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Abstract

We examine the power of Boolean functions with low L; norms in
several settings. In large part of the recent literature, the degree of
a polynomial which represents a Boolean function in some way was
chosen to be the measure of the complexity of the Boolean function
(see, e.g. [1], [3], [5], [36], [27], [34], [26], [16]). However, some func-
tions with low communicational complexity (AND, OR, PARITY, ID)
have high degree, but small I.; norms. So, in conjunction with com-
munication complexity, instead of the degree, the ; norm can be an
important measure of hardness. We conjecture that the randomized
communication complexity of any Boolean function is bounded by the
polylogarithm of its I.; norm.

We can prove only a weaker statement: we present a two-party,
randomized, common-coin communication protocol for computing func-
tions with O(L}§) bits of communication, with error-probability of
exp(—cd), (even with large degree or exponential number of terms).
Then we present several applications of this theorem for circuit lower
bounds (both for bounded- and unbounded depth), and a decision-tree
lower bound.
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1 INTRODUCTION

Methods in communication complexity have become standard tools in circuit
complexity theory ([19], [23], [22], [26], [29], [12], [15], [10]). These methods
are also used with success for giving lower bounds for the depth of decision
trees with linear or low—degree test functions [11], [26], [37].

Another important tool in examining Boolean function complexity is rep-
resenting the Boolean functions by polynomials above some field or ring,
which facilitates using algebraic or analytical methods (see, e.g. [1], [3], [4],
6], 18], 7, [24], [27], [34)).

The previous two approaches are unified, i.e. communication complexity
tools are applied to the polynomial representations of Boolean functions in
[26], [10], [16], or in the full version of [12]. In the present work, communi-
cation complexity tools will be applied to polynomials, intimately related to
the Fourier expansions of Boolean functions.

1.1 Fourier Expansions

The Fourier—expansion of Boolean functions [24], [8], [20], [27] are defined as
follows:

Let us represent Boolean function f as a function f : {—1,1}" — {—1,1}
where —1 stands for “true”. The set of all real valued functions over {—1,1}"
forms a 2" dimensional vector-space over the reals. Let us define for a =

(o, 0,y ) € {0,1}7
X =] ="
i=1

The monomials X* for a € {0,1}" form an basis in this 2”-dimensional
vector space; consequently, any function A : {—1,1}" — R can be uniquely
expressed as
h(zy, 22, ., xy) = Z an X (1)
ag{0,1}n
The right-hand-side of (1) is called the Fourier—expansion of h, and numbers
a, for a € {0,1}" are called the spectral (or Fourier—) coefficients of h. The



I.; norm of A is:

Li(h) = > laal.

a€e{0,1}n

We are especially interested in the Fourier-expansions of Boolean functions.

1.1.1 Examples

e The PARITY function in this setting is xj25...2,, 1ts Ly norm is 1,
while its degree is n.

o It is easy to verify that

n 1 n
V= —gm (27 - T+ ) =
=1 2n- i=1
1 n—1
= T 9am1 <2 —l4+zit+a+ ...+, +riz2+ ...+ $1$2...$n)>;

and . ) §
A= g (27 = TT0 - 2) =
=1 =1

1
= St <2”_1 —(l—zy—2g— ... —xp+ 20+ .. + (—1)”:v1;v2...:vn)>.

Let us observe that both the n-fan-in OR and AND have exponentially
many non-zero Fourier—coefficients, their degree is n, while their I
norms are less than three.

e The inner product mod 2 function (IP) is defined as follows:
]P(CE],.IQ,...,.IQTL H .’Egz 1 /\.’,UQz

It is easy to verify that L;(IP) is the highest possible for any 2n variable
Boolean functions: 2”.

e The set-disjointness function (DISJ) is defined as

D[SJ(.Tl,.IQ, ...,xgn) =

(xoic1 A T2;).

=

=1

Its degree is 2n, and its I; norm is Q((3/2)").
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e The ID (identity) function is defined as follows:

n

[D(l‘l, L2,y IQn) = /\(—$2i—1$2z‘)7

=1

t.e. it 1s TRUE exactly when z9,_y = xy;, for all © = 1,2,...,n. Its
degree is 2n, 1t has exponentially many non-zero Fourier-coeflicients,
and its L; norm is the same as that of the n-fan-in AND: less than
three.

We can get further examples by negating an arbitrary set of the variables in
the previous ones. This operation will not affect the degree or the L; norm
in the previous examples, but we can get further non-symmetric examples
for functions with exponentially many terms and small L; norms from AND,

OR or ID.

1.2 L; Norm and Communication Complexity

Those functions in the previous example, which have constant L; norms —
AND, OR, PARITY — are known to have constant (two—party) communica-
tion complexity, while the IP function and the DISJ function with exponential
L; norms have linear (both deterministic and probabilistic) communication
complexity [9], [21], [31]. The deterministic communication complexity of
the ID function is n, but it has a random, common-coin protocol with O(1)
communication (cf. [26]). These observations motivate the following conjec-
ture:

Conjecture 1 There exists a constant ¢ > 0 such that the 2-party, proba-
bilistic, common-coin communication complexity of f: {—1,1}" — {—1,1}

(1o(Li()

15 al most

Conjecture 1 is analogous with the following conjecture of Lovdsz and Saks

[25]:



Conjecture 2 There exists a constant ¢ > 0 such that the 2-party (deter-
ministic) communication complexity of f: {0,1}" — {0,1} is at most

<log(rank Cf)>c,

where Cy is the communication-matriz of function f.

Nisan and Wigderson [28] have several nice results concerning Conjec-
ture 2, however, it remained open.

We have shown in [13] and [14] that the multi-party version of Conjec-
ture 1 is true for Boolean functions of at least linear I.; norm, even in the
deterministic setting:

Theorem 3 There exists a ¢ > 0 such that for any Boolean function f of n
variables, with Li(f) > n, and with k = clog Ly(f), the k-party communica-
tion complexity of [ is at most

O(log” Li(f)).

O

1.2.1 The Main Result
Let f:{-1,1}>" — {—1,1} be a Boolean function and let

fla) =2 a. X" (2)

a€cl

be its Fourier-expansion, where a, # 0 for @ € I. Suppose that the 2n
variables of f are partitioned between two players, Alice and Bob, and Alice
does not know the values of Bob’s variables, and Bob does not know the
values of Alice’s variables, and they want to compute the value of f. Suppose
that they also know the Fourier-expansion (2) of f. Since every monomial X~
can be evaluated by communicating 1 bit, |/| bits are enough for computing
f. When [I| > n then this is worse than the trivial n-bit communication
protocol. We have seen in Section 1.1.1, that simple functions, even with
small I.; norms, may have exponentially many non-zero Fourier-coefficients.

By a famous result of Bruck and Smolensky [8], there exists a polynomial
G for f, such that G can be written as a sum of O(nL?) monomials, each



with coefficient 1, and the sign of f and G coincides for all inputs. If Alice
and Bob try to evaluate G’s monomials one-by-one, the resulting protocol of
O(nLi(f)) communication is also worse than the trivial n-bit protocol, even
for functions of low L.y norm.

Here we prove an improvement of this trivial protocol. Our result is still
very far from the bound of Conjecture 1, but it has numerous applications
for circuit- and decision-tree lower bounds (cf. Sections 1.3, 1.4, 1.5).

Theorem 4 Let f : {—1,1}*" — {—1,1} be a Boolean function, and lel
§d = 6(n) > 0. Then there exists a two-parly, randomized, common-coin
communication protocol, which computes f with

communication, and for every fized input, it is correct with probabilily at least
1 —exp(—cd).

Setting § = log®n, the communication is O(L3(f)log®n), which is small
for any small [.; norm, and the inverse of the error is still super-polynomial.

The proof of Theorem 4 is based on a generalization of the result of
Bruck and Smolensky [8] (our Lemma 9), and on a probabilistic common-
coin communication protocol (Section 2).

Goldmann, Hastad and Razborov [10] also used the result of Bruck and
Smolensky [8] for gaining an O(L7'(f)) advantage (relative to simple guessing
the value of f) in a communication protocol; however, their method seems
to be inappropriate for simultaneous evaluation of more than one Boolean
functions, which is the main application of our Theorem 4.

1.3 Circuit—Applications: Unbounded Depth

While several famous lower bound proofs can be found in the literature for
small-depth circuits ([38], [18], [30], [34]), lower bounds for the size of general
unbounded depth circuits are rare and generally much weaker than the small-
depth results.

Smolensky [35] proved an (n/log n) lower bound for circuits of arbitrary
symmetric gates, computing an explicit function of n variables.



Razborov [31] gave a linear lower bound for circuits of linear threshold
gates with arbitrary weights, computing the inner product function.

Nisan [26] called a Boolean function f : {—1,1}" — {—1,1} a threshold
gate of degree d (or d-threshold gate), if f can be expressed as a sign of a real
polynomial of degree at most d. Then he has built a random (d + 1)—party
protocol — using the results of [19] — which evaluates the d-threshold gates
with a small number of communicated bits, and then, using the BNS—lower
bound [2], the size-lower bound of Q(cyn/log” n) follows for d = O(log n).

We — instead of symmetricity or degree conditions — require the L
norms of the gate functions to be small, so Boolean gates with non—zero
large—degree coeflicients are also allowed.

We say that a Boolean gate has I.; norm of L if it computes a function
of I,; norm of L. Let function IP be defined as in Section 1.1.

Then

Theorem 5 Let C, be a circuit of gates with Ly norm of al most n”, where
0<v<g. IfC, computes IP(x) for all x € {0,1}*", then

size(C,) = Q <n1_2y> )

log n

Let us note that the restriction on the I; norms of the gates are logarith-
mic, relative to the maximum 2", Similarly, the restrictions made by Nisan
[26] on the degree of the gate functions are also logarithmic, relative to the
maximum 7.

1.4 Circuit—Applications: Bounded Depth

In the recent literature one can find very interesting lower bounds and tech-
niques for bounded-depth circuits with hard-to-handle gates (e.g. MOD m
gates, MAJORITY gates, etc.). See for example [6], [8], [34], [10], [12], [15],
[4], or see [5] for a survey.

Hajnal, Maass, Pudldik, Szegedy and Turan [17] proved an exponential
lower bound for the size of depth-2 circuits with a MAJORITY gate at the
top, and linear threshold gates of small weights on the bottom.

Hastad and Goldmann [19] generalized it to circuits with a MAJORITY
gate at the top and d-threshold gates with small weights at the bottom,
(d = O(log n)), using the BNS-lower bound [2].
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Nisan [26], generalizing the results of [17] and [19], also gives an expo-
nential lower bound to the size of those depth-2 circuits, which compute
GIP, with a MAJORITY gate at the top, and several d-threshold gates of
arbitrary weights at the bottom, for d = O(logn).

We prove here an exponential lower bound in the case when on the bottom
the gates compute Boolean functions of arbitrary degree but with small T,

norm, while on the top there is a MAJORITY gate.

Theorem 6 Let C, be a depth-2 circuit with a MAJORITY gate on the top,
and gates with Ly norm of at most n”, with v < ]5, on the bottom. If C,
computes IP, then

size(Cp,) = exp(n®),

for some e = ¢(v) > 0.

1.5 Further Applications: Decision Trees

Most of the work done in the Boolean decision tree model deals with test
functions of the form “Is the ith input bit = 1?” (simple decision trees),
these trees appear in evasiveness problems. Less is known about decision
trees, where each test function may depend on all the variables.

Groger and Turdn [11] proved a linear lower bound for the depth of
decision trees with linear threshold test functions.

Vatan [37] proved a near-linear lower bound for decision trees with d—
threshold test functions (d = O(logn)) and small integer weights, computing
the GIP function.

Nisan [26] proved an (cqn/log® n) lower bound for the maximum depth
of decision trees with d-threshold functions of arbitrary weights and d =
O(log n), computing the GIP function.

We allow test functions of arbitrary degree, but their L; norms are re-

quired to be small.

Theorem 7 Let T, be a decision tree computing [P with test functions of 1,4
norm of at most n”, where 0 < v < % Then the mazimum depth of T, is

Q(nl—ZU).
logn




2 The Proof of the Main Result

Definition 8 [8] Let f: {—1,1}" — {—1,1} be a Boolean function, and let
fla) = > a.X* (3)

a€e{0,1}m
be its Fourier—expansion. Random monomials 7Z; are defined as follows:

.

Li(f)

For any 6§ > 0, let the Gs(x) random polynomial be the sum of Ns =
[%(Hﬁ(fﬂ independently chosen monomials 7;:

Z; = sgn(a,) X with probability

N
Gs(z) = E Z;:.
=1
The following lemma is a generalization of a lemma of Bruck and Smolensky
[8].

Lemma 9 Let f: {—1,1}" — {=1,1} be a Boolean function, and suppose
that Ly (f) > 2. Let 6 > 0. Then, for any fivred x € {—1,1}",

Pr(sgn(Gs(z)) # sgn(f(z))) < exp(—cd).

Proof. The expectation of Z;:

|| o_ J(z)
Rz = Y el gnunxe = 12
ae{0,1}n L1 (f) Li(f)
where we used that sgn(v)|v| = v.
The expectation of Gs(z):
Nsf(x
B(Gs(0) = T - )
The variance of Z;:
1
Var(Z;(z)) = B(Z}) = E*(Z;) =1 — m



The variance of Gs(z):

Since Lq(f(z)) < 2

or
- S D(Gs(x)) </ Ns, (5)
where D(Gs(z)) = /Var(Gs(x)), the standard deviation of Gs(z).

From (4), the sign of F(G5(z)) is the same as the sign of f(z). Consequently,

Pr (sgn(Gs(x)) # sen(f(x)) = Pr (sen(Gs(x)) # sen(B(Gs(2))) <

< Pr ([Gsto) - B(Gie)) 2 £ ).

From the Bernstein—inequality (see [33], or [32]), (or from the Central Limit
Theorem), with D = D(Gs(z)), we have:

Pr([Gie) = B(Gs(a)) 2 D) < 2ex ( - Q(ﬂf_)) (6

where p must satisfy: 0 < pu < %.
Because of (5), we can set g = V8. On the other hand,

pD < MOk

so, from (6):
Pr (sgn(Gs(#)) # sgn(f(x)) < e,

for some positive constant c.
O
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2.1  The proof of Theorem 4:

Suppose first, that L;(f) < 2. Then

Lo(fy=<f,f>=2"" > [fa)= Y al=1,

ze{-1,1}n a€{0,1}m

using the Parseval-identity. So we can write:

2> Z laq| > Z a’? =1.

ag{0,1}” ag{0,1}"
Consequently, there exists an a such that |a,| > %
e Now, if for all z € {—1,1}:
sgn(a.X") = sgn(f).

then the players can evaluate f simply by communicating the value of
X with 1 bit, and we are done.

e Otherwise, the other Fourier coefficients of f should compensate for
|ao|, consequently, the sum of their absolute values is at least 3/2. So

Z |aa| > 2,

ae{0,13"

but this contradicts with Ly(f) < 2.

So we may assume that Li(f) > 2. Then by Lemma 9, for a ¢ > 0 and
for any ¢ > 0, there exists a polynomial

N5
Gosp=> 7
1=1
such that for any fixed x:

Pr(sgn(Gis r(2)) # sgn(f(z))) < exp(—cd).

Let us consider now the following communication game. Two players,
Alice and Bob want to evaluate function f. First they randomly generate

11



(using public coins) polynomial G5 ¢(z), without any communication. From
Lemma 9, with exp(—cd) probability of error, the sign of f and G5 s coincides.
Consequently, if the players evaluate polynomial Gy, then they will know
the value of f. G5 contains at most N5 = O(SL;(f)) monomials.

With the same number of bits Alice sends to Bob the sign of the products
of her own variables of each monomial, and from these Bob computes the
sign of each one, and from these signs the sign of polynomial G5 ;. The total
number of communicated bits is Ns. The probability of error is exp(—cd). O

3 Applications

In this section we give the proofs of the application-results, i.e. Theorems 5,

6, and 7.

3.1 Proof of Theorem 5

Let us consider the following communication game: Alice is given a u =
(x1, 23, ..., Tan—1), Bob is given a v = (3, x4, ..., T3,), and they want to com-
pute [ P(xy1,xg, ..., 22,). Since, by assumption, C,, computes IP, they will get
the value of I P(x1, 2, ..., 2,) by computing the output of C,. For this, it is
enough to compute every gate of C,,. A gate of L; norm n” can be computed
by communicating O(n*”4) bits by Theorem 4, so the output of of C,, can be
computed by communicating

co size(Cp)n*'§ (7)

bits, and the error is at most O(size(C,)exp(—cd)), where ¢q is a positive
constant.
We can apply here a lower bound result of Chor and Goldreich [9]:

Theorem 10 [9]: Suppose that probabilistic protocol P, computing IP(z),
has an average success probability at least

§+ef0rsomee>ﬁ,

and the protocol communicates — for fired € and for fired n — always v.(n)

bits. Then |
Ye(n) >n —3 — 3log —.
€

12
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Now, setting § = dlogn (with a large enough d > 0), from Theorem 10
and from (7):

n1—2u
size(C,) = Q( Tog )

O

3.2 Proof of Theorem 6.

Definition 11 [26/ The randomized e-error complexity of Boolean function
I, R([f), is defined to be the cost of the best randomized protocol for f, which
computes the correct answer with probability 1 —e. For a family ' of Boolean
functions f, let

R.(F)=maxR.(f).

fEF

We use for proving Theorem 6 the following lemma of Nisan ([26], Lemma
5) (it is stated here only in the 2-players case):

Lemma 12 [26] Let G be a family of Boolean functions. If f can be com-
puted as the MAJORITY of s functions from GG, then R1/2+1/(45)(f> < Rl/(4s)(G).

O
Now, let f = I'P, let G be the family of Boolean functions of 2n variables
with L; norm of at most n”. Then, by Theorem 4,

Rijas)(G) = O(n* log 5),
consequently, from Lemma 12:
Rl/g+1/(4s)<lp) = O(TLQD IOg S),

and this, using Theorem 10, implies the statement of Theorem 6.0

13



3.3 Proof of Theorem 7.

The proof of Theorem 7 is very similar to the proof of Theorem 5. The details
are left to the reader.
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