes, the second piece consists of the n pointers from the first to the second
layer, and so on. Player i sees all pieces of the input except for the ¢th one. The players have
unlimited computational power. They share a blackboard, viewed by all players, where they can
exchange messages according to a protocol. The objective is to compute the function with as small
amount of communication as possible. The cost of a protocol is the number of bits written on the
blackboard for the worst case input.

In the general model the number of rounds and the order in which players speak is not limited.
However, for many applications, including the bounds on AC'C circuits, it would be sufficient
to prove lower bounds on some restricted class of protocols. Of particular interest are one-way
(multiparty) protocols, where the players speak in a prescribed order, each of them only once: first
speaks Player 1, then Player 2, and so on, until Player k& gives the answer.

The pointer jumping function is easy to compute in the general model (and, in fact, in any
order of players but the one prescribed above): Player 2 writes on the blackboard the first part
of the input, which has only logn bits, and Player 1 computes the answer. However, if Player 1
starts, as required in a one-way protocol, intuitively without the knowledge of the first pointer he
cannot communicate useful information using only a few bits. It is conjectured that the one-way
communication complexity of pointer jumping is high, however, so far no nontrivial lower bounds
for k > 3 were proven.

We introduce a restricted form of one-way protocols, which is particularly intuitive for pointer



jumping. It seems that in any natural protocol Player ¢ uses not the complete information about the
first ¢ — 1 layers of pointers, but only the knowledge of which node on the (i —1)th layer is reachable
from the starting point, together with later layers of pointers and the messages communicated by the
previous players. We call any such protocol conservative. The conservative one-way communication
complexity of a function F is the smallest cost of a conservative one-way protocol computing F.

In this paper we prove the following bounds on the conservative one-way k-party complexity of
pointer jumping with £k layers.

1. We prove a lower bound of Q(n/k?) for any k = O((n/logn)'/3). Tn particular, this means
that no conservative protocol can use only (log n)O(l) players and n'~° bits of communication.
This is the first lower bound on multiparty communication complexity that works for more
than logn players.

2. We prove that for £ < log"n — w(1), any conservative one-way protocol requires at least
nlog®=1) n(1 — o(1)) bits of communication. (log(l) n denotes the iterated logarithm and
log™ n is the number of iterations until log(z) n drops below 1.)

3. We give a matching construction, namely we construct a conservative one-way protocol which
uses only nlog®=1p 4 O(n) bits of communication, for any k£ < log*n. In particular, for
log™ n (or more) players the protocol uses only O(n) bits. No better one-way protocols are
known, even without the restriction to conservative protocols. (In fact, previously no better
protocol than the trivial one using nlogn bits was known.)

In Section 3 we introduce our model and notation. Our upper bounds are proved in Section 4
and lower bounds in Section 5. In Section 6 we demonstrate a small gap between conservative
and non-conservative protocols. Open problems are discussed in Section 7. The lower and upper
bounds for small k& were also reported in [8].

2 Related work

Our main motivation is the result of Hastad and Goldmann [11], based on Yao [18] (and following
also easily from an improvement of [18] by Beigel and Tarui [4]). They show that any function in
ACC (i.e., computed by polynomial size, bounded depth and unbounded fan-in circuit with gates
computing AND, OR, NOT, and MOD,,, for a fixed m) can be computed by a one-way protocol
with polylogarithmic number of players and only polylogarithmic cost. Thus improving our lower
bounds to non-conservative communication complexity would lead to a proof that pointer jumping

is not in ACC.

In fact, it would be sufficient to prove the lower bounds for simultaneous protocols, instead of
one-way protocols. In a simultaneous protocol each of the k players sends (independently from the
others) one message to a referee, who sees none of the inputs. The referee then announces the
result. Thus, in the simultaneous model no communication between the players is allowed, they
act independently; the twist is that they share some inputs (if & > 3).



The model of multiparty communication turns out to be connected to many other computational
models. Chandra, Furst, and Lipton [6], who introduced the model, used it to prove that majority
requires superlinear length constant width branching programs. Babai, Nisan, and Szegedy [3]
demonstrate that bounds for one-way communication complexity can be applied to Turing machine,
branching program and formulae lower bounds. Nisan and Wigderson [13] have shown, using a result
of Valiant [17], that a lower bound w(n/loglogn) on 3-party simultaneous protocols for a function
f would imply that f cannot be computed by a circuit of linear size and logarithmic depth.

Unfortunately, so far we do not have sufficiently good bounds on the multiparty communication
complexity of explicit functions to obtain interesting consequences in circuit complexity. The best
lower bound for the general, one-way, or even simultaneous multiparty complexity is an Q(n/ Qk)
lower bound of Chung and Tetali [7] for generalized inner product, improving an earlier bound
Q(n/c*) of Babai, Nisan, and Szegedy [3]. This means that we have no lower bounds at all for
k > logn.

Pointer jumping is often considered in the context of lower bounds and communication com-
plexity (e.g. [14, 9, 10, 13, 5, 16]). This is an important function, since it simulates many naturally
occurring functions, e.g. shifting, addressing, multiplication of binary numbers, convolution, etc.
It is easily seen that pointer jumping is LOGSPACE-complete (for k& = n), which also makes it a
good candidate for lower bounds.

Communication complexity of pointer jumping functions has been probably introduced by Pa-
padimitriou and Sipser [14]. They consider the following 2-party k-round version: we have 2 players,
the input consists of pointers from A to B (known to Player 2) and from B to A (known to Player
1), |A| = |B] = n. There is a fixed starting point ag € A, and the output is given by following &
pointers from this starting point. Player 1 (the “wrong” player) starts, and only k£ messages (rounds
of communication) are sent. For this game, the first general lower bound of Q(n/k?) was proved by
Duris, Galil, and Schnitger [9]. Nisan and Wigderson [13] improved this to a lower bound of order
Q(n) for deterministic protocols. For ¢-error protocols they prove a lower bound of order Q(n/k?)
and an upper bound of order O((n/k)logn).

In contrast to the 2-party case with limited number of rounds, very little is known about k-
party one-way complexity of pointer jumping. For 3 players, Nisan and Wigderson [13] gave an
Q(y/n) lower bound (they state it for universal hash functions, but the functions used in pointer
jumping have the relevant properties). For £ > 3 no non-trivial bounds are known. Even in the
simultaneous case, the best bound is Q(nl/(k_l)) [2, 16], which is obtained by an easy information-
theoretic argument, and is much smaller than the more general bound on the generalized inner
product [3] (these bounds are mainly interesting because they both work even for the restrictions
of pointer jumping described next).

Recently, there was interesting progress in proving non-trivial upper bounds for special cases of
pointer jumping.

The most general is an O(nloglogn) bound of Pudldk and Rédl [15, 16] for k& = 3 for the
special case of pointer jumping when the mapping between the first and second layer of nodes is
one-to-one. Intuitively this is the hardest case, but the protocol does not work for general inputs;
also the proof uses colorings of random graphs and hence the protocol is non-constructive. The



bound is the same as we get for general pointer jumping for k = 3, however their requirements on
the communication are incomparable with our protocol, as their protocol is not conservative, on
the other hand it is almost simultaneous, meaning that the first and second player communicate
simultaneously to the third one who announces the result.

Babai, Kimmel, and Lokam [2] and Pudldk, R&dl, and Sgall [16] consider the simultaneous
communication complexity of functions that are special cases of pointer jumping where the first £—1
inputs are restricted to special n functions given by the values of s;, and the kth input are arbitrary
strings & € {0,1}" (or equivalently, on the last layer of the graph there are only two nodes, to give
a boolean function, cf. Section 6). Nevertheless, even in such special cases finding good protocols is
non-trivial. For the generalized addressing function defined by GAF(sy1,...,86-1,%) = Z5,0-@sp_; »
where & is the bitwise sum modulo 2 (parity), simultaneous protocols given in [2] use o(n"“%)
bits of communication for & = 3 and O(log”n) bits for logarithmic number of players. For the
iterated shift function shift(sy,...,8k—1,%) = T(s, 4. 5,_,) modn Simultaneous protocols from [16]

use O(n(loglog n/ log n)k) bits for any constant k, and O(n®/7) bits for logarithmic number of
players; for polylogarithmic number of players the bound was recently improved by Ambainis [1]
to O(n®) for any constant ¢ > 0. All these protocols are non-conservative.

For comprehensive information about communication complexity, see the upcoming book of
Kushilevitz and Nisan [12].

3 Definitions and notation

Throughout paper we suppose that the sets Ag,..., Ay are fixed so that |4g| = 1 and |A;| = n for
i=1,...,k Fori=1,...,k, F; is the set of all functions from A;_y to A;, F(i) = F; x ... x Fp,
and F = F(1). By ap we denote the single element of Ay. Given (fy,..., fx) € F, we define
recursively a;41 = fit1(a;).

Definition 3.1 The function Jump” is defined to be Jump*(fi,..., fr) = fi(...(fi(a0))...) = ax
for (f1,...,fx) € F.

We will use notation Jump*(ay, fa, ..., fr) as equivalent to Jump®(fi,..., fx) — notice that a;
and f; contain the same information, as there is only one starting point.

Definition 3.2 In a k-party protocol for a function F(zy,...,2.), there are k players, each with
unlimited computational power. Player i sees all the inputs except for x;. Players communicate
by “writing on a blackboard” (broadcast). For each string on the blackboard, the protocol either
gives the value of the output (in the case the protocol is over), or specifies which player writes the
next bit and what that bit should be as a function of the inputs this player knows (and the string
on the board).

Definition 3.3 A one-way protocol is a k-party protocol in which each player writes only one
message, in a predetermined order, first Player 1, then Player 2, ..., Player k.

The string on the board still has to determine who speaks next, and hence in particular for any
player and string on the board no message can be a prefix of another message possible in this
context.



Definition 3.4 A conservative protocol is a k-party protocol in which the access of players to the
input is limited so that Player ¢ knows the function (with £k—i4+1 unknowns) F(z1,...,2zi—1,%,...,%)
and the inputs z;4q, ..., 2%.

In this definition the “knowledge of the function” should be understood so that instead of knowing
the values z1, ..., z;-1, the player only knows which function these values induce on the remaining
inputs. For many natural functions, including pointer jumping, the number of induced functions is
small (compared to the number of values of (z1,...,2,-1)), and hence this is a potentially severe
restriction. The information of Player i together with x; determines the output, similarly as in the
general k-party setting.

For pointer jumping the knowledge of Jump(ay, f2, ..., fi_1,*,...,*) is equivalent to the knowl-
edge of a;—1. Thus a conservative one-way protocol for pointer jumping with k& players is given by
k mappings

B Ay x F(i+1)x{0,1}5F = {0,1}=

The players communicate according to the following straight-line program:

Player 1 writes z; = ®(ao; fo, ..., fx)
Player 2 writes zo = ®9(aq; fs,..., fr; 1)
Player 3 writes z3 = ®3(ag; fa,. .., fr; z1,22)

Player k writes 2z = ®p(ag—1;21,22,...,25-1)

and zj is the output of the protocol .

In a conservative protocol for pointer jumping we can allow Player i to see aq,..., a;_1, rather
than only a;,_; without any significant change in cost: Player j can always communicate a;_; in
addition to other messages, increasing the complexity by only an additive term of klog n.

All logarithms in the paper are with base 2. Iterated logarithm log(i) n is defined by log(o) n=n,
log(H'I) n = log log(ﬁ) n. The largest ¢ such that log(l) n > 0 is denoted log*n. The tower function
TOWER(i,b) is defined by TOWER(1,b) = b, TOWER(i 4 1,b) = 2TOWER(@b),

4 The Upper Bound

The main idea of the protocol for Jump” is that each player will “shrink the input space” consid-
erably. Suppose that Player 1 communicates b bits of fy(a) for every a € Ay. Player 2 sees a; and
the message of Player 1, and hence he knows b bits of ay = fa(a;) from the message of Player 1.
This means that there are now only about n/2° possible values for ay, and if Player 2 repeats the
procedure, he can send 2° bits for each value. We continue this way, each player communicating
exponentially more bits for each value, until the last but one player communicates all log n bits
for each possible value. A calculation shows that we need to start with b = log(k_l) n bits. Note
that in our protocol the message of Player i always depends only on a;_1, f;+1, and the previous
communication.



Theorem 4.1 Let k < log*n. Then there is a conservative one-way protocol for Jump® which

(k=1)

uses only nlog n + O(n) bits of communication.

Proof. let b= ﬂog(k—]) n], by =0, and b; = TOWER(i — 1,b) 4 ¢ for ¢ > 1. Due to our choice of
b, we have b > 2, and logn < by < n+ k.

Player i, i < k, communicates b;y; bits about each f;;q(a) consistent with previous messages.
More precisely, for each i > 1, we partition 4; into 2% blocks of size at most [n/2%7. Let B; be the
block of A; containing a;. Player ¢, i < k, communicates for each @ € B; which block of A;4; the
value fi11(a) belongs to. We have to verify the player has the necessary information, namely he
knows which block is B;. For Player 1 this is trivial, since b; = 0 and there is a single block. For
1 > 1, Player 7 knows a;_1, by the definition of conservative protocols, and hence from the message
of Player i — 1 he knows which block of A; the value a; = fi(a;—1) belongs to, and this block is B;.

The last player announces the answer, namely the single element of By. We know that there is
only one element since by > logn.

Now we compute the total amount of communication. Player 1 communicates bon = (b+2)n =
nlog(k_l) n 4+ O(n) bits. For 1 < i < k we have by, = obi=i 4 g4 1, and Player 7 communicates
bip1|Bi| < 2%~ [n/2%1 + (i 4+ 1)|B;] < n/2° + 2% 4 (i + 1)|B;| bits. Summing the terms of these
bounds separately we get that the total communication of all players ¢, 1 < ¢ < k, is bounded by
O(n). Player k communicates only logn bits. Hence the total is nlog® =" n + O(n), as claimed.

0

Corollary 4.2 Let k > log*n — O(1). Then there is a conservative one-way protocol for Jump*
which uses only O(n) bits of communication.

The same ideas as in Theorem 4.1 can be used for the two-party model with limited number of
rounds mentioned in Section 2. Nisan and Wigderson [13] give e-error randomized k-round protocols
with communication complexity O((n/k)logn). Our techniques yield deterministic protocols with
communication complexity nlog*=") n4+0(n) for k < log* n (and hence O(n) for k > log* n—0(1));
this is an improvement over [13] as long as £ = o(logn). The only technical detail is that in the
two-party model the player in turn in round 7 does not know the previous point a;_; from his
input. We modify the protocol so that each Player i sends also a;—y (in addition to the message
according to our above protocols); then Player ¢ knows a;_y from the previous communication and
can compute a;_q. The extra cost is only klogn.

5 The lower bound

We reduce conservative one-way protocols for Jump® to protocols for Jump*~'. We let Player 1 to
speak, and then fix one of his messages w, one of the points of the first layer a;, and a subset of
inputs consistent with the communication so far, leaving the players in a setup for Jump*~! with
still a large fraction of inputs on which it is supposed to work. For us a large set of inputs will mean
that there is a large set of function tuples g € F(2) such that many initial points a, are consistent
with each g.



Definition 5.1 Given a finite set £ (the universe), the measure of a subset X is pa(X) = | X|/|Q].
We usually omit the index {2, as the universe is clear from the context — we typically use this
notation for a set of tuples of functions F' C F (i) or a set of functions I C F;.

Given a strong one-way protocol for Jump”, we say that an input (a,9) € Ay X F(2)is good, if
the protocol answers correctly on that input. A set G C F(2) is (o, m)-large if 4(G) > o and for
every g € (G there exist m values ¢ € Ay such that the input (a,g) is good. A protocol is called
(o, m)-good if there exists an (a, m)-large set.

A protocol working on all inputs is (1,n)-good. No protocol for Jump' is (a, m)-good if & > 0
and m > 1, as the only player, Player 1, does not see f; and has to announce a; = fi(ap).

The following quantity plays an important role in our reduction step. We prove the necessary
bounds on it later.

Definition 5.2 Let y(m, M) denote the measure of the family of all functions f : {1,...,n} —
{1,...,n} such that for at least m values of a, f(a) < M.

Clearly, in the last definition there is nothing special about the set of values that are “good” for
f(a). This set can even be different for each a. Namely, if for each @ we have a set T'(a), |T(a)| < M,
and we know that for each function f in our family there are at least m coordinates @ such that
f(a) € T(a), we can conclude that the measure of this family is at most y(m, M). This is exactly
the setting in which 7 is used in the next lemma.

Lemma 5.3 Suppose there is a (a, m)-good protocol for Jump® with total communication t. Then

k-1

there exists an integer x and a (8, M )-good protocol for Jump with total communication t — x,

for B = a/n2%t if 3> y(m, M).

Proof. Let G C F(2) be (a,m)-large set of inputs on which the protocol works. First we let
Player 1 to speak. His communication depends only on ¢ € G, not on ¢ € Ay;. By pigeonhole
principle there exists a string w which he communicates on at least 1/2'“’| fraction of the inputs in
G. (This is true even in the case when the length of the message is not determined beforehand,
since it has to be determined who writes the next bit on the blackboard, and hence no message of
Player 1 is a prefix of another one.) Fix such a w and put z = |w|.

Given h € F(3), let F}, be the set of all functions f € F, such that (f,h) € G and Player 1
communicates w on (f, k). Define H C F(3) as the set of all tuples i for which u(#%) > a/2”T'. By
counting pu(H) > /2"t (As u(G) > a/2%, the measure of pairs (f, h) € G with u(F) < a/27H
is at most a/2%t1, and the remaining pairs from G have h € H and hence their measure is at most
p(H).)

For h € H and a € Ay, define Th(a) = {f(a) | f € Fu A (a, f,h) is good}, i.e., the set of
all images of a under some function f consistent with a, A and the protocol so far. Since G is
(m, a)-large, for any f € F}, there are at least m values of a such that (a, f, h) is good, and for each
such a, f(a) € Th(a). Suppose that for some h € H, |Th(a)| < M for all a. Then the condition
in the definition of v is satisfied by the family F}, (more precisely, by an isomorphic family, cf.
the remark after Definition 5.2), and hence p(Fy) < y(m, M), which contradicts the assumptions
of the lemma, since u(#;) > /271 > 3. Hence for every h € H there exists @ € A; such that
|Th(a)| > M.



Let H, = {h € H | [T(a)| > M}. From the last paragraph it follows that there exist ay € Ay
such that p(H,,) > p(H)/n > a/n2°tt = 3. Fix such an a;.

Now consider the protocol Players 2 to k use on the inputs with a; as chosen in the previous
paragraph, after Player 1 communicated w. We claim that this is a well-defined (8, M )-good
conservative one-way protocol for Jumpk_l(az, fayeeoy f1)-

More precisely, suppose that the original protocol ¢ for Jumpk(m,fg, ..y fr) works in the
following way:

Player 1 writes 2 = ®1(ao; fo, ..., fr),
Player 2 writes z = ®y(aq; f3,..., fr;21),
Player 3 writes z3 = ®3(ag; f,..., fr; z1,22),

Player k writes the output z; = ®(ar_1; 21,22, .., 2k-1)-

The new protocol ¥ computes Jumpk_l(ag7 f3,. .., fx). For convenience we number its players from
2" to k', to avoid renumbering of all the inputs. They communicate as follows:

Player 2" writes 25 = Wa(a1; f3,. .., fx) = ®2(as; f3,- .., fr;w),
Player 3" writes 2 = Wa(as; fa, ..., fr; 23) = ®3(az; fa, ..., fr;w, 23),

Player k" writes the output 2z, = Wp(ag_1;25,...,2,_,) = ®rlap_1;w, 25, ..., 2,_,).

By inspection, this is a well-defined conservative protocol, as Players 2’ to k' have access to all
the information they need to compute ¥;. To prove that ¥ is (8, M)-good, it is sufficient to
verify that H,, is (8, M)-large for ¥. Since for each h € H,,, |Th(ay)| > M, it is sufficient to
verify that U answers correctly on each input (ay, h) where ay € Th(ay). Let f € F}, be such that
ay = f(ay) and (ay, f,h) is good; such f exists since ag € Tj(ay). It follows that ® is correct on
(a1, f,h) and Player 1 (of ®) communicates w on this input. Let (z5,...,2}) be the messages in
VU on the input (ag,h) and let (w, z2,...,2;) be the messages in ® on the input (a, f,h). Now
we observe that z/ = z;, and hence ¥ outputs the same answer as ®. This answer is correct, as
Jump*~Y(ay, h) = Jump®(ay, f, ) and ® is correct on (ay, f, h). I

We will use Lemma 5.3 to construct inductively protocols for Jumpk_i"'l(a,i, fi+1, -+, fr) that
are (a;, m;)-good for appropriate values of a; and m;. We start with ay = 1 and m; = n, i.e., with
a protocol working on all inputs. At the end we have aj > 1/2ttF+k1ogn wwhere ¢ is the number
of bits of communication in the original protocol. To conclude that no such protocol is correct, it
is now sufficient to choose maq, ..., mg, so that y(m;, m;y1) < 1/2tk+klogn and my, > 1, as for
Jump' no protocol is (a, m)-good for m > 1. In each case we first compute the necessary bounds
on v and then use them in the iteration.

The first theorem shows that we can iterate the reduction lemma about n'/? times. In particular,
any protocol with polylogarithmic number of players needs almost linear communication, more than

n'= for any ¢ > 0. Here we estimate 4 using Chernoff bounds.



Theorem 5.4 For k = o((n/logn)'/?), any strong one-way protocol for Jump* uses at least
Q(n/k?*) bits of communication.

Proof. We first prove that v(m, M) > 1/2° for M = m—cy/sn, where ¢ > 0 is an absolute constant.
Pick a function f:{1,...,n} — {1,...,n} uniformly at random. Let X, be the indicator random
variable of the event that f(a) < M, and let S = 377, X,. We have Prob[X, = 1] < M/n and
E[S] < M. The events X, are independent, and thus we can use Chernoff bounds. We get

y¥(m, M) = Prob[S > m] = Prob[S > M + ¢y/sn] < e=c'8/2 < 9

for a sufficiently large c.

Suppose that a conservative one-way protocol uses ¢t = o(n/k?) bits of communication. We
iterate the reduction lemma k& — 1 times. We use the previous bounds with s = t + k + klogn,
which is at most o(n/k?), by the assumptions of the theorem. By the previous paragraph, we can
set my = n, miy1 = m; — ¢y/sn = m; — o(n/k). Thus my > 1, and the protocol cannot be correct.

0

Next we prove a bound for small £, matching our bound from Theorem 4.1. Here we use
relatively small values of m, and hence we can calculate a good estimate on v directly.

Theorem 5.5 For any k < log*n — w(1), every conservative one-way protocol for the k-party
pointer jumping game uses at least (nlog®* =" n)(1 — o(1)) bits of communication.

Proof. First we prove that v(m, M) < 1/27 if n/M > 27(1)/™ We count the functions directly,
first choosing m values that are mapped to numbers up to M:

n Mmpn—m M\ —m
7(m,M) S (7'”)—72/ S 271 <_) < 2712—7’1,(s+'l) — 2_713.

nn n -

Suppose that we have a conservative one-way protocol with ¢ = (1 — E)nlog(k_])n bits of
communication for some ¢ > 0. We put s = (t + k 4 klogn)/n, hence s < clog(k_l) n for some
¢ < 1. We choose m; = n/r;, where r; is defined recursively by r; = 1, 141 = ori(s+1) By
previous paragraph, this guarantees that y(m;,m;p,) < 1/27° = 1/2t+k+klogn A calculation
(using s > t/n > w(1)) shows that r; < TOWER(i — 1,s(14 o(1))). Thus r;, < n and the protocol
is not correct. [

Combining the methods used in both theorems we can get a bound that is slightly better for &
close to log* n, namely Q(n/(k —log* n)?) — in particular every protocol with log*n+ O(1) players
uses Q(n) bits of communication. To do this, we choose a suitable constant ¢ and first iterate the
lemma k 4+ ¢ —log™ n times as in Theorem 5.4 until m = n/2 and then continue as in Theorem 5.5
for the remaining log* n — ¢ iterations.

To prove the bound for small k&, we can use a slightly different method, as in [8]. Namely, we
want to maintain a large set of tuples f = (fq,..., fi) that are consistent with any a; € By, where
|Bi1| = m (rather than having a different set of m values of a; for each f, as above). Exactly the
same combinatorics and the same values of m; work for the induction step as in Theorem 5.5. The
only difference is that in this method the measure of the remaining inputs decreases by an additional
factor of 2" in each step, and hence it works only for slightly smaller £ (up to log™ n — log™ log™ n).



6 A gap between conservative and non-conservative protocols

In this section we give a version of pointer jumping which can be computed somewhat cheaper by
a non-conservative protocol than by a conservative one.

We use the boolean version of pointer jumping, which is also used in many applications, e.g. [3,
5]. To obtain boolean output, we restrict the number of nodes in the last layer to two. Clearly,
this is equivalent to a version of pointer jumping where the last part of input is a string of n bits
and the output is its ap_ith bit. In particular for 3 players we define

jump(av fv w) = T f(a)

where a € {1,...,n}, f:{1,...,n} —{1,...,n}, and ¥ € {0,1}".

Usually the distinction between the boolean and general versions of pointer jumping is not
important, as the communication complexity differs at most by a factor of log n. However, our gap
is small and hence the distinction is important for us. To exhibit a gap, we use another restriction,
namely the function f is restricted to be a permutation.

Theorem 6.1 Let us consider the function jump(a, f,z) defined above with the restriction that
f is one-to-one. Its general one-way communication complezxity is O(nloglogn/logn), while its
conservative one-way communication complexity is Q(n).

Proof. A one-way protocol with required complexity is given in [15, 16]. Hence we only need
to prove that any conservative protocol needs linear number of bits. The proof is similar to our
previous lower bounds, and we only sketch it.

Suppose we have a conservative protocol in which the first two players communicate less than
en bits each, for some small ¢ > 0. First, choose a message w sent by Player 1 (seeing f and z)
on at least 1/2°"~1 fraction of inputs. Let X be those values of x for which at least 1/2°" fraction
of values of f is consistent with w. By counting, X contains 1/2°" fraction of strings z. For a
and z € X, let Tx(a) = {f(a) | Player 1 communicates w on (f,z)}. For each z € X there exist
a for which |T,(a)| > n(1 — d) for some d > 0, where we can make d arbitrarily small by taking
¢ small. For the rest of the proof, we can replace T,(a) by some subset T/(a) C T.(a) such that
|T!(a)| = n(1—d). Now restrict the set X to values that satisfy this condition with the same @ and
T = T!(a@), and on which Player 2 communicates the same message. Choosing always the largest
possible set, we at the end have a set Y with |Y| > |X]|/ (n(n(ln_d))Qm). For sufficiently small ¢

and d we get |Y| > 27(1/2=2¢) /> 9274 Thus there exist 2,2’ € Y which differ on a coordinate from
i€ T. We take f and f’ such that the inputs (@, f,z) and (@, f’, 2’) are consistent with the choices
above. This means that the first two players send the same messages, and since f(a) = f'(a) =i
and the protocol is conservative, also the last player communicates the same message on both
inputs. However, z; # z%, and on one of the inputs the answer is wrong. 0

It would be interesting to prove any larger gap or any gap on pointer jumping without restric-
tions. However, even the upper bound we used for this result is highly nontrivial.
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7 Conclusion and open problems

We have proved non-trivial bounds for the conservative one-way communication complexity of the
pointer jumping function. We feel that for our understanding of communication complexity it is
important to formulate restricted models of communication complexity and prove lower bounds for
them, similarly as it is important to prove lower bounds for restricted classes of circuits for circuit
complexity.

The main open problem remains to find nontrivial lower bounds for general one-way, or even
simultaneous, communication. The pointer jumping function seems to be a good candidate for
a function not in AC'C. It would be therefore important to understand if this function can be
computed by simultaneous or one-way protocols with k& = polylog(n) players using only polylog(n)
bits. However, even the following simpler problems are open.

Open Problem 1: Prove any nontrivial (w(logn)) lower bound on simultaneous communication
complexity for £ > logn players.

Also for small number of players we know very little.

Open Problem 2: For some ¢ > 0, prove a lower bound of Q(n]/2+5) on simultaneous protocols
for pointer jumping with 3 players. Prove a lower bound of (n®) for 4 players.

The best protocol we know uses O(n) bits of communication and log* n players. We know of no
protocol which uses less than n bits, even for more players and in the general one-way model. In
our protocols, Player i uses only the knowledge of f;1; (in addition to ¢;—; and previous messages).
It is easy to prove that such protocols need at least n bits, and hence better protocols would have
to use significant new ideas.

Open Problem 3: Find a one-way protocol for pointer jumping with o(n) bits of communication
and arbitrary number of players.
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