Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:
E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:  http://www.eccc.uni-trier.de/eccc/

T R95- 045 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Synthesizers and Their Application to the Parallel Construction of
Pseudo-Random Functions *

Moni Naor T Omer Reingold T

Abstract

We present a new cryptographic primitive called pseudo-random synthesizer and show how
to use it in order to get a parallel construction of a pseudo-random function. We show an N(C*
implementation of synthesizers based on the RSA or the Diffie-Hellman assumptions. This yields the
first parallel (NC?) pseudo-random function and the only alternative to the original construction
of Goldreich, Goldwasser and Micali (GGM). The security of our constructions is similar to the
security of the underling assumptions. We discuss the connection with problems in Computational
Learning Theory.
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1 Introduction

A pseudo-random function, as defined by Goldreich, Goldwasser and Micali [18], is a function that
is indistinguishable from a truly random function to a (polynomial-time bounded) observer who
can access the function as a black-box (i.e. can provide inputs of his choice and gets to see the value
of the function on these inputs). Pseudo-random functions are the key component of private-key
cryptography. They allow parties who share a common key to send secret messages to each other,
to identify themselves and to authenticate messages [11, 19, 15, 33]. In addition they have many
other applications, essentially in any setting that calls for a random function that is provided as a
black-box [6, 9, 12, 17, 16, 34, 40].

Goldreich, Goldwasser and Micali provided a construction of such functions. This is the only
known construction, even under specific assumptions, such as “factoring is hard”. Their construc-
tion is sequential in nature and consists of n successive invocations of a pseudo-random generator
(where n is the number of bits in the input to the function). Our goal in this paper is to present
an alternative construction for pseudo-random functions that can be implemented in log n phases.

We introduce a new cryptographic primitive which we call pseudo-random synthesizer. A
pseudo-random synthesizer is a two variable function S(z,y), so that if many (but polynomially
bounded) random assignments are chosen to @ and to y, the output of S on all the combinations
of these assignments is indistinguishable from random to a polynomial time observer. Qur main
results are:

1. A construction of pseudo-random functions based on pseudo-random synthesizers. FEvalu-
ating such a function involves logn phases where each phase consists of evaluating several
synthesizers in parallel.

2. Constructions of parallel (N C') synthesizers based on standard assumptions such as RSA (it is
hard to extract roots modulo a composite) and Diffie-Hellman and a very simple construction
based on a problem from learning. The key generating algorithm of these constructions is
sequential for RSA, non-uniformly parallel for Diffie-Hellman and parallel for the learning
problem.

Taking (1) and (2) together we get a pseudo-random function that can be evaluated in NC2.
We note that our constructions do not weaken the security of the underlining assumption. For
instance, in the RSA case, if there is an algorithm for breaking our construction in time ¢ and
success a (success o means that the observer has a bias of at least a in distinguishing the pseudo-
random function from the random one), then there is an algorithm for breaking RSA that works
in time poly(t) and breaks RSA with probability a/poly(t). See [23, 33] for a discussion of security
preserving reductions.

The class NC has been criticized as a model for parallel computation for two main reasons:

e [t ignores communication delays and other parameters that determine the execution time on
an actual parallel machine.

e It over-emphasizes latency rather than the speed-up of problems.

These criticisms seem less valid for the problem of constructing pseudo-random functions, since (a)
it is likely that it will be implemented in a special purpose circuit (as there are DES chips) and (b)
when used for the encryption of messages on a network, the latency of computing the function is
added to the latency of the network and hence it makes sense to minimize it. Furthermore, if the
complexity of evaluating a synthesizer on a given input is comparable to that of a pseudo-random



generator, then the work performed by our construction is comparable to the one in [18] and we
can get optimal speed-up.

There is a deep connection between pseudo-random functions and hardness results for learning.
Since a random function cannot be learned, if a concept class is strong enough to contain pseudo-
random functions we cannot hope to learn it efficiently. Since no construction of pseudo-random
functions in NC' was known, several ways of bypassing this were suggested [29, 30]. It is still
of interest to learning theory to find a distribution of concepts that is hard to learn [24]. By
strengthening our assumptions, say, that it is hard to break RSA in time n®1°8") we can get
a pseudo-random function in NC!. In [7] a way of using problems that are hard to learn for
cryptographic purposes was proposed. We discuss the connection between our work and learning
in Section 8. In general, we can use hard-to-learn problems to obtain synthesizers and thus pseudo-
random functions.

Another application of pseudo-random functions in complexity was suggested by the work on
Natural Proofs [42]. They showed that the existence of a pseudo-random function in NC* implies
that there are no what they called Natural Proofs (which include all known lower bound techniques)
for separating NC! from P. Our construction based on the strengthened Diffie-Hellman assumption
satisfies that.

Previous work: Impagliazzo & Naor [26] have provided parallel constructions for several cryp-
tographic primitives based on the hardness of subset sum (and factoring). The primitives include
pseudo-random generators, universal one-way hash functions and strong bit-commitments.

An idea of Levin [31] is to construct from pseudo-random generators that expand the input by
a factor of 2 (like the one in [26]) pseudo-random functions by selecting some secret hash function
h and applying the GGM construction [18] to h(z) instead of z. If |h(z)| = log?n then the depth
of the tree is only log? n and presumably we get a pseudo-random function in NC. The problem
with this idea is that we have decreased the security significantly: with probability 1/n1°8" the
function can be broken, irrespective of the security guaranteed by the pseudo-random generator.
To put this construction in the “correct” light, suppose that for security parameter k& we have some
problem whose solution requires time 2% (on instance of size polynomial in k). If we would like to
have security 1/2* for our pseudo-random function, then the Levin construction requires depth k
whereas our construction requires depth log k.

Luby & Rackoff [34] have shown how to construct pseudo-random permutations from pseudo-

random functions. Their construction is very simple and involves three or four invocations of a
pseudo-random function in order to evaluate the pseudo-random permutation at a given point.
Therefore, our constructions yield pseudo-random permutations in NC' as well.
Organization of the paper: In section 2 we review the definition of pseudo-random functions, in
section 3 we define pseudo-random synthesizers and collections of pseudo-random synthesizers and
discuss their characteristics. In section 4 we present our parallel construction of pseudo-random
functions from pseudo-random synthesizers, in section 5 we prove the security of this construction.
In section 6 we discuss the relationships between pseudo-random synthesizers and other crypto-
graphic primitives. In section 7 we present the constructions of pseudo-random synthesizers based
on the Diffie-Hellman and the RSA assumptions. In section 8 we show how to construct pseudo-
random synthesizers from hard-to-learn problems and consider a very simple concrete example, we
also discuss the construction of pseudo-random functions in NC!. In section 9 we suggest topics
for further research.



2 Pseudo-Random Functions

For the sake of completeness and concreteness, we briefly review in this section the concept of
pseudo-random functions as it appears in [15] (some of the definitions may have small variations).
Informally, a pseudo-random function ensemble is a distribution of functions that cannot be effi-
ciently distinguished from the uniform distribution. That is, when an efficient algorithm gets a
function, as a black box, it cannot tell, with non-negligible probability of success, according to
which of the distributions it was chosen. To formalize this, we first define function ensembles,
(concentrating on length-preserving functions).

Definition 2.1 (function ensembles) A function ensemble is a sequence F' = {F,},en of ran-
dom variables, so that the random variable F,, assumes values in the set of functions mapping n-bit
long strings to n-bit long strings. The uniform function ensemble, denoted R = {R,}ncn, has R,
uniformly distributed over the set of functions mapping n-bit long strings to n-bit long strings.

In our setting the distinguisher will have the form of an oracle machine that can make queries to
a length preserving function, sampled from one of the two function ensembles. We assume that on
input 1™ the oracle machine makes only n-bit long queries. In order for a pseudo-random function
ensemble to be a practical substitute for the uniform function ensemble it must also be efficiently
samplable and computable.

Definition 2.2 (efficiently computable pseudo-random function ensemble) A function en-
semble, F' = {Fy}nen, is called efficiently computable pseudo-random function ensemble if the
following conditions hold:

1. (pseudo-randomness) for every probabilistic polynomial-time oracle machine M, every poly-
nomial p(), and all sufficiently large n’s

Prob[M™(1") = 1] = Prob[M""(1") = 1]| < —
[Prob{A™(1%) = 1] = Proby™(1") = 1] < -
where R = { R, }nen is the uniform function ensemble.

2. (efficient indexing) There exists a probabilistic polynomial time algorithm, I, and a mapping

from strings to functions, ¢, so that ¢(1(1")) and F,, are identically distributed. We denote
def

by fi the {0,1}" +— {0,1}" function assigned to i (i.e. f; = ¢(i)). We refer to i as the key of
fi and to I as the key-generating algorithm of F.
3. (efficient evaluation) There exists a polynomial time algorithm, V', so that V(i,z) = fi(x).

At the following sections the term “pseudo-random functions” is used as an abbreviation for
“efficiently computable pseudo-random function ensemble”.

3 Pseudo-random Synthesizers

We begin by introducing some notations that are used in the paper.

e Let [ and £ be any two functions on the natural numbers, we denote by F = {F]i((z))}HEN an

ensemble of functions mapping k(n)-bit long strings to I(n)-bit long strings.



e Let X be any random variable, we denote by X the kxI matrix whose entries are indepen-
dently identically distributed according to X. We denote by X* the vector X ¥,

e U, denotes the random variable uniformly distributed over {0, 1}".

o We identify functions of two variables and functions of one variable in the natural way: We
take f:{0,1}"x{0,1}" — {0,1}* to be equivalent to f:{0,1}?" — {0,1}*, i.e. f(z,y)is the
same value as f(zoy), where z and y are n-bit long strings and z oy stands for & concatenated
with .

As mentioned above, we introduce in this paper a new cryptographic primitive called a pseudo-
random synthesizer. Loosely speaking, pseudo-random synthesizers are efficiently computable func-
tions of two variables that “merge” random bit sequences from two sources into one pseudo-random
bit sequence. The significant feature of these functions is that they may reuse the input to each
variable in all different combinations and their output still looks random. We first formalize the
phrase “all different combinations”.

Definition 3.1 Let [ be a function f :{0,1}*" — {0,1}*, X and Y two sequences of n-bit long
strings X = {a1,...,2x} and Y = {y1,...,y1}. We define CONV(X,Y) to be the kX1 matriz
(f(@i9))ig-

We can now define what a pseudo-random synthesizer is.

Definition 3.2 (pseudo-random synthesizer) A pseudo-random synthesizer is a function S :
{0,1}*x{0,1}* — {0,1}* such that the following conditions hold:

1. S is polynomial-time computable.
2. There exists a function, lg : N — N, such that |S(z,y)| = ls(n) for every x,y € {0,1}".

3. For every probabilistic polynomial-time algorithm, D, every two polynomials p() and m(), and
all sufficiently large n’s

| Prob[D(CONVs(X,Y)) = 1] — Prob[D(Uy (™M) = 1]| < zﬁ

where X andY are independently drawn from U, (i.e. for random X andY the matriz
CONVs(X,Y) can not be efficiently distinguished from a random matriz.)

Notice that if 5" is a pseudo-random synthesizer and lg > 2n 4+ 1 then § also defines a pseudo-
random generator. This immediately follows from the definition if we take the sample size m(n)
to be 1. On the other hand, if G is a pseudo-random generator then we only get that for some
function lg : N — N and for every polynomial m() the polynomial-size sample {G(Un)m(”)}neN
is computationally indistinguishable from {UZZEZ)}”EN' So if in the definition of pseudo-random
synthesizer we require that lg > 2n 4+ 1 it becomes a strengthening of the definition of pseudo-
random generator, but how powerful are pseudo-random synthesizers if lg is very small? The
following lemma shows that any synthesizer S can be used to construct another synthesizer S,

with a reasonably large output, in a way that preserves the parallel time complexity of 5.

Lemma 3.1 For every ¢ and every constant 0 < € < 2, if S is a pseudo-random synthesizer in
NC" (resp. AC") then there erists a pseudo-random synthesizer 5S¢ in NC"* (resp. AC") such that
lSe(’n) = Q(TL2_E)



Proof. For every constant ¢ > 0 we can define §¢in the following way: Define k,, def max{k : kT <
n}. For input z,y € {0,1}", regard the first kST! bits of 2 and y as two kS-long sequences X and
Y of k,-bit long strings. S¢ then outputs CONVg(X,Y') (when we view it as a vector rather than
a matrix). Notice that the following properties hold for 5°:

1. S¢isindeed a pseudo-random synthesizer. Let X' and Y/ be independently drawn from U,
and let X and Y be independently drawn from Uknm(n)ki. From the definition of S¢, for every
polynomial m(), the distributions CONVse(X',Y") and CONVg(X,Y) are identical. Taking
into account the fact that » is polynomial in k,, we conclude that every polynomial-time
distinguisher for 5°¢ is also a polynomial-time distinguisher for 5. Since ' is a pseudo-random
synthesizer so is §°.

2. lge(n) = Q(nQ_chLl)). Since ¢ is a constant and n < (k, + 1)°*! for every n it holds that
‘ 9_ 2
Ise(n) = k2ls(kn) > k20 = (1 = 227)%(hn + 1)%° = Q(n* 757

3. §¢isin NC' (resp. AC*). Immediate from the construction of 5°.

Thus, by taking 5¢ to be 5¢ for any ¢ > % — 1 we obtain the lemma. O

In the construction of pseudo-random functions in NC' we assume the existence of pseudo-
random synthesizers with linear output size in NC. In order to complete the construction it is
enough, by Lemma 3.1, to show the existence of synthesizers with constant output size in NC'.

Nevertheless, the construction in Lemma 3.1 has an obvious disadvantage. The security of
the synthesizer we construct is related to the security of the original synthesizer on much smaller
input size. Thus, to preserve suflicient security we must work with larger numbers, resulting in a
substantial increase in the time and space complexity of any construction using this synthesizer. If
we assume the existence of a pseudo-random generator G in NC such that |G(s)| = 2|s| for every
s, then we can use a simplified variant of the construction of [18] for an alternative construction to
the one in Lemma 3.1.

Theorem 3.2 ([18]) If G is a pseudo-random generator such that |G(s)| = 2|s| for every s then
for every polynomial p(-) there exists a pseudo-random generator G' such that |G'(s)| = p(|s|)|s| for
every s. Further more if G is in NC* then G' is in NC'T1.

G is defined as follows: On input s it computes G(s) = sg o0 s1 and recursively generates M—SJM
bits from sy and from s;. The number of levels required is [logp(|s|)] = O(log|s|). Given a
synthesizer S in NC, and G’ as before, we can construct a new synthesizer S’ in the following way:
On input z,y € {0,1}", first compute X = G'(z) = {z], .. .,mé(n)} and Y = G'(y) = {v}, .. .,y}’)(n)}
and then output CONVs(X,Y). It is easy to verify that S’ is indeed a pseudo-random synthesizer
in NC and that ls/(n) = p*(n)ls(n).

In this case, the security of S’ relates to the security of S and G on the same input size.
Nevertheless, the time complexity of S’ is still substantially larger than the time complexity of S,
and the parallel time complexity of S’ might also be larger. We cannot assert that either of the
two constructions of synthesizers with extended output size is superior to the other.

A natural way to relax the definition of a pseudo-random synthesizer is to allow a distribution
of functions for every input size rather than a single function. To formalize this we use the concept
of an efficiently computable function ensemble which was defined in section 2.



Definition 3.3 (collection of pseudo-random synthesizers) An efficiently computable func-
tion ensemble S = {Sé(nn)}neN, where | is an N — N function, is called a collection of pseudo-random
synthesizers if for every probabilistic polynomial-time algorithm, D, every two polynomials p() and
m(), and all sufficiently large n’s

|[Prob[D(CONVn(X,Y)) = 1] - Prob[ D(Uy™ (M) = 1)| < )

where X and Y are independently drawn from U,

As we shall see, a collection of pseudo-random synthesizers is sufficient for the construction of
pseudo-random functions. Working with a collection of synthesizers, rather than a single synthe-
sizer, enables us to extract some of the computations into a preprocessing stage during the sampling.
This is especially useful if apart from a sequential preprocessing stage all other computations can
be done in parallel.

Most of our observations regarding synthesizers are easily extended to collections of synthesizers.
The only subtle point is that in order to construct a pseudo-random generator from a collection of
synthesizers we should use some of the bits of the seed to sample a function from the collection.
Since the number of bits needed in order to sample is polynomial, we can use a similar construction
to the one in Lemma 3.1 to ensure that we have enough bits to sample and that our output is large
enough.

4 A Parallel Construction of Pseudo-Random Functions

First, we define an operation on sequences we use in the construction.

Definition 4.1 For every function S : {0,1}?" — {0,1}" and every sequence of n-bit long strings
L = {li,ly,...,1l;} define SQUEEZEs(L) to be the sequence L' = {li,...,l’[ﬁ]} where Il =
2
S(lzi—1,13) for i < |£] and if k is odd then iy = I
2
We are now ready to present the construction of pseudo-random functions, using pseudo-random
synthesizers as building blocks.

Construction 4.1 (Pseudo-Random Functions) Let S = {57 }nen be a collection of pseudo-
random synthesizers and let Ig be a probabilistic polynomial-time key-generating algorithm for §
(as in definition 2.2).The function ensemble F' = {F, },en is constructed as follows:

e (indexing) We define a probabilistic polynomial-time key-generating algorithm I. On input 1™
I outputs a couple (d, k) where @ = {a?,al,a9,ad,...,a0, al} is generated according to U™
and k = {ky, ks, .. - kMogn1} s generated by [log n] independent executions of Is on input 1".
(We later show how to reduce @ from a 2n long sequence of n-bit long strings to a single n-bit

long string.)

e (evaluation) For every possible output (a, E) of I on 1™ we define a function f,r:{0,1}"
{0,1}". On input x = z125...2, the function outputs the single value in

SQUEEZEs, (SQUEEZEs, (...SQUEEZEs,  ({ai',a",....a7"})...))
ogn

N
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Figure 1: Computing the Value of the Pseudo-Random Function for n = 5

The evaluation of fa,]—g(x) can be thought of as a recursive labeling process of a binary tree with
n leaves and depth [logn] (in contrast to the depth-n binary tree in [18].) With each leaf we
associate a bit of the input: this bit “chooses” one of two labels to its corresponding leaf. The
label of each internal node at depth d is the value of Sk,,, on the labels of its children. The
value of fa‘,ié(x) is simply the label of the root. (Figure 1 illustrates the evaluation of fa‘,ié for
n=>5.)

Finally, we define F,, to be the random variable that assumes as values the functions f. for

every possible output (@, E) of I on 1™ with the probability space induced by I.

Since the function ensemble F' = {F), }, ¢y was defined through the algorithms for sampling its
functions and evaluating their values, it is clear that F' is efficiently computable (given that S is
efficiently computable). Furthermore, the parallel time complexity of fa‘,ié € F, is O(logn) times
the parallel time complexity of 5; € 57, and the parallel time complexity of I and Is are identical.

Note that for some collections of synthesizers (as those presented in this paper) we can reduce
the overhead of keeping [logn] keys of the collection. Certainly, this is true when we are using a
single synthesizer instead of a collection. In this case we don’t have to keep any key, since there
is a single key for every input size. Moreover, if the collection of synthesizers remains secure even
when it uses a public key (i.e. even if the distinguisher algorithm gets access to the key) then we
can replace the [logn| keys with a single one.

Assume that the functions in S are in NC (so the pseudo-random functions we construct are
in NC') and that there exists a pseudo-random generator G in NC, such that |G(s)| = 2|s| for
every s. In this case, a natural modification to the construction is to replace, for every fa‘,ic" the
sequence @ with an n-bit long seed a. At the beginning of each application of fa,ig we can obtain
@ by applying G’ to a, where G' is the pseudo-random generator that can be constructed from
G according to Theorem 3.2 (for p(n) = 2n, i.e. by using [logn + 1] levels of the recursion.)
Any efficient distinguisher between the new function ensemble, obtained by the modification, and
the original one can be used to efficiently distinguish between the output of G’ and the uniform
distribution. Thus, the two function ensembles are computationally indistinguishable.

Actually, there is no need for the separate assumptions on the existence of G. Assume for
example that we are working with a single synthesizer S. We can define G(z10---240y10---0yy)
to be CONVs(X,Y), where X = {z1,...,24} and Y = {y1,...,y4} (we assume for simplicity that
8 divides n and take 27,y € {0,1}/8 for 1 < I < 4), and continue the modification as before.

In the general case we have to replace S with a randomly chosen S5; € SZ//i independently at



every level of the recursion. By similar arguments the new function ensemble is computationally
indistinguishable from the original one. The modification increases the parallel time complexity
and amount of work, for functions in the ensemble, by a constant factor. On the other hand, if
l7| < ligi it substantially reduces their key size.

Note that the length of the strings in @ determines the security of the functions. There is no
real reason for the strings to be n-bit long (where n is the length of the strings the functions are

applied on).

5 Security of the Construction

To prove that the pseudo-random functions we construct are indeed secure we make use of an hybrid
argument, and show that any distinguisher for the pseudo-random functions can be transformed
into a distinguisher for the pseudo-random synthesizers.

Theorem 5.1 Let S, Is and F be as in Construction 4.1 , then F is an efficiently computable
pseudo-random funclion ensemble. In particular a distinguisher between F and the uniform en-
semble yields a distinguisher between the oulput of S and the uniform distribution. The success
probability of the new distinguisher only decreases by a factor of I-lolTn-l.

Proof. As commented in section 4.1 it is obvious from the construction that F is an efficiently
computable function ensemble. Assume that F' is not pseudo-random. By the definition of pseudo-
random function ensembles, there exists a polynomial-time oracle machine, M, and a polynomial
p() so that for infinitely many n’s

Fnrany Rurqny
|Prob[M"™(1") = 1] — Prob[M"(1") = 1]| > ()
where R = {R,}nen is the uniform function ensemble. Let ¢() be a polynomial that bounds the
running time of M (1), and define m(n) = t(n)n.

For every n, and every 0 < j < [log n] we define the hybrid distribution H!. Loosely speaking,
the computation of functions in H/ is a generalization of the tree-labeling procedure of the compu-
tation of functions in F,,. Here, we start by labeling the nodes at depth [log n|—j.If d is the number
of leaves in the subtree rooted at such a node, then we associate with this node a d-bit substring
of the input. We also choose an indexed set of 2¢ random strings of length n and associate it with
this node . The d-bit substring of the input “chooses” a label for its corresponding node out of
the set of 27 strings associated with that node in the natural way. The label of an internal node of
smaller depth is recursively determined from the labels of its children by applying the synthesizer
to those values. And, as before, the value of the function is simply the label of the root.

To simplify our notations we shall only formalize this description of the hybrid distribution HJ
for n = 2.

Definition 5.1 For every sequence of possible outputs of Is(1"), k= {k1, kg, ..., ki_;}, and for
every 2% 2177 long sequence of n-bit long strings, @ = {a® : 1 < r < 277, 5 € {0,1}*}, we define
the function [,z : {0,1}" — {0,1}". On input © = z1 0 23...0 zp—;, where z; € {0,1}* for

1< i< 277, the function outputs the single value in

©y Wol—j

SQUEEZEs, (SQUEEZEs,(...SQUEEZEs, _({a}',a5,...,a;5'})...))



HJ is the random variable that assumes as values the funclions fﬁ defined above, where the
k;’s are independently distributed according to the distribution induced by Is and @ is independently

92 91—

distributed according to U

It is immediate from the definition (for n = 2°) and obvious from the description (for other n’s)
that H? and F, are identically distributed and that Hilogn-l and R, are identically distributed.
Thus, by the assumption, we can distinguish between the extreme hybrid distributions. Therefore,
applying the standard hybrid argument we can distinguish between neighboring hybrid distribu-
tions. We show how to use this to construct a distinguisher D for the pseudo-random synthesizers.

Definition 5.2 We define the probabilistic polynomial-time algorithm D. For every n the input of
D is an m(n)xm(n) matriz B = (b; ;) whose entries are n-bit long strings. On this input D first
uniformly choose 0 < J < [logn]| and then generates k= {ky, ks, .. <y k[logn)—7-1} by independent
executions of Is on input 1™. D invokes M on input 1™ and answers its queries as a function
fa’,ié € H*' would, where the strings of @ = {as:1 < r < Mlogn]—J=1 s c £, 1}2”1} take values,
upon necessity, from the entries of B. D outpuls whatever M outputs. Again, for simplicily, we
only define the way D chooses the entries of B for n = 2-.

On the query @ = x1 025...0xq_s, where z; € {0,1}2” for 1 < i < 2!=7, D defines ;oo
to be some entry by, of B for every 1 <1 < 21771 D manage this by associating a row u with
the couple (i,x2;_1) and a column v with the couple (i,x2;) and recording these associations. If a
row was previously associated with (i,x9;_1) we take this row again, otherwise, we associate with
(i,29i—1) the next free row in B, and similarly for columns. Finally D answer the query with the
single value in

SQUEEZEs, (...SQUEEZEs,  ({a{*™,..., a2 7"} )

Since M makes no more than t(n) queries and for each query we need no more than n new
entries we get that the size of B is sufficient for this process (because m(n) = t(n)n).

It is obvious that D is a polynomial-time algorithm, we now show that D is also a distinguisher
for the pseudo-random synthesizers.

Claim 5.1 If B = U,™"™(") then Prob[D(B) = 1|J = j] = Prob[MP2" (17) = 1].

Proof. The entries of B are independent and uniformly distributed. Thus, no matter which queries
M submits, in which order they are submitted and how D associates the entries of B with the
strings in @ (as long as each entry is associated with only one string), we get that these strings
are independent and uniformly distributed as well. Thus, the distribution of D(B) would not have
changed if instead of taking values from B, D would generate all the values in @ uniformly at
random and therefore the claim follows. O

Claim 5.2 If B = CONVsp (Z,Y) for Z = {z1...2p3(n)} and Y = {y1...Yp(n)} independently
drawn from U,"™ ") then Prob|D(B) = 1|J = j] = Prob[M"3(1") = 1].

Proof. Consider the vector o’ = {a’{ : 1 < i < 277, s € {0,1}¥}, and assume that whenever D
associates a row u with the couple (¢, z2;_1) it also gives the string a 22’ ! the value z, and whenever
D associates a column v with the couple (i, z3;) it also gives the string a’3?* the value y,.



Let k£ be the random key in 53, that was used to generate B. By the definition of algorithm
D and of matrix B, for every query x = 21 0 &3...0 &y, where 2; € {0,1}% for 1 <i <277, D
answer with the single value in

SQUEEZESkl( . SQUEEZESkl i ({aldomz’ . a;‘lQi;j_Ilole—J }) B ) _

SQUEEZEs, (...SQUEEZEs, __ (SQUEEZEs,({d']",d'y,...,d' 7' })).. )

By similar arguments to the proof of the previous claim, the distribution of D(B) would not have
changed if instead of taking values from Z and Y, D Would have mdependently draw all the values
in @' from the uniform distribution and then answer queries using a’ k and k according to the last
formula. This fact, again, implies the claim. O

We can now conclude, by the standard hybrid argument that for infinitely many n’s

|Prob[D(CONVsn (X,Y)) = 1] — Prob[ D(U,™ ")) = 1]|

| Prob[ MF= (1) = 1] — Prob[ME»(17) = 1] 1
= >
[log n] p(n)[logn]
where X and Y are independently drawn from U,
This contradicts the assumption that 5 is a collection of pseudo-random synthesizers, therefore
it completes the proof of Theorem 5.1 that F is indeed an efficiently computable pseudo-random
function ensemble. O

Corollary 5.2 For every collection of pseudo-random synthesizers S such that ils functions are
in NC* there exists an efficiently computable pseudo-random funclion ensemble F such that ils
functions are in NC*t'. Furthermore, the parallel time complezily of the key-generating algorithms
of § and F is the same.

Proof. By Lemma 3.1 we can construct from S5 a new collection of pseudo-random synthesizers

= {5 }nenin NC*, by Theorem 5.1 we can construct from §’ an efficiently computable pseudo-
random function ensemble F in NC*t!. Both constructions preserve the parallel time complexity
of the key-generating algorithms. O

Keeping in mind the last corollary, we shift our focus to the parallel construction of pseudo-
random synthesizers.

6 Construction of Pseudo-Random Synthesizers Based on Cryp-
tographic Primitives

In the next two sections we show constructions of pseudo-random synthesizers. In this section we
provide constructions of pseudo-random synthesizers from other cryptographic primitives: what
we call weak pseudo-random functions and trapdoor permutations. In the next section we show
constructions based on concrete intractability assumptions. We do not know of efficient parallel
constructions of pseudo-random synthesizers from pseudo-random generators, or directly from one-
way functions.

The reason that pseudo-random functions are hard to construct is that they must endure very
powerful attacks. Their adversary (the distinguisher) may query their values at every point, and
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may adapt his queries based on the answers it gets. We can weaken the strength of the opponent
by letting him access only to a polynomial sample of random points and the value of the function
at these points. We show that even the functions obtained under this condition simply defines
pseudo-random synthesizers.

For every function f and every sequence X = {zy ...z} of values in the domain of f we denote

by < f7X > the sequence {:Ehf(‘rl)wr%f(‘r?) s --Tk,f(-rk)}-

Definition 6.1 (collection of weak pseudo-random functions) An efficiently computable func-
tion ensemble F' = {F, },en, is a collection of weak pseudo-random functions if for every proba-
bilistic polynomial-time algorithm, D, every two polynomials p(-) and m(), and all sufficiently large
n’s
|Prob[D(< F,, U, >) = 1] — Prob[D(U,,>"") = 1] < L
p(n)

Let F be a collection of weak pseudo-random functions, and let I be the polynomial-time key-
generating algorithm for F'. Assume that, on input 17, I only uses n random bits (actually, there
is no need for this assumption and, furthermore, since I only needs polynomial many random bits
they can be obtained by a pseudo-random generator). For every r € {0,1}" we denote by I(r) the
value of I(1™) for r as the random bits. We show how to construct a pseudo-random synthesizer
from F.

Lemma 6.1 For F and I as before if we define S : {0,1}*x{0,1}* — {0,1}* such that S(z,y) =
T1yy(@) for every x,y € {0,1}", then S is a pseudo-random synthesizer.

Proof. Assume, in contradiction to the lemma, that S is not a pseudo-random synthesizer. Since it
is obvious that 5 is efficiently computable, there exists a probabilistic polynomial-time algorithm,
D, and polynomials p() and m(), such that for infinitely many n’s

|Prob[D(CONVs(X,Y)) = 1] — Prob[ DUy = 1] > ﬁ
where X and Y are independently drawn from U,

For every n and every 0 < i < m(n) we define the hybrid distribution H!. The values H}
assumes are m(n)xm(n) matrices whose first ¢ columns are distributed according to CONVs(X,Y)
where X is drawn from U/,,”(") and Y is independently drawn from U,’. The last m(n)— ¢ columns
are distributed according to U;n(n)x(m(n)_i).

We now construct a distinguisher D’ for F. For input {z1,21,%2,29,...,%p,2,}, D' defines
X =A{z1,...,2,}and Z = {z,..., z,} and uniformly chooses 0 < J < m(n). D’ then generates an
m(n)xm(n) matrix B whose first J —1 columns are distributed according to CONVs(X,Y), where
Y is drawn out of U,”~!. The J’s column is Z* and the last m(n) — J columns are distributed
according to U Xm0 =1) D then outputs D(B).

It is easy to verify that D’ is indeed polynomial time algorithm, that

Prob|D'(< F,, U, >) =1|J = j] = Prob[D(H,) = 1]
and that
Prob[D'(U,2"(")) = 1]J = j] = Prob|D(H;_1) = 1]
Thus, by the standard hybrid argument, for infinitely many n’s

1

Prob[D'(< F,, U, ™ >) = 1] = Prob[D'(U, "™y =1]| > ———
| Prob[D'( )=1] rob[ D'( ) =1]| p(n)m(n)

11



in contradiction to the assumption that F'is a collection of weak pseudo-random functions. There-
fore, we can conclude the lemma. O

Notice that the pseudo-random synthesizer we construct in the previous lemma is even more
powerful then we need: For random X and Y the matrix CONVg(X,Y) cannot be efficiently
distinguished from a random matrix even if we allow the distinguisher access to X.

Defining weak pseudo-random functions as length-preserving is an arbitrary choice. We might
as well consider weak pseudo-random functions of different output length. The construction of the
pseudo-random synthesizer does not change.

From the previous lemma, if there exist weak pseudo-random functions that can be sampled
and evaluated in NC' then we also have a pseudo-random synthesizer in NC and therefore by
Construction 4.1 we also have pseudo-random functions that can be sampled and evaluated in NC'.

As a direct result from the previous lemma we can get a construction of a pseudo-random
synthesizer, out of a collection of trapdoor permutations, via a collection of weak pseudo-random
functions. The pseudo-random synthesizer constructed is in NC'if the trapdoor permutations can
be sampled and inverted in NC'. (The additional requirement of an efficient hard-core predicate is
already guaranteed by [20]). Since we have no concrete example of this sort, we give only a brief
and informal description of the construction.

Let {f; : D; — D;} be a collection of trapdoor one way permutations and let b; be an hard-core
predicate for f;. Assume that the collection is one-way when the input of f; is uniformly distributed
over D;. For every function f; (with security parameter n) we define ¢; : {0,1}" — {0,1}. For
every x € {0,1}" let D(7,z) denotes the element in D; sampled with & as the random bits, then
gi(z) is defined to be b;(f7(D(i,z))). We claim (without proof) that the collection {g;} (with the
same distribution over the keys as this of the f;’s) is a collection of weak pseudo-random functions.

7 Construction of Pseudo-Random Synthesizers Based on Con-
crete Intractability Assumptions

In this section we present two NC! constructions of pseudo-random synthesizers based on concrete,
frequently-used, intractability assumptions: the Diffie-Hellman and the RSA assumptions. We first
address issues that are common to both the constructions.

The functions in both the collections of pseudo-random synthesizers we construct can be eval-
uated in NC?, the key generating algorithms, though, are sequential. We make use of the fact
that some operations, like exponentiation, can be done efficiently in parallel, given an additional
preprocessed data. In this idea we follow the work of Kearns and Valiant, [29]; in their context,
the additional data is “forced” into the input, whereas in our context it is added to the key.

The efficient parallel evaluation of the synthesizers is based on known results in parallel compu-
tation of arithmetic operations (see Karp and Ramachandran [28] for a review). In particular we
use the result of Beame, Cook and Hoover, [5], that enables modular multiplication of n numbers
of length n bits (among other operations) by log-depth circuits. The construction of these circuits
can be easily done in the sequential preprocessing stage of the sampling.

The pseudo-random synthesizers we construct are Boolean functions. In section 3 we showed two
methods to expand the output size of pseudo-random synthesizers. The pseudo-random generator
of Blum, Blum and Shub [8] and the one by Hastad, Schrift and Shamir [22] are natural candidates
for the pseudo-random generator needed by the method based on Theorem 3.2. Both generators can
be made to work efficiently in parallel (after a sequential preprocessing stage). And the security of
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both of them is based on a principal number-theoretical intractability assumption, the intractability
of factoring integers (Blum integers in [22]).

This seems to be a good place to make the comparison between the two methods of expansion,
discussed above, more concrete. Assume that we are using Boolean synthesizers (instead of syn-
thesizers with linear output size) for Construction 4.1 of pseudo-random functions. The method of
Lemma 3.1 forces us to replace the n-bit long strings with n%-bit long strings (in order to preserve
the security). We also need O(n?) applications of the synthesizers instead of O(n). The parallel
time complexity is unchanged. Using the method based on Theorem 3.2 we can preserve the length
of the strings we use, and we need O(n?) applications of the synthesizers and of the generator. The
increase in the parallel time complexity is logarithmic (for the generators and synthesizers discussed
in this section). This illustrates the advantage of a direct construction of parallel synthesizers with
linear output size (rather than constructions that go through any one of the methods).

We use, in our constructions, the result of Goldreich and Levin, [20]. They showed an hard-core
predicate for “any” one-way function.

Theorem 7.1 ([20]) Let f be any one-way function. For every probabilistic polynomial-time algo-
rithm, A, for every polynomial, p() and all sufficiently large n’s Prob[A(f(z),r)=r-z] < 1 + p(l—n),
where x and r are independently drawn out of U, and r-z denotes the inner product (mod2) of r
and x.

We use their result in a slightly different context, loosely speaking, if it is hard to compute
g(x), given f(a), then it is also hard to guess g(x)-r. We also use the next-bit prediction tests of
Blum and Micali [10], the equivalence between pseudo-random ensembles and ensembles that pass
all polynomial time next-bit tests was shown by Yao [46].

7.1 The Diffie-Hellman Assumption

In this subsection we define a collection of pseudo-random synthesizers based on the Diffie-Hellman
assumption. For concreteness, we state the Diffie-Hellman assumption in terms of the group Z%,
but, our construction works, just as well, for other groups.

Assumption 7.1 (Diffie-Hellman [1}]) For every probabilistic polynomial-time algorithm, A, for
every polynomial, ¢() and all sufficiently large n’s

Prob[A(P, g, g% mod P, g® mod P) = g** mod P] < %
q(n

where P is an n-bit prime, g a uniformly selected generator of Zp and a and b chosen according to

Un,.

We assumed nothing on the distribution of P, and, in a sense, we might consider P to be
fixed for every output size. Note that the Diffie-Hellman assumption requires that The discrete
log mod P be hard. The two problems are not known to be equivalent, but Maurer [35] showed an
equivalence in a non-uniform model.

Definition 7.1 For every n bit prime P, every generator, g, of Z} and every r € {0,1}" define

Spgr(z,y) def (¢"¢ mod P)-r for all z,y € {0,1}". We define 53, to be the random variable

that assume as values the functions Sp,,, where r is uniformly distributed over {0,1}" and g
a uniformly selected generator of Zp. The distribution of P might be any samplable distribution
we consider hard for the Diffie-Hellman assumption (for instance the uniform distribution). The
function ensemble Spy is defined to be {53 }nen-
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Lemma 7.2 Given that the Diffie-Hellman assumption holds, Spy is a collection of pseudo-
random synthesizers.

Proof. Assume that Spy = {51 }.en is not a collection of pseudo-random synthesizers. Since
Spm is efficiently computable, there exists a polynomial m() such that the ensemble {E,} =
C’ONVS%TL(X,Y) , where X and Y are independently drawn from Unm(”)7 is not pseudo-random.
Thus, there exists an efficient next-bit prediction test 7" and a polynomial ¢() such that, for infinitely
many n’s, T succeeds to predict the next bit of a prefix (of uniformly chosen length) of {E,} with

probability greater then % + q(l—n)

Given P, g, ¢ mod P and ¢” mod P as in the Diffie-Hellman assumption and a uniformly
chosen 7 € {0,1}" we show below how to efficiently guess (¢ mod P)-r with probability greater
then % + q(l—n) (for infinitely many n’s). By Theorem 7.1, g%* mod P can be efficiently computed
with non-negligible success probability in contradiction to the Diffie-Hellman assumption.

The guessing algorithm is extremely simple. Uniformly choose 1 < 4,5 < m(n). Define X =
Tiyeeos Tin(n) a0d Y = Y1, ..., Yp(n) by setting z; = a,y; = b (without actually knowing this values)
and independently drawing all other values from U,,. Now feed T' with the bits of CON Vs, (X,Y)
until the entry (¢,7) is reached (the algorithm can easily compute all Spg,(xs,y:) other than
Spgr(2i,y;)). Since the distribution of CONVs,  (X,Y), where P, g, r, X and Y are distributed
as defined above, is exactly {FE,} we get that T predicts Sp,.(z;,y;) with probability greater
then % + q(l—n) (for infinitely many n’s). As mentioned above, this contradicts the Diffie-Hellman
assumption, thus, it proves the lemma. O

Corollary 7.3 Given that the Diffie-Hellman assumplion holds, there exist pseudo-random func-
tions in NC?.

Proof. By the last lemma, given that the Diffie-Hellman assumption holds, Spg is a collection of
pseudo-random synthesizers. If the key-generating algorithm precomputes g2' mod P for 1 <i < n
then the functions of Spy can be evaluated in NC'. By Corollary 5.2, there exist pseudo-random
functions in NC? (the key generating algorithms in both cases are sequential). Note that if we
take a fixed P for every input size then Spp is actually a synthesizer, rather then a collection of
synthesizers. At that case the key-generating algorithm of the pseudo-random functions obtained
is in “non-uniform” NC. O

7.2 The RSA Assumption

In this subsection we assume that the, extremely popular, RSA collection of functions, of Rivest,
Shamir and Adleman [43], is indeed one-way.

Assumption 7.2 (RSA [43]) For every probabilistic polynomial-time algorithm, A, for every poly-
nomial, ¢() and all sufficiently large n’s Prob[A(N,e,m® mod N) = m] < q(l—n), where N = PQ is
an n-bit integer, P and Q) are two uniformly selected primes such that |P| = |Q|, e an n-bit prime

(thus, e is larger than P and Q) and m uniformly chosen from Z%.

We showed in section 6 a general construction of pseudo-random synthesizers out of trapdoor
one-way permutations. Nevertheless, in the case of the RSA-functions we have to adjust this
construction in order to get efficient parallel synthesizers. To enable preprocessing (and, thus,
achieve the desired efficiency) we employ in our construction the subset product function. Let G
be a finite group, for every n-tuple ¥ = {y1,...,yn} of elements in G and n-bit string = z1...2,
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define S Pg 7(x) to be the product in G of the elements y; such that z; = 1. We use the following
lemma that was shown by Impagliazzo and Naor in [26], and is based on the leftover hash lemma
of [25, 27].

Lemma 7.4 ([26]) Let G be a finite group, n > clog|G| and ¢ > 1. Then, for all but an exponen-
tially small fraction of the choices of §j € (G)", the induced distribution SPg z(U,) is stalistically
indistinguishable within an exponentially small amount from the uniform distribution over G.

We can now define the pseudo-random synthesizers.

Definition 7.2 Let N be an n-bit integer N = PQ such that P and Q are two primes, |P| =

|Q|. Then for every § = {g1,...,92n} € (Z¥)*" and every r € {0,1}" we define Sy z.(z,y) def

((92)Y mod N)-r, where z,y € {0,1}*" and g, = SPyx g(x). We define Sk to be the random
variable with value Sy z,, where N, § and v are uniformly distribuled in the set of values they may
assume. The function ensemble Spsa is defined to be {51, }nen-

Lemma 7.5 Given that the RSA assumption holds, Srsa is a collection of pseudo-random syn-
thesizers.

Proof. Assume that Spgs = {Sin}TLEN is not a collection of pseudo-random synthesizers. Since
Srsa is efficiently computable, there exists a polynomial m() such that the ensemble {E,} =
C’ONVSLL(X,Y) , where X and Y are independently drawn from Ugnm(”), is not pseudo-random.
Thus, there exists an efficient next-bit prediction test 7" and a polynomial ¢() such that, for infinitely
many n’s, T succeeds to predict the next bit of a prefix (of uniformly chosen length) of {E, } with
probability greater then % + q(l—n)

Let N, m® mod N and e be as in the RSA assumption. Following Shamir [44] we notice that

given any z such that ged(e,z) = 1 and given m® mod N we can compute m. The reason is
that if ged(e,z) = 1 we can compute a,b € Z such that ae + bz = 1, thus, we can compute
m = (m°)*(m?)’ mod N. We show below how to guess (m* mod N)-r, for r drawn from U,

and some z, with probability % + %, thus, by Theorem 7.1 we can efficiently compute m with
non-negligible success probability in contradiction to the RSA-assumption.

The guessing algorithm uniformly chooses 1 < ¢,5 < m(n) and r € {0,1}". It defines the
m(n)xm(n) matrix B where bs; = (((ms)?)% mod N)-r and the choices of the m’s and d,’s are
as follows: For s # ¢, ms is uniformly chosen from Z%, m; is defined to be m. For ¢ # j, d; is
drawn from Us,, d; is defined to be Z mod ¢(NN), where 2 is uniformly distributed over the set of
2n-bit strings that are relatively primes to e. Notice, that although the algorithm do not know m;
and d; it can still computes all values of B apart to b; ;. We shall show that the distribution of B
is statistically indistinguishable within an exponentially small amount from the distribution of F,,.
Thus, if we feed T' with the bits of B until the entry (¢,7) it predicts b; ; = (m” mod N)-r with
probability greater than, say, % + ﬁ

In order to complete the proof alf we have to show is that B is indeed statistically indistin-
guishable from E,. Since e is relatively prime to ¢(N) (because it is a large prime) and for every
s, mg is uniformly distributed over Z%;, we get that (my)® is also uniformly distributed over Z}.
By Lemma 7.4, we have that the distribution of (m,)® is statistically close to the distribution of
ge = SPyx z(z) for uniformly chosen z € {0,1}*" and G = {g1,...,92n} € (Z§)*". Notice also
that for z that is chosen from Uy, the distribution of Z mod ¢(N) and Uz, mod ¢(N) is statis-
tically close. Since e is a large prime, even after restricting the z’s to be relatively primes to e,
the distributions are close. Given these two observations it is obvious that the distribution of B
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is statistically indistinguishable within an exponentially small amount from the distribution of £,
and the contradiction to the RSA-assumption follows. O

Corollary 7.6 Given that the RSA assumption holds, there exist pseudo-random functions in NC2.

Proof. By the last lemma, given that the RSA assumption holds, Srsy4 is a collection of pseudo-
random synthesizers. If the key-generating algorithm precomputes (g;)* mod N for 1 < 4,5 < 2n
then the functions of Sgs4 can be evaluated in NC'. By Corollary 5.2, there exist pseudo-random
functions in NC2. O

An alternative construction based on RSA. We have shown that breaking Srs4 is com-
putationally equivalent to taking the eth root mod N, where e is a large prime and N the product
of two large primes. We now show an alternative construction such that breaking it is equivalent
to taking the eth root for any e (in Z’;(N)). Nevertheless, this construction somewhat limits the set
of “good” Ns.

We first notice that if o(/N) has no “small” odd factors (say, smaller than n?) then 2n random
odd-values have non-negligible chance to be all in Z? . Thus, by Lemma 7.4 we may assume that
the algorithm, trying to extract roots, can “almost uniformly” sample Z;(N)' Sieve theory shows
that the set of such Ns is not too sparse. For example, denote by B(z) the number of primes p
smaller than @ such that (p — 1)/2 is the product of two primes each larger than pt/4
a positive constant ¢ such that B(z) > lozﬂ;z. See [41] for several results of this kind (which are
more than sufficient for our purpose). As a result we get that (a) If the RSA-assumption holds it
also holds when the set of Ns is restricted as specified above. (b) The restricted set of N’s can be
efficiently sampled (using Bach’s algorithm [4]).

For this construction we use the least-significant bit (LSB) instead of GL hard-bit. Alexi et. al.
[1] showed that LSB is an hard-bit for RSA.

. There exists

Definition 7.3 Let N be an n-bit integer N = PQ such that P and Q are two primes, |P| = |Q|

2. For every § = {g1,...,92.} € (Z%)*" and every

d={dy,...,dy,} € (ZZ(N))Q” we define Sy - (@, y) def LSB((g:)% mod N), where x,y € {0,1}*",

9o = SPpx g(x) and dy = SP,.  {y). We define Sk to be the random variable with value S
P(NY

and o(N) has no odd factors smaller than n

N.g.d
where N, § and d are uniformly distributed in the sel of values they may assume. The function
ensemble Spsar is defined to be {51, }nen-

Lemma 7.7 Given that the RSA assumption holds, Srsa' is a collection of pseudo-random syn-
thesizers.

Proof. Assume that Sgpsar = {S1,}nen is not a collection of pseudo-random synthesizers. Since
Srsar is efficiently computable there exists a polynomial m() such that the ensemble {E,} =
C’ON‘/S;”(X,Y) , where X and Y are independently drawn from U3,™(", is not pseudo-random.
Thus, there exists an efficient next-bit prediction test 7" and a polynomial ¢() such that, for infinitely
many n’s, T' succeeds to predict the next bit of a prefix (of uniformly chosen length) of {F, } with
probability greater then % + q(%

Let N be a random composite as in the definition of Sgrg4/, € a random value in Z; ~y and m
random value in Z%. We define an algorithm that takes as input N, e and m® mod N and tries to
guess LSB(m).

The guessing algorithm uniformly chooses 1 < 7, j < m(n) It defines the m(n)xm(n) matrix B
where by ; = LS B(((m,)®)% mod N) and the choices of the m,’s and d;’s are as follows: For s # i,
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m; is uniformly chosen from Z3%;, m; is defined to be m. For t # j, d; is “almost uniformly” sampled
from ZZ(N)’ d; is defined to be % mod ¢(N). The algorithm feeds 7" with the bits of B until the
entry (4,7) and outputs T’s prediction of b; ; = LSB(m). The non-negligible success probability of
the algorithm and the contradiction to the RSA-assumption follows by similar arguments to those
in the proof of Lemma 7.5.

If e is any value in Z7, (not necessarily random) we can still guess LSB(m) - we just give the

guessing algorithm N, e X d and m**¢ mod N where d is a random value in Z:;(N)' a

Since Alexi et. al. [1] showed that the logn least-significant bits are simultaneously hard for
RSA we can adjust the functions in Sgrgy4s to output logn bits. If we make a stronger assumption
(not proven to be equivalent to the RSA-assumption), that Q(n) bits are simultaneously hard for
RSA, we get a direct construction of pseudo-random synthesizers with linear output size.

Note that all the pseudo-random synthesizers constructed in this section may allow their key
to be public. This means that we can use a single synthesizer at all levels of the computations of
the pseudo-random functions in Construction 4.1.

8 Pseudo-Random Synthesizers and Hard Learning Problems

In this section we discuss several aspects of the connection between pseudo-random synthesizers
and hard-to-learn functions.

Blum, Furst, Kearns and Lipton [7], show how to construct several cryptographic primitives
out of hard-to-learn functions, in a way that preserves the degree of parallelism of the functions.
A major motivation for presenting such constructions is the simplicity of function classes that
are believed to be hard for efficient learning. We show that, under the definitions of [7], pseudo-
random synthesizers can easily be constructed from distributions on functions that are hard to
learn. Thus, by the constructions showed in this paper we can add to the cryptographic primitives,
constructed in [7], constructions of pseudo-random functions and of pseudo-random generators with
large expansion ratio (without assuming, as in [7], that the functions are hard for learning when
membership queries are allowed).

There is a difference between standard learning-theory definitions and standard cryptographic
definitions. Loosely speaking, a collection of concepts is hard to learn if for every efficient algorithm
there exists a distribution over the concepts that is hard for this specific algorithm to learn. In
cryptographic settings the order of quantifiers is reversed: the hard distribution should be hard for
every efficient algorithm. In order for hard-learning problems to be useful in cryptographic settings
an average-case learning model is presented in [7].

Informally describing one of the definitions in [7], we can say that a distribution ensemble of
functions, F = {F, }en, is not weakly predictable on the average with respect to a distribution on
the inputs D, if no efficient algorithm can predict f(z) with probability % + m, given Z and a
polynomial sequence {< z;, f(z;) >}, where f €r F), and the inputs are independently distributed
according to D.

An immediate observation is that a distribution ensemble of functions, F’, is not weakly pre-
dictable on the average with respect to the uniform distribution if and only if it is a collection of
weak pseudo-random functions. Thus by Lemma 6.1 such a distributions defines a pseudo-random
synthesizer S: S(z,y) is simply f(2) where f is sampled from F using the bits of y. Using 5 we
can construct pseudo-random generators and pseudo-random functions. Moreover, by Lemma 3.1.
the pseudo-random generator we construct may have large expansion ratio (n'~¢ for every € > 0).
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The pseudo-random generator constructed in [7] under the same assumptions has expansion ratio
bounded by 1+ 1/n.

Efficient synthesizer from a concrete hard-to-learn problem: Counsider the following distri-
bution on functions with parameters k& and n. Select at random two disjoint sets A, B C {1,...,n}
each of size k. Given input 2 € {0,1}" compute the parity of the bits indexed by A and the ma-
jority of the bits indexed by B; Output the exclusive-or of these values. Blum et. al. [7], estimate
that these functions, for £ = logn, cannot be weakly predictable without using “profoundly” new
ideas. If this distribution of functions is not weakly predictable on the average, with respect to
the uniform distribution, then it defines an extremely efficient synthesizer. Therefore, using the
constructions of this paper, we get efficient parallel pseudo-random functions.

8.1 Pseudo-Random Functions in NC!

Linial, Mansour and Nisan [32] show that there are no pseudo-random functions in AC® with
security better than n?°¥*9(")  Kharitonov [30] showed that after preprocessing, a polynomial size
pseudo-random bit sequence (based on [8]) can be produced in NC?! (the length of the sequence
can stay undetermined at the preprocessing stage). Regarding these results, one may ask, are
there pseudo-random functions in NC!. We show that, under strong enough assumptions, our
constructions yield a positive answer.

Note that, unlike the rest of the paper, the reduction in this section, from pseudo-random
functions in NC? to pseudo-random functions in NC?' substantially reduces the security of the
functions.

Let FF = {F, },en be a pseudo-random function ensemble such that its functions are computable
in NC?. Assume also that no distinguisher with running time n°(°87) can distinguish between F
and the uniform function ensemble with success probability n=%0°87) we construct the ensemble
G = {G,}en. Using Levin’s idea [31] (mentioned in the Introduction) the functions in G, hash
(with a secret hash function) n-bit long strings to 9Vlogn_pji long strings and apply the functions
in FQW. The functions of G can be computed in NC?, furthermore, as long as no two strings are
hashed to the same value, the success probability of any distinguisher algorithm for distinguishing
G, and the uniform distribution, is not greater than for distinguishing FQW and the uniform

9(2\/10g n

collisions for the hash function, we can conclude from the assumptions on F that no such algorithm

can distinguish between GG and the uniform functions ensemble with success probability m.

distribution. Since any polynomial-time distinguisher algorithm has probability 2~ ) to cause

Thus, G is a pseudo-random function ensemble in NC?,

Notice that all the constructions in the paper (apart from the last one) are “security-preserving”.
In particular if we define the next property for cryptographic primitives: “no algorithm with running
time n?0°87) can break this primitive with success probability n=%0°87)” then our constructions
preserve this property. Thus, if for example, this property holds for the Diffie-Hellman assumption,
we get a construction of pseudo-random functions in NC?.

Note that, if we make stronger assumptions on the security of F, we can conclude stronger
estimates for the security of G. The only upper bound on the security of GG that holds regardless
of the security of F is 20(2\/10?). For example, if we assume that F has security 2" for some ¢ > 0
we get that GG has security of 20(25\/10?).
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9 Further Research

In Sections 6-8 we discuss the existence of pseudo-random synthesizers in NC'. Additional work
should be done in this area. The most obvious question is what are the general assumptions (in
cryptography or in other fields) that imply the existence of pseudo-random synthesizers in NC'. In
particular, whether there exist parallel constructions of pseudo-random synthesizers out of pseudo-
random generators or directly from one-way functions.

It is also of interest to find parallel constructions of pseudo-random synthesizers based on
other concrete intractability assumptions. A task of practical importance is to derive more effi-
cient concrete constructions of pseudo-random synthesizers in order to get efficient constructions of
pseudo-random functions. As discussed in Section 7 direct constructions of synthesizers with linear
output size will make an important contribution to the efficiency of the pseudo-random functions
we construct.

An extensive research field deals with pseudo-random generators that “fool” algorithms per-
forming space-bounded computations. This kind of generators can be constructed without any
(unproven) assumptions; see [3, 36, 37, 39] for definitions, constructions and applications. It is
possible that the concept of pseudo-random synthesizers and the idea of our construction can be
applied to the “world” of space-bounded computations. As a motivation remark, note that the
construction in [36] bares some resemblance to the GGM construction.

Let IP(z,y) be the inner product of z and y (mod2) and let X and Y be random m-long
sequences of n-bit strings. For some constant 0 < a < 1 and s = an it can be shown that
CONVip(X,Y) is a pseudo-random generator for § PAC E(s) with parameter € = 2=4*)m? (when
CONVip(X,Y) is given row by row). So, in some sense we can think of /P as pseudo-random
synthesizer for space bounded computation. The only fact we use is that approximating IP is
“hard” in the communication complexity model (see [13, 45]).

One might also try to apply the concept of pseudo-random synthesizers for other classes of
algorithms. For example [2, 38] construct pseudo-random generators for polynomial-size constant-
depth circuits.

Our primary motivation for introducing pseudo-random synthesizers is the parallel construction
of pseudo-random functions. The special characteristics of pseudo-random synthesizers lead us
to believe that other desired applications may exist. For instance, pseudo-random synthesizers
easily define a pseudo-random generator with large output size and the ability to directly compute
subsequences of the output. This suggests that pseudo-random synthesizers might be useful for
software implementations of pseudo-random generators (or functions). Another possible application
of our construction of pseudo-random functions based on synthesizers is to convert encryption
methods that are not immune to chosen plaintext attacks into ones that are immune.
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