Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 048 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Succinct Representation
and Leaf Languages

Helmut Veith
Institut fur Informationssysteme, Technische Universitat Wien
A-1040 Wien, Paniglgasse 16, Austria

veith@vexpert.dbai.tuwien.ac.at

Abstract

In this paper, we present stronger results in the theory of succinct
problem representation and establish a close relationship between succinct
problems and leaf languages. As a major tool, we use projection reductions
from descriptive complexity theory.

A succinct problem is a problem whose high complexity stems from the
fact that its instances are not given straightforward, but are themselves
encoded by boolean circuits. In [Balcdzar et al. 92, Papa, Yann 85] there
have been developed methods to quantify the complexity leap obtained
this way. We prove a strictly stronger version of this result which allows
iterative application and completeness results under projection reductions.

A leaf language [Bovet et al 92, Bovet et al 91] is the language of words
accepted by a nondeterministic Turing Machine where for acceptance the
word obtained by concatenating the bits at the leaves of the computation
graph must fit in a certain pattern. Complexity bounds on the leaf pat-
tern allow to uniformly define a lot of complexity classes [Bovet et al 92,
Bovet et al 91, Hertrampf et al 93, Jenner et al 94]. We show that the suc-
cinct version s(II) of a problem II is complete under projection reductions
for the leaf language Leaf(IT). Thus, we obtain an easy uniform description
of generic problems complete under projection reductions for all classes de-
finable as leaf languages.

In the last part, we prove that s(II) is not complete under monotone
reductions and propose an alternative succinct representation model which
allows completeness even under monotone projection reductions. This ap-
proach results in the definition of generic problems complete under mono-
tone projection reductions for a large number of classes. Thus we positively
solve a question by Stewart, posed in [Stewart 93a, Stewart 91].

1 Introduction

Among the methods developed for complexity classes beyond NP, we shall inves-
tigate and interrelate two such which have gained wide interest and have initiated
threads of publications: leaf languages and succinct problem representation. Our
main tool will be parametrized versions of projection reductions known from
descriptive complexity theory.

Leaf languages were introduced in [Bovet et al 92, Bovet et al 91] as a unified
approach to define and treat many common complexity classes. The crucial idea
is that a computational problem can be solved in two steps. First, it is applied
to an NP machine. Then the pattern obtained from concatenating the output
of the machine in all its potential computation paths (the so called leaf string) is
matched against two sets of strings, one for acception and one for rejection. It was
shown in [Bovet et al 92, Bovet et al 91] that most common complexity classes
have fixed characteristic pattern sets. The classes for which the pattern sets
for acception and rejection are complementary were termed syntactic complexity
classes by [Papadimitriou 94] and were further investigated in [Papadimitriou 94,
Jenner et al 94, Hertrampf et al 93]. [Jenner et al 94| generalize the notion of
leaf languages to NL machines and obtain a lot of results similar to the NP
case. In [Hertrampf et al 93], algebraic methods involving permutation groups
developed by [Barrington 89, Cai, Furst 87] were used to characterize PSPACE
by leaf languages over fragments of the regular languages. Moreover, they show
that completeness of a pattern set under polylogtime reductions for a class C'
implies that the leaf language obtained is an exponentially higher analogue of C'.
This result gave strong support of our intuition that syntactic leaf languages are
tightly connected to succinct problems.

The succinctness of the representation of a computational problem is well-
known to have a strong impact on the computational complexity of the problem.
In [Galperin, Widgerson 83], problems were investigated whose high complexity
stems from the fact their instances are not given straightforward, but are them-
selves encoded by boolean circuits. It was shown that the succinct version of
certain such problems becomes exponentially harder. Further steps were taken in
[Papa, Yann 85, Lozano, Balcdzar 89, Balcdzar et al. 92|, where the latter pro-
vide a general upgrading theorem deriving completeness of the succinct problem
under polynomial time reductions from completeness under logtime reductions
for the normally represented problems. In [Eiter et al. 94] the assumption was
relaxed to polylogtime completeness, and in [Veith 94] the conclusion was sharp-
ened to logspace completeness. The methodology developed was exploited in
[Eiter et al. 94, Gottlob et al 95| for proving expression complexity [Vardi 82] of
database query languages and logics such as Henkin logic known from finite model
theory. The main drawback so far is that logspace reductions are not known to be

subsumed by polylogtime reductions, hence there is no easy means for iterating
the completeness upgrade technique up to higher complexity classes. Similarly,
there is no immediate way to iterate the leaf language technique.

Projection reductions were defined in [Immerman 87] as a highly restrictive
notion of logical reduction. In descriptive complexity theory, computational
problems are identified with sets of finite structures. A projection reduction
then is a quantifierfree logical reduction, i.e. a mapping between structures,
where each tuple in the output structure depends on only one tuple in the
input structure. Following Immerman’s seminal paper, many problems have
been shown complete for NP and other classes by Stewart, for instance in
[Stewart 92, Stewart 93a, Stewart 94, Stewart 91]. The latter paper gives the
first methodology of projection reductions. Monotone projection reductions are
projection reductions where the input relations appear only positively in the re-
duction formulas. In [Stewart 94], several problems are shown to be complete
under monotone projection reductions for monotone NP. However, there are no
problems known to be complete under monotone projection reductions for other,
more common complexity classes. Note that quantifierfree reductions are sub-
sumed by logtime reductions (cf. [Eiter et al. 94, Veith 94]), hence the above
results about projection reductions imply results about logtime reductions.
Since a logically defined problem can be seen as a property of structures, first
order logic can be extended by generalized quantifiers which check those proper-
ties over arbitrary structures, if the problem considered is complete under logical
reductions. Expressibility and normal form results for such logics were obtained
for instance by [Immerman 87] and [Stewart 92, Stewart 93a, Stewart 94].

The main results of this paper are the following:

Section 3 We prove a strictly stronger complexity upgrading theorem for succinct
problems. In particular, we show that polylogtime reducibility between
two problems implies monotone projection reducibility between the suc-
cinct versions of the problems. Moreover, we show that if a problem is
C—hard under polylogtime reductions then its succinct version is hard un-
der projection reductions for the exponentially harder analogue of C. Note
that our results are not only the first to allow iterative application, but the
succinct problems are complete even under a more restrictive notion than
the original problems. In fact, even concrete completeness results under
projection reductions are often non-trivial, as can be seen from the papers
by Immerman and Stewart cited above.

At second sight, this seemingly paradox effect turns out to redeem in a sense
promises made in the early investigations of succinct representations: While
the belief that the regularity of boolean circuits allows to design feasible
algorithms was unfounded, boolean circuits were found to be subject to

3

Section 4

Section 5

Section 6

powerful manipulation.

Nevertheless completeness proofs under projection reductions tend to be
somewhat complicated, therefore the abstract construction of a projection
reduction from a polylogtime reduction can be imagined to be involved.
Informally speaking, the key observation for this result is that deterministic
Turing machines can be simulated by highly uniform circuits which are
definable by projection reductions.

We prove that the succinct version of a problem is complete under projec-
tion reductions for the leaf language it defines, regardless of the problem
itself. This basic interrelation between succinct problems and leaf lan-
guages provides a standard procedure to obtain completeness results under
projection reductions for many complexity classes. Simultaneously, the leaf
language of a problem gives an immediate account of its succinct complex-
ity. Moreover, we show that a slightly weaker form of the upgrading results
from Section 3 follows from the results of this section. In particular, we
show that the leaf language approach gives strictly sharper bounds for the
complexity of succinct problems.

We prove that the completeness results obtained above are optimal in the
sense that they cannot be sharpened to monotone projections. However, we
exhibit a tricky modification of the boolean circuit model which allows to
turn the projection reductions used in this paper into monotone projection
reductions. Consequently, we solve the open question if there exist problems
which are complete under monotone projection reductions in the positive
for a large class of complexity classes including NP.

We show how to obtain complete problems and capturing logics for many
classes up to Kalmar elementary computability.

Acknowledgements

I would like to thank Thomas Eiter and Georg Gottlob for introducing me to the
subject and for discussing an earlier version of this paper.

2

Preliminaries on Complexity and Circuits

The function log k denotes the number of digits of the binary representation of
k. Given a string w € {0,1}*, val(w) denotes the natural number whose binary
representation is w. An initial segment {0,1,...,n — 1} of the natural numbers

is denoted by n. We shall use the digits 0,1 simultaneously as propositional
constants, binary digits and natural numbers. Given a function f : A — B, the
size |f| of f is defined as the cardinality of the graph {(z, f(z)) : x € A}.

2.1 Descriptive Complexity

A signature is a sequence (P, ..., P;*) of relation symbols with associated arities
ai,...,a,. A finite structure over T is a tuple (n, P4, ..., P{), where PA C n%.
n is called the universe of A, and denoted |A|. The set of all finite structures
over 7 is denoted by Struct(r). Let A,B € Struct(r), s.t. [A| = |B|. Then
A C Bif PiA - PiB for 1 <1 < k. A computational problem over signature 7
is a set II C Struct(7), s.t. II is closed under isomorphisms. II is monotone,
if A C Band A € II implies B € II. Note that the elementarily decidable
computational problems coincide with the classes definable in w—order logic.

7@ = (Pl*, ..., P/*) is called the [—ary variant (or vectorization) of 7. For
a problem T, let T® denote the problem 7' over [—tuples, i.e. over universe
n X -+ X n, s.t. [—tuples are understood as numbers from {0,...,n! —1}.
~—_————

l times

First Order Logic FOy(7) is the language of all first order sentences over
signature 7 with logical predicates for equality = and successor s(-,), and two
constants 0, max denoting the minimal and maximal element wrt to the successor
relation. Given signatures 7, o and a natural number k, a k-ary interpretation of
7 into o is a definition of the o(*) relations in terms of 7. A k—ary interpretation
I is written as a set of equations of the form P(x) = ¢ where P € ¢(®) and ¢ is
a formula over signature 7. For a structure A € Struct(r), let I(.A) denote the
structure over o(®) which is defined by I. Let T C Struct(7), S C Struct(c) be
problems. We say that T is L-reducible to S if there exist an interpretation I of
7 into o, s.t. I is an L—formula, and for all A € Struct(r), A € S iff I(A) € T®),
with k being the arity of I. By restricting the logic for the interpretations we
obtain low-level reductions: A projection reduction Immerman 87] is a reduction
whose defining formulas are quantifierfree and in disjunctive normal form V; o,
s.t. the «o; are mutually exclusive and each «; contains maximally one relation
from 7. If all occurrences of 7 relations in V; o; are unnegated, the reduction
is called a monotone projection reduction. Projection reductions are not known
to be closed under iteration, while monotone projection reductions are so. Still,
we can use an easy yet important fact about the interaction between monotone
projections and projections due to [Stewart 93b].

Lemma 1 If A <05 B <07 C then A <o C'

The result can be seen from the fact that substituting a projection formula for
a relation occuring in a monotone projection formula yields a projection formula
again. Let <y be some reduction relation and IT be a problem. Then [II]x
denotes the <x-ideal generated by II, i.e. [II]x = {L|L <x II}. For a class C of
languages, this amounts to [C]x = Unec[II]x. Using this notation, we can write
Stewart’s lemma as

[mes] = Moy

Let us consider simplifications which will allow us to treat logical reductions
in a more friendly way: Although it is sufficient to have one equation P(x) = ¢
for each P € o), we shall allow for multiple equations where P = ¢, P = 1)
stands for P = ¢V 1. Thus, we can write each disjunct of a projection reduction
in a seperate row. Moreover, we allow for expressions involving addition and
subtraction of numerical constants on both sides of the equations. The expression
y + ¢ for example, can be easily eliminated by replacing it with a new variable
z. and adding the conjunct Ag<;c. $(x;, ziv1) A g = y to the right hand side
of the equation. The successor relation on the domain induces a quantifier-free
definable lexicographical order on vectors of fixed arity. Therefore, we shall treat
vectors of arity k£ over domain n just like ordinary numbers over domain n*. In
particular, if it is understood that z is a k—tuple, x = 0 means z = (0,...,0),
x = max means x = (max,...,maz), and s(z,y) means that the k—tuple y is
the lexicographical successor of x. An easy example of a projection reduction can
be found in the proof of Lemma 3.

Take some signature 7 = (P, ..., P;*) and let | = max{ay,...,ax}. Con-
sider signature @ = (Q'*!). One can see that the structures over 7 can be
embedded into Struct(«) by defining

QU —1,z1,...,7) = Pi(x1,...,%q)
for1<i<k—1and

Q(’L.—l,.Tl,...,.Tl) EPk(xl,...,xak)

for 7 > k. Thus, we use the first argument of @) to distinguish between the rela-
tions; for reasons to become clear in Lemma 2, we postulated that all argument
values exceeding k — 1 refer to predicate Py. For each structure A € Struct(r),
let single(A) denote the corresponding Struct(a) structure. For a problem A,
single(A) = {single(A) : A € A}. (To be rigorous, we have to postulate that
all structures over 7 have domains of size at least {. If we would encode 7 in
binary by sequences of 0 and max, we could even resort to structures of size at
least 2. However, in any case only a constant number of small structures are
affected which is irrelevant for complexity-theoretic considerations.) In fact, the
single encoding provides a convenient normal form for different signatures; this
is formalized by the following lemma:

Lemma 2 Let A C Struct(7), and II be an arbitrary problem. Then

1.

2.

3.

A =pn single(A)
II Sproj A ZﬁH Sproj smgle(A)

A <ppoj TTiff single(A) <proj 11

Proof:

la.

1b.

3a.

3b.

A <por single(A): For each 1 <@ <k — 1, we include the rule

Qly,z1,...,x) = y=1i—1,P(x1,...,2q,)
Moreover, we take the rule

Qy,x1,...,x1) = y>k—1Px,...,2q,)
where y > k — 1 is expressed by y #0,...,y # k — 2.

single(A) <o A: For 1 <i <k —1 we set

Px1,...,%q;) = y=1—1,Q(y,z1,...,2)

Moreover, we add the rule

Py(z1,...,2q,) = y>2k—-1,Q(y,x1,...,3)

. Suppose that IT <,.,; A. From la. we know that A <77 single(A), by

=proj
Lemma 1 we conclude that II <,,,; single(A). The converse implication

works analogously.

—: Suppose that A <p,,; II, then single(A) <% A <,.,; II. Lemma 1
is not applicable here, but a closer investigation of the reduction in 1b.
shows that each of the projection formulas contains only one occurence of
(). Hence, their negations remain projection formulas, and can be inserted
into the projection formulas between A and II.

<: Suppose that single(A) <p,; 11, then A <P% single(A) <pro; IL
Again, we have to resort to the reduction from la. When can) become
false? We have built the single embedding in such a way that each y must
satisfy one of the left conditions in the reduction. Therefore, Q(y, z1, ..., z;)
can be false only if either y =4 — 1,1 <i <k —1 and = FP(zy,...,2,,), OF
y >k —1and Py(x1,...,2,,). Thus, the negation of) can be expressed
as a projection formula. The result follows. O

7

Since monotone projection reductions are the weakest reductions considered
in this paper, we may without loss of generality assume that a structure is given
in the single encoding whenever necessary.

A structure A € Struct(7) is usually encoded by a string, built as the concate-
nation of the domain size |.A| (in binary) and the truth values of P/, ..., P/t upon
lexicographical enumeration of their arguments (cf. [Fagin 74, Gurevich 88]).
In our context it is sufficient to take the concatenation of the truth values of
single(A) instead.

2.2 Boolean Circuits

A boolean circuit of size n can be encoded as an ordered structure over signature
¢ = (M, 3,~? ', 0Y, where M and L denote conjunction and disjunction
respectively, ~ denotes negation, <1 the input gates, and O the output gate. Let
for example M € Struct(¢). Then M = 11(8, 5, 3) means that the circuit encoded
by M computes gate number 8 as the conjunction of gates 5 and 3. A structure
A € Struct({) represents a boolean circuit if it contains an output gate and each
gate is either an input gate or is computed from smaller gates. We explicitly
allow that there are domain elements where no gate is situated, however all gates
but the input gates must refer to other gates.

2.3 Succinct Encoding

A boolean circuit with k£ input gates in a natural way defines a unary relation over
domain 2*: On input of the binary representation of a tuple, the circuit outputs
whether the relation contains the tuple. Consequently, a circuit with ck input
gates determines a c—ary relation over domain 2% (and simultaneously, a unary
relation over 2%¢). Let 7 = (R{',..., R%) be a signature and A € Struct(r). The
succinct signature s(7) is defined as . The intended meaning is that a structure
C € Struct(¢) defines the relation single(.A).

Let 7 be like above and IT C Struct(r) be a problem over 7. We say that II
is self-embeddable if A= (n,R{,..., R) € Il implies (nU {u},R{,...,R}) € II
for all A € Struct(II). Prima facie boolean circuits can only represent structures
whose domain size is a power of 2. The notion of self-embeddability distin-
guishes those problems which are not affected by this restriction because their
membership property is not influenced by adding isolated domain elements (for
a graph problem isolated element means isolated vertex). 3-colorability is a self-
embeddable property because it is not affected by adding isolated vertices. The
standard encoding of Hamiltonicity, on the other hand, is not self-embeddable,

8

because a graph with an isolated vertice cannot have a Hamiltonian circuit.

Notice that self-embeddability still is no severe restriction, but rather a tech-
nical normalization notion: All problems can be defined in a way, s.t. they can
be relativized to a unary predicate in the problem signature. More formally,
if IT C Struct(7) is a problem, then let the self-embedding variant II* be the
problem obtained from including a unary predicate D € 7, s.t. for all structures
A € Struct(7) it holds that A € TTiff (D4, RAN(DA)%, ..., RAN(DA)%) € T1. In
other words, the active domain elements are themselves distinguished by a unary
domain relation. This definition arises naturally with Enderton’s and Hodge’s
notion of logical reductions [Enderton 72, Hodges 93|. Relativizablility easily ex-
tends to the single encoding. Moreover, a relativizable problem is at least as hard
as the original problem because it holds that = <777 =% and therefore II <.,; =
implies II <p,,; Z°. In particular, if = is complete for some class C, then =° is
complete, too. Moreover, most problems investigated in descriptive complexity
in fact are self-embeddable. Usually, it is easier to prove completeness for self-
embeddable problems, because the reduction need not be surjective in that case.
We, too, shall prove our results for the self-embeddable case first, and extend
them afterwards.

In fact, the notion of self-embeddability is very similar to closure under
padding in structural complexity theory, because self-embeddability means that
we can add dummy domain elements. For the sake of simplicity, we shall usu-
ally prove the results for the self-embeddable case first, and extend them to the
general case afterwards.

Now we are ready to give a formal definition of succinct encodings:

Definition Let C be a circuit, and 7 be a signature. Then gen, (C) € Struct(7)
denotes the structure represented by C. If C' € Struct(¢), but C is no circuit for
syntactical reasons, let gen,(C) denote some fixed finite structure S, € Struct(r)
by default. O

If the context is clear, we shall skip the 7 subscript. Now we can give a formal
definition of succinct problem encodings:

Definition Let IT C Struct(m) be a problem. The succinct encoding s(IT) of II
is defined
s(IT) = {C € Struct(() : gen,(C) € 11}

O

Remark: Note that self-embeddability is crucial here: Let 3COL C Struct(FE?)
be the class of 3-colorable graphs, and consider 3COL* = 3COL — {A : |A| =

2%k > 1}. In other words, 3COL* rejects all graphs where the number of vertices
is a power of 2. Of course, 3COL* is not self-embeddable because a 3-colorable
graph of size 28 — 1 is in 3COL*, but its extensions by another isolated vertice
is not. It immediately follows that s(II) cannot encode graphs from 3COL*,
therefore geng(s(II)) C {S;), i.e. s(II) becomes trivially solvable. On the other
hand, each structure of a self-embeddable problem can be embedded easily into
a structure of size 2* for some k.

2.4 Models of Circuit Computation

In the field of circuit complexity, boolean circuits are often assumed to allow
negation of input gates only.

For a problem II, let §'(II) = {C € s(II)|C contains input negations only}. It
is well-known that s(II) and s'(II) are equivalent in expressive power. Here we
show the projection effectiveness of this construction, thus giving some intuition
for our usage of projection reductions.

Lemma 3 For all problems 11 it holds that s(I1) =574 s'(I1), even under successor-
free reductions.

Proof: Trivially, s'(II) <79% s(II) via the identical mapping. For the opposite
direction, let C' € Struct({) be a circuit. Then we construct a circuit f(C) as
follows: For each input gate i, we add another dual gate :~ containing the nega-
tion of i. For each conjunctive (disjunctive) gate g, we add another disjunctive
(conjunctive) dual gate g~ which gets as inputs the dual input gates of g and
therefore outputs the dual value. Finally, all negations are replaced by a reference
to the dual value. Since we need double space the reduction has arity 2. (Note

that arity 2 would allow even for quadratic space.)

In the |C| x |C| space, we use the second coordinate to distinguish between
the original gates (coordinate 0) and the dual gates (coordinate max). We start
by constructing the input negations:

d(<z,0>) = <(z)
~ (< z,mar > <z,0>) =

The M and U gates are constructed like described above:

U(< z,0 >, < y,max >,< z,mazx >) = (z,y,2)
U(< z,maz >, <y,0>,<20>) = MNx,y, 2)
(< z,0 >, <y,mazr >,< z,maz >) = U(z,y,2)
N(< z,maz >, <y,0>,<20>) = Ux,y,=2)

10

Finally, we rebuild the negations and copy the output gate:

U(< z,0 >, < y,mazx >, < y,max >) = ~ (x,y)
U(< z,maz >, < y,0 >, <y,0>) = ~(x,y)
O(<z,0>) = 0O(z)

Note that a gate of the form U(x,y,y) serves for copying the result of gate y to
gate x. This concludes the proof. O

Moreover, one can see easily that the fact that we are using conjunction, dis-
junction and negation to build the circuits is merely a matter of convenience. In
fact, any boolean complete set of connectives would do so as well, because each
connective in one circuit can be replaced by a subcircuit of constant size in the
other circuit. Therefore, a monotone reduction of constant arity shows the equiv-
alence. Suppose for example, that we restrict our circuit to NOR gates. Then
we replace ~ (z,y) by NOR(z,y,y), U(z,y,2) by NOR(z,z',2"), NOR(z',y, 2),
and MN(x,y, z) by NOR(z,y',2"), NOR(y',y,y), NOR(%', z, z). The space for the
intermediate gates is obtained by choosing a sufficiently high arity of the reduc-
tion.

Lemma 4 Let sx be a circuit encoding defined by a boolean complete set X of
connectives of constant arity. Then s(II) =o% sx(II), even for successor-free
reductions with constants.

Proof: Easy. O

The following corollary expresses that projection reductions are sufficiently
strong to allow switching between the circuit models:

Corollary 1 Let s’ be an alternative circuit encoding like in Lemma 3 or 4,
and let C' be a complexity class, closed under monotone projection reductions. If
sIl is C'—complete under projection reductions, then s'I1 is C'—complete under
projection reductions.

Proof: Hardness: Let A € C. By assumption and by Lemmas 3 and 4 we

conclude that A <p,,; slI <proj s'Il. By Lemma 1, hardness follows.

Membership: follows from s'TI <7o% sII. O

11

2.5 Direct Access Turing Machines and Polylogtime Re-
ductions

Polylogtime computations like all sublinear computations are based on the notion
of Direct Access Turing Machines (DTM). A DTM has three tapes: a work tape
A, an input tape I and a special tape S. I does not have a conventional read
head, but can be accessed indirectly via A and S: On input of length n, the
first logn bits of A define a number z. At each step of the Turing Machine, the
bit at position z on tape [is copied on the special tape and thus can be used
by the finite control like in the usual case. Note that this definition is different
to [Balcazar et al. 92], because we have neither distinguished work and address
tapes nor distinguished input query states, but our DTMs and the other model
mutually simulate each other with neglectable overhead.

Definition A mapping f : Struct(m) — Struct(£) is a many-one PLT reduction
between IT C Struct(n) and = C Struct(§) if for all A € IT the domain of f(A) is
less than 2!°6'" and there exists a polylogtime Turing machine My, s.t.

1. AeIliff f(A) € E, and
2. for each tuple x and relation R € £, M, decides f(A) = R(x).

[= grow(Mjy) is called the growth rate of M. O

Note that this definition is just the natural adaption of the standard notion
to finite structures. A conventional problem (i.e. a class of strings) can be easily
expressed over a suitable string signature. Logtime reductions reductions can
be shown to subsume quantifierfree reductions, see for instance [Veith 94]. Still,
quantifierfree reductions are sometimes better to use because of their simplicity.

Due to the special character of PLT reductions we may assume that the DTM
which accomplishes the reduction has two accepting states, corresponding to the
two possible results of a computation and that the machine loops in the accepting
states. (Consequently, time bound is defined with respect to the time of reaching
such a looping state.) Without loss of generality we may assume that the Turing
Machine first copies the output position information on the work tape (this is
possible because of its logarithmic size) and then goes on as usual, using only the
information from the worktape.

Let some DTM be fixed and let w be the contents of the input tape. Then
Ay (t,7) denotes the bit on tape A at position ¢ and time ¢ on input of w. g, (%)
denotes the state of the machine at step t. Let £ = log|Q|, where @ is the set
of states of the DTM. Then each state ¢,(t) can be identified with a k—tuple of

12

bits. The corresponding functions are called gy (t),-- ., quwg(t). The position of
the TM head at time ¢ is denoted by a,(t). The bit at the special tape at time
t (i.e. the bit at the input tape which is referenced to by the address written on
the first bits of the work tape) is denoted p,,(¢). When it is understood, we shall
skip the w subscript. Let [a(t) = 4] denote the truth value of a(t) = i. Using
those concepts, we can define a glimpse of the TM in time and space:

g(t, i) =< A(t,9), [a(t) =i, p(t), q1(t), - -, qx(t) >

Thus, a glimpse is a tuple from {0, 1}**3 which describes a Turing machine
locally from the point of view of a tape cell at a fixed time. A computation graph
of a DTM can be seen as a 2-dimensional array of glimpes, with a time and a
space axis. Each glimpse contains the information about the tape contents at
position ¢ and time ¢. We say that a glimpse is active if a(t) = ¢ holds, i.e. if the
work head is situated at the tape position the glimpse describes. The TM state
information provided by ¢ (%), ..., q(t) is relevant only for active glimpses. For
better intuition, we shall sometimes imagine the time axis vertical, and the space
axis horizontal. A time level is a horizontal slice of that array, obtained from
fixing the time. The time level ¢ evidently provides an instantenuous description
of the Turing machine at time £.

A glimpse ¢(t, 1) differs from g(¢ — 1,4) only if one of its predecessor glimpses
g(t—1,i—1),9(t—1,7),9(t — 1,7+ 1) is active. Otherwise it is equal. Since the
control of the DTM is finite, ¢(t,4) can be described by a circuit of constant size
with input gates for the three predecessors and for p(t —1) and with output gates
for g(t,7). (We neglect the case of 7, j = 0 for the moment.)

By connecting the glimpses with copies of the finite control circuits we obtain
a circuit almost simulating the Turing Machine. It still remains to simulate the
direct access, i.e. to direct the input bits referenced by the worktape to the special
tape bit p(t). Since the input structure is provided by a boolean circuit, p(¢) can
be computed by a copy of that circuit, s.t. its input gates are fed by the work
tape bits contained in the glimpses of the previous time level. Thus, we need
one copy of the input circuit between each two time levels. This proof technique
dates back to [Balcdzar et al. 92|, for an outline refer to [Gottlob et al 95]. We
shall make an effective construction in the next section.

3 The Strong Conversion Lemma

In this section we give the alluded effective construction proving a strictly stronger
version of [Balcdzar et al. 92]’s Conversion Lemma.

13

3.1 The Self-Embeddable Case

Throughout this section we shall assume that all problems are self-embeddable.
In Section 3.2 we shall see how to generalize our proof.

Lemma 5 If A <" B then sA <mon proj SB-

Proof: Let M be the DTM computing the PLT reduction A — B. We assume
the notation from the last section. For input size n, let log™ n be a strict upper
bound for the time complexity and for (logn)9°*(*)_ (We do not need a constant
factor, because we can choose m sufficiently large, though constant.)

From above we know that g(¢,7) = F(g(t—1,i—1), g(t—1,4), g(t—1,i+1), p(t—
1)) for some constant size function F' depending on the finite control of the TM.
Since F' is of constant size, it can be described by a constant size circuit F. F
needs 3(k 4+ 3) + 1 input gates (corresponding to 3 predecessor glimpses and the
special tape symbol) and k+3 output gates (corresponding to the output glimpse).
Formally, F € Struct(¢), s.t. |F| = f, the input gates of F are 1,...,3(k+3)+1
and the output gates are f, := f — (k+3),fo+1,..., fo + (k+ 3). In order
to prove the theorem we have to show that there exists a monotone projection
reduction ¥ : Struct(¢) — Struct(¢) from sA to sB.

Let A € Struct(¢). Recall that m was the exponent of the PLT reduction. Let
p = 2m—+ 2 be the arity of the projection reduction. We shall denote p—tuples by
< b,t,s,c >, where b € N denotes a block, c € N denotes a counter, and t,s € N™
denote time and space coordinates. The blocks and counters can intuitively be
identified with program blocks and local line numbers within the blocks.

Let us summarize variable usage:

f=1|F| = the size of the circuit which simulates the finite control
k =log|@| = number of bits necessary for state description
k+3 = number of bits for a glimpse
fo=f—(k+3) = start of output part within F
maz = |A| = size of the input structure
m = dimension for the computation graph
p=2m+2 = overall dimension of the reduction

Looking at the p—dimensional domain as an address space, we shall use the
following memory allocation plan:

14

<0,0,0,0 >
Block 0

< 0,0, max,0 >

For each s, t,
<1,t,5,0>

Block 1 :
<1l,t,s, f>

Block 2

\

Block 3 [

\

contains the input gates of
the new circuit.

contains a copy of F, com-
puting glimpse ¢(t,s) from
input of p(t — 1) and the
glimpses g(t—1,s—1), g(t—
1,s),9(t—1,s+1).

([<2,t,0,0>)

< 2,t,0,mazx > |

([<3,0,0,0>)

contains a copy of A, com-
puting the input tape in-
formation p(¢) from Block
0 and from the adress
given by the glimpses g(t —
1,s),0 < s < maz.

contains a circuit to deter-
mine the output of the TM

<3,1,maz,0 > |

simulation.

< max, max, max, max > contains the output of the circuit.

Note that only block 2 depends on the input structure A. Therefore, blocks
0,1, 3 will be constructed by projection reductions without input predicates.

Consider the following projection reduction:

Block 0

Block 0 contains the input gates:

<(0,0,s,0) =

Block 1

Recall that Block 1 contains the array of glimpses. The glimpses are inter-
connected by copies of F, such that the output gates point to a glimpse and the
input gates are wired to the corresponding predecessor glimpses and to the input
structure provided by Block 2.

First we redirect the input gates of the JF circuits:

15

The p(t) bit comes from block 2:

U(< 1,¢,8,1>,<2,t,0,max >,< 2,t,0,max >) =

Note that gates of the form Li(z,4,) serve to copy a bit from gate position i to
position x.

For s,t # 0, we direct the predecessor glimpses of g(t, s) to the input of an F
circuit which computes glimpse g(, s):

Left Predecessor:
U< L,t,s,2><1,t—1,s—1,f,><Lt—1,s—1,f,>) = t#0,s#0

U(< Lt,s,k+4><1,t—1,s—1,f,+k+3><1,t—1,s—1,fo+k+3>) = t#0,5#0

Middle Predecessor:
U(< Lt,s,k+5><1,t—1,sf,><lt—1,s,f,>) = t#0

(< 1,t,8,2k+7><1,t—1,8,fo+k+3><1Lt—1,8,fo,+k+3>) = t#0

Right Predecessor:
U(< 1,t,8,2k4+8>,<1,t—1,s+1,f,><Lit—1,s+1,f,>) = t#0

U(< 1,8,8,3k+10>,<1,t—1,s+ 1, f,+k+3><1,t—1,s+1,fo+k+3>) = t#0

For s = 0, we by default take g(t — 1,0) as the left predecessor: this cannot lead
to inconsistencies, since the TM program must not crash the TM tape. Since m
was defined to be a strict upper bound, the Turing machine never exceeds the
other end of the tape.

Hence, we obtain similar rules for the left predecessors of the leftmost glimpses:

|_](< 1;t,0;2>3< 1at_]—a0’f0 >a<1at_110’f0 >) = t#o

|—|(< 1,t,0,k+4>,<1,t—1,0,f0+k+3>,<1,t—1,0,f0+k+3>) = t#o

It remains to copy the rest of F to the right address: For eachi € {3k+11,..., f},
it F =0(i,75,1),0 € {N,Uu} then let

O(< 1, t,8,i>,< 1,t,8,7>,<1,t,81>) =

16

We proceed analogously with ~. (Recall again that i, j, k are constants, because
the finite control is constant.) We still have to initialize the machine simulation
for t = 0 : First, we define truth constants in the circuit:
~(<4,0,0,0>,<0,0,0,0>) =
(< 4,0,0,1>,<4,0,0,0>,<0,0,0,0>) =
~(<4,0,0,2>,<4,0,0,1>) =

This forces < 4,0,0,1 > to compute 1 and < 4,0,0,2 > to compute 0.

Now we can set the glimpses g(0, s) corresponding to the Turing machine at
time 0:

U(< 1,0,s,2 >,<4,0,0,2>,<4,0,0,2 >)
(< 1,0,0,2 >,<4,0,0,2>,<4,0,0,2 >)
U(< 1,0,0, fo+1>,<4,0,0,1>,<4,0,0,1>)
U(< 1,0,s, fo >,<0,0,s,0 >,<0,0,s,0 >)

= s#0
.’L'?éfo-i-].,l'?éfo

Thus we set the leftmost glimpse active, have the queried string position within
the output string immediately copied from the input tape to the worktape, and
set everything else 0, assuming that the starting state has binary coding 0*.

Block 2 basically consists of copies of A, again with the input redirected:

(< 2,8,0,8 >, < 1,t =1, fo,s >, < 1L,t =1, fo,s>) = <(s)
(< 2,t,0,8 >,< 2,0, >,<2,t,0,5 >) = L(s,1,))
N(< 2,t,0,8 >,<2,t,0,i>,<2,t,0,7>) = 1(s,4,5)

~ (< 2,t,0,8>,<2,t,0,i>) = ~ (s,1)

For Block 3 it remains to compute the output of the circuit: For this purpose, we
have to find the active glimpse of the last row and determine if the state therein
is accepting and which kind of accepting state it is. (Recall that we assumed that
the acception state gives the information about the output bit.) Without loss
of generality, assume that in the accepting states, ¢;(t) expresses the result bit.
In order to find what this bit looks like, we have to search among all glimpses
with maximal time coordinate for a glimpse which is both active and describes
an accepting state. Essentially, this can be done by a large disjunction:

N(< 3,0,s,0 >, < 1,maz, s, fo+2 >,< 1,maz,s, f, + 3 >)
(< 3,1,0,0 >,< 3,0,0,0>,<3,0,0,0>) =
(< 3,1,50><3,1,§,0>,<3,0,5,0>) = s=5+1
It remains to redirect the result bit to the output gate < max, max, max, max >:
U(< max, maz, mazx, max >,< 3,1, maz,0 >, < 3,1, mazx,0 >)

O(< maz, max, max, max >) =

17

Since |A| = maxz > logn by the definition of succinct representations (compare
[Balcdzar et al. 92]’s proof) the bound max™ is sufficiently large for both the
polylogarithmic space and time bound. This concludes the proof. O

In order to develop our methods further, we need a projection definable ana-
logue to the operator long from [Balcdzar et al. 92] in terms of finite structures.
Recall their definition:

Definition Let A C {0,1}*. Then we define long(A) = {w: [w[€ 10 A}. O

That is, we interpret every instance of A as a binary number z and have all
strings of size x included in long(A).

In the descriptive complexity approach, the instances are structures and for
the above concept we would need a structure encoding. Note that the essential
property of the long operator is that it takes a characteristic bit sequence of
the instance (in the above case, the instance itself serves as its characteristic bit
sequence) and uses it as a length description. Given a structure single(A) =
(n, Q'), consider the tuples (z1,...,7;41) € n'™ in lexicographical order with
respect to the successor relation. With respect to membership in @), the tuples
define a sequence of 0,1 which is characteristic of A; being read as a binary
representation, the sequence in turn defines a large natural number. Let us call
this number char(A). This motivates the following definition:

Definition Let o = (Q'*!) be a signature, and let single(A) € Struct(c). Let
§ = (D*') be a signature, where D(z) typically holds for an initial sequence of
natural numbers. Then we define

long : Struct(a«) — Struct (J)

by
long(A) = {B € Struct(s) | D? = 2" 4 char(A)}

O
Like in [Balcdzar et al. 92]’s definition, the leading term forces the most sig-

nificant bit of its binary representation to be 1. Recall that a number corresponds
to an initial sequence of the natural numbers, and thus to a unary relation.

Lemma 6 For every II, II <,,; s(long(II)).

Proof: Let = = single(II), then it remains to show = <,.,; s(long(II)). That
is: given A € =, we have to construct a circuit G, s.t. G describes a string

18

of size 24" + char(A). We shall construct a circuit, which describes a string

|A|it2o
1277 #char(A) i e a unary relation containing an initial sequence of the natural

numbers.

Again, we construct a 2-dimensional array. On the first horizontal line, we
project the truth values Q(0,...,0),...,Q(max,...,maz) and the leading 1:
Depending on the truth value of Q(z,...,x;), we connect the corresponding
gate to either the constant 0 or the constant 1 function as in Block 4 above.
Therefore, our projection will be of arity / + 1. On the second line we situate the
input gates.

Given an input, the circuit has to compare the values denoted by the two
horizontal lines. This can be done easily be looking for the most significant bit
where the lines differ. At this position, the larger number must have a 1. If
the first line is greater, then the input position is within the string size, and
the circuit outputs 1. Otherwise, the string length is exceeded, and the circuit
outputs 0. Such a construction can easily be accomplished similar to Block 3
above.

After the proof of Lemma 5, the technical details of the construction can be
imagined. O

Remark: Notice that monotone projections do not seem to be sufficient for the
construction in Lemma 6 : The crucial point is that the reduction is required
to project the values of () into the circuit. However, this construction naturally
involves a case distinction: If) holds, then let the gate compute the permanent
1 function, otherwise the permanent 0 function. A monotone rule contains only
rules without such an ’otherwise’ condition, hence it is virtually not sufficient
to gain the wished effect. For a more concise statement of this fact, refer to
Proposition 1.

Along the lines of their proof, there immediately follows a strictly stronger
form of the main upgrading theorem by [Balcdzar et al. 92]:

Theorem 1 Upgrading Theorem
Let Cy and Cy be complezity classes, s.t. long(C1) C Cy. If B is Cy-hard under
PLT-reductions then sB is Cy-hard under projection reductions.

Proof: Let A € () be arbitary. By assumption long(A) € C,, therefore
long(A) <FIT B. By the Strong Conversion Lemma and Lemma 6, we obtain
that A <;05 s(long(A)) <mon proj $B, thus A <,,; sB because of Lemma 1. O

19

3.2 Eliminating Self-Embeddability

Let us consider how to extend our above results to problems which are not self-
embeddable. For this purpose, we need a slightly more complicated model to
encode structures by circuits: one of two circuits describes the relations as above,
while the other describes the domain. A similar approach was used already in
the definition of the long operator.

Take some signature 7 and consider the set Structs(m) = {A € Struct(rw) :
Jk : |A| = 2*}, i.e. the subclass of Struct(m) which is describable by boolean
circuits. Further consider the signature § = (D'), and the problem A = {(n, D) :
D < n} C Struct(d). In other words, A contains initial sequences of the natural
numbers. Then it is easy to see that for each A € Struct(n) there exist structures
A’ € Structy(r) and D € A, s.t. A’ restricted to the elements from D? equals A,
in symbols A'|D = A. Thus, each 7 structure can be described by a 7 structure
from Structy(7) and a § structure. For a pair (Cy, Cs) € Struct(() x Struct((), we
can define gen,(Cy, Cs) := gen,(Cy)|gens(Cys). Consequently, s(II) = {(Cx, Cs) :
geng(Cr, Cs) € I1}. We shall refer to this encoding as the compact succinct
encoding. This definition enables the circuits to describe structures of arbitrary
size. Essentially, we could as well use circuits with two output gates, but this
would make the constructions more complicated.

To make sure that gen(Cs) is always a A structure, we postulate that Cj
is subject to a certain syntactical restriction: Cj consists of a typically large
subcircuit C, which computes a tuple without using the input gates. (We shall
call such a circuit the core circuit of Cs.) A lexicographical comparison circuit
like in Lemma 6 then determines the output of Cs by comparing the tuple with
the input gates. By a construction like in Lemma 6 we see that Cy =7 Cs,
therefore constructing Cs reduces to constructing Cf.

Let us return to Lemma 5, the Conversion Lemma. Given a PLT reduction
M : A — B, we have to construct a reduction Struct(¢) x Struct(¢) — Struct(¢) x
Struct(¢) between their succinct representations. There are two steps to adopt
the above proof:

First, we have to make a modification in the PLT machine simulation to
handle the information provided by the additional circuit. In each step, the
special tape contains two bits: the first one describes the relation like above, and
the second one denotes whether the queried input tuple exceeds the domain of
the structure. (This information is naturally provided by the second circuit Cj.)
Thus, the glimpses in the Turing machine description will contain another bit to
carry this information.

Second, we can assume that there exists a PLT transducer M'; s.t. M': A —

20

w where M'(A) computes the length of M(A). (M' can be easily constructed
from M by using binary search.) M’ can be considered as a degenerated special
case of a PLT reduction which behaves independently of the output position in
question. Hence, applying the self-embedding Conversion Lemma to M’ on input
A yields a circuit which contains the tuple M'(A) on the last time level, and is
not dependent on the input gates. Therefore, this circuit can be used as a core
circuit, and can be easily embedded into a Cj circuit by a monotone projection
as described above.

Thus, by applying the self-embedding Conversion Lemma for both Turing
machines M, M’ it follows that there exist projection reductions ®;;, ® 5, which
map each circuit pair C = (Cy, Cy) to a pair (P (C), @ (C)). The Conversion
Lemma follows.

For Lemma 6, things are much easier because the circuit constructed there
already is the length description we need. Hence, we just use the same reduction
for the self-embeddable case.

Therefore, the upgrading theorem holds for arbitrary problems.

4 Leaf Languages

In this section, we consider the relation between succinct complexity upgrade and
leaf languages, as defined in [Bovet et al 92, Bovet et al 91]. In Section 4.1, we
shall treat the easier self-embeddable case.

4.1 The Self-Embeddable Case

Let M be a fixed NP-Turing Machine which outputs 1 on acception and 0 on
rejection. On input of a word z,|x| = n, one can imagine that M computes
simultaneously in many branches, corresponding to its nondeterministic choices.
Assume that the machine is clocked and halts after exactly n* steps and after ex-
actly n!, ! < k nondeterminstic decisions. (This latter condition follows naturally
when we program the Turing machine by a ’guess and check’ algorithm.) For a
given input of size n, one can evaluate the Turing machine for all 2" possible
nondeterministic choice sequences in lexicographical order. By concatenating 0’s

!
and 1’s according to rejection or acceptance we obtain a word w € {0,1}*" . We
denote this leafstring w by ™ (z). Let Y be a language. Then we define

BLeaf” (V) = {L| 3M : L = {zI™(z) € Y'}}

21

i.e. the class of languages whose characteristic function carries over to Y via its
leafstring for some suitable Turing Machine.! For self-embeddable II, BLeaf” (II)
coincides with the notion used by [Hertrampf et al 93, Jenner et al 94].

It immediately follows that X C Y implies BLeaf” (X) C BLeaf”(Y). The
definition generalizes to complexity classes C"

BLeaf”(C) = |] BLeaf”(Y)

YeC

Again a similar monotonicity property follows from the definition.

It was shown in [Bovet et al 92, Hertrampf et al 93] that by varying the pa-
rameter in BLeaf” (II) or BLeaf”(C), it is possible to obtain characterizations
of many complexity classes. For instance, all classes in the polynomial hierar-
chy are definable by suitable leaf patterns [Bovet et al 92]. Moreover, it follows
from [Hertrampf et al 93] that BLeaf” (long(C)) = C, and even BLeat” (REG) =
PSPACE, where REG is the class of regular languages.

Our main observation is that for any problem II, its succinct representation
is just as complex as its leaf language.

Lemma 7 Let II be a problem. Then s(II) € BLeaf” (II).

Proof: The succinct version of IT is defined as s(II) = {C|gen,(C) € II}. For
a circuit C, gen,(C) can be computed as a leafstring of the following Turing
machine:

1. Guess an assignment to the input gates of C.

2. Evaluate the circuit.

It is well-known that step 2 is polynomial time computable. The result follows.
O

This can be extended to completeness. To outline the proof idea, we first
prove completeness under logspace reductions, and go into detail later on.

Lemma 8 s(I1) is complete for BLeaf” (IT) under logspace reductions.

!Tn the sense of [Jenner et al 94], we are using a restricted form of balanced Turing machines,
therefore we write BLeaf. Compare Section 4.2.

22

Proof: It remains to show hardness. Let L € BLeaf” (IT). Then there exists some
NP machine M, s.t. L = {z[lM(z) € II}. Without loss of generality we may
assume that M is a ‘guess and check’ machine with 4 tapes: the input tape, a tape
for the guessed string, a work tape and an output tape. Consider the machine M,
obtained by fixing the input x and providing the nondeterministic choices via the
input tape. Let |z|' be an upper bound for the number of nondeterministic choices
on the input tape. M/ can be easily obtained from M by interchanging the access
to the first and second tape. By well-known simulation techniques, machine M/
is equivalent to a circuit ¢(M.) of size |z|°1) with |z|' input gates. ¢(M!) can
be easily constructed in logspace. It follows that € L iff ¢(M]) € s(II) which
concludes the proof. O

In order to simplify the projection reduction proof to follow, we introduce an
ad hoc variant of ‘guess and check’ NP-Turing Machines called nice machines.
A nice machine by definition supports the construction of a machine like M,
above. Let n! be an upper bound on the number of nondeterministic choices of
the machine. (Clearly, n' is not greater than the time bound.) Then the TM
proceeds as follows:

1. If the work tape is not empty goto 5

2. Copy the input and n! —n blanks on the work tape.
3. Write n' nondeterministic bits on the worktape.
4. restart without erasing the worktape

5. Proceed like an ordinary NP machine, with the input provided
by the left half of the worktape and the nondeterministic
choices provided by the right half of the worktape.

Thus, if we provide both the input string and the nondeterministic choices
on the worktape of a nice Turing Machine, then it turns into a polynomial time
Turing Machine whose work tape serves as input tape, too. Otherwise, i.e. if the
worktape is empty, the machine proceeds as usual. We see that a nice machine
supports interchanging the input and the guess string like in the proof of Lemma
8.

Theorem 2 s(I1) is complete for BLeaf” (IT) under projection reductions.

Proof: It remains to show hardness. Let L € BLeaf” (IT). Then there exists some
nice Turing machine M, s.t. L = {A|IM(A) € II}. Without loss of generality we

23

may assume that L C Struct(«). We have to find a reduction ¥, s.t. A € L iff
U(A) € s(II).

Consider machine M with time bound n* and let the input stucture A be

fixed. Let M4(g) denote the output of the machine M, when it starts with
A, |A|' — |A| blanks and a guess string g of length |A|" on its worktape. It is
easy to see that M4(g) outputs the bit at position val(g) of [M(A). It follows
from Theorem 5.1 in [Balcdzar et al. 88] that there exists a circuit ¢(M4) of size
| A|°M) which simulates M 4. Therefore gen(c(M,)) = ™ (A) and hence A € L
iff IM(A) € I iff gen(c(My)) € 1L iff ¢(M4) € s(IT).

We still have to show that ¢(M4) can be effectively constructed from A by
projection reductions. This construction is easier than in the Conversion Lemma,
and we shall not do it in such detail again.

Like in the proof of the conversion lemma, we construct an array of glimpses.
By choosing the arity sufficiently high, we can make sure that the array is large
enough to simulate the computation. Unlike in the proof of the Conversion
Lemma, the glimpses do not need a p(t) bit any more, because we do not have
direct access. However, we use that bit to distinguish the rightmost unused work
tape cell. Since M is nice, all time levels of the array of glimpses for M4 except
the first one are independent of A. Therefore, they can be easily constructed
by projection reductions. As for the first time level, we locate the input gates
of the circuit and an appropriate number of blanks on the left side, followed by
the projection of the contents of A, and by the tape end bit. Since we want the
machine to operate with the nondeterminstic bits provided from the worktape,
we set the initial state of the machine equal to 5. (See the definition of nice
machines above.) This concludes the proof. O

Remark: Note that again the only operation which is not expressible by mono-

tone projection reductions is projecting the truth values of A into the first row
of the circuit.

Corollary 2 [s(II)],,,; = BLeaf” (1)
4.2 Eliminating Self-Embeddability by Compact Encod-
ing

The approach of the last Section works only for self-embeddable problems for
similar reasons as in Section 3.1: Consider again the problem 3C'OL* from Section
2.3 obtained by removing all instances of exponential size. Since leafstrings are

24

always of exponential size, it follows that BLeaf” (3COL*) C P while the original
definition yields NEXP.

In [Jenner et al 94|, the concept of a balanced nondeterministic Turing Ma-
chine is introduced. A balanced machine is a nondeterministic Turing machine
where all computation branches have equal depth n' like above, but with the
difference that the machine need not go into all 2" nondeterministic branches.
However, if it goes into a branch, it has also has to go to all lexicographically
smaller branches.? Thus, a leafstring may have size smaller than 2" Tt was shown
in [Jenner et al 94] that this model coincides with [Hertrampf et al 93] and, for
complexity classes closed under padding, it also coincides with [Bovet et al 92].

Note that the bits of the binary notation of a position within the leaftstring
are equal to the sequence of nondeterministic decisions in the corresponding com-
putation branch. Consider a balanced Turing machine M. Then there exists a
polynomial time Turing machine N which on input of a word w computes the
length of the leafstring /" (w), i.e. the lexicographically greatest branch of M on
input w: To see this, note that for a given branch, it can be checked in polynomial
time if M on input w can go along this branch. Thus, N can find the largest
branch by binary search.

Therefore, we can assume without loss of generality that a balanced NP
Turing machine is described by a nice guess and check NP Turing machine, and
an additional P Turing machine which computes the length of the leafstring.

Thus, the leaf string definition for the general case becomes slightly modified:
For two machines M, N, let ™" (z) denote the leaf string obtained from cutting
off IM(x) at position N(x). Then we can define

BLeaf” (V) = {L| 3M, N : L = {z[I""(z) € Y'}}
almost like above.

This new definition certainly matches the compact succinct encoding from
Section 3.2: In fact, Lemma 7, i.e. the membership proof, holds for this encoding:
Given two circuits C, Cs, we use the same NP machine as in the proof of Lemma
7 to obtain a leafstring equivalent to gen,(C). The polynomial time machine has
to restrict the length of this leaftstring according to the domain size described
by Cs. This can be done by binary search, because Cj evaluates to 1 for ’small’
assignments to the input gates, and to 0 otherwise. (Recall that Cj is syntactically
restricted, compare Section 3.2.)

Let us turn to Theorem 2. The idea of the proof is the following: given a

2Note that a branch A is said to be lexicographically smaller than a branch B if its position
in the leafstring is smaller than the position of B.

25

language L € BLeaf(II), consider the machines M, N, s.t. L = {A[IMN(A) €
1}, and encode them as circuits C,,Cs. As for the NP Turing machine M,
the construction of C, from M/ has been described in the proof of Theorem
2 above. Since N is just a normal polynomial time Turing machine, it can be
easily simulated by the array of glimpses technique as a boolean circuit. At the
last time level of this simulation circuit we by assumption find the length of the
leafstring of M in binary notation.

Thus, we construct Cs in the following way: The core circuit Cy of Cy is the
simulation array for N, where the first time level has A as its fixed input. Like
in Section 3.2. we embed (' into the lexicographical comparison circuit Cs by
a monotone reduction. Therefore, Cs decides if a given position lies within the
leafstring.

4.3 An Alternative Proof of the Upgrading Theorem

In this section, we shall give an alternative proof of the Upgrading Theorem from
Theorem 2, while the Strong Conversion Lemma 5 cannot be derived in this
way. Note that all results of this section hold under normal succinct encoding for
self-embeddable problems and under the compact succinct encoding for arbitrary
problems.

Corollary 3 (Weaker Conversion Lemma) If A <[B then sA <, sB.

Proof: A <PIT B implies BLeaf” (A) C BLeaf”(B) by Lemma 2.13 in
[Bovet et al 92]. By Theorem 2, [sAlyroj C [$Blproj and sA € [sBlyro. We
conclude that sA <,,.,; sB. O

Since projections are not closed under iteration, this Conversion Lemma is
not strong enough to prove the Upgrading Theorem.

In fact, we can prove our intuitive notion that s(II) is not complete for
BLeaf” (IT) under monotone reductions:

Proposition 1 [s(IT)|[7% C [s(II)]pre;

proj

Proof: Let = be a problem, s.t. Z <7/%% s(II) via a monotone reduction ®.
W.lo.g. assume that = is a graph problem and (n, E) is a graph. Then (n, E) € =

ift ®(n, E) € s(II). Let (n, F) be an arbitary other graph and consider (n, EUF).

26

Since @ is monotone, ®(n, E U F) is a circuit obtained from ®(n, E) by adding
some more gates on formerly undefined positions. Those gates however are ir-
relevant, because there is no way to change the meaning of a circuit without
removing any gates. Therefore, gen(®(n, E)) = gen(®(n, E U F)) and conse-
quently (n, E) € Ziff (n, EUF) € Z. Since I was arbitrary, we conclude that =
must be monotone, as must be all problems, which are reducible to s(IT) by mono-
tone reductions. Since BLeaf” (IT) = [s(II)],ro; 2 P contains not only monotone
problems, the result follows. O

Lemma 9 proves our intuition that leaf languages are a more concise measure
than succinct representations.

Lemma 9 If long(C) C D, then C C BLeaff(D). Moreover, the converse
implication does not hold.

Proof: Let L € C, and consider long(L). By assumption, long(L) € D. We
show that L can be recognized by a leaf language with leaf pattern long(L): On
input w, the NP machine just has to scan w and guess a bit for each bit of w.
If the guessed bits are lexicographically smaller than w, the machine accepts,

otherwise it rejects. Thus, like in Lemma 6, the leaf string is a word from {1}%,
which lies in long(L) iff w € L.

As for the converse implication, consider a counterexample based on the re-
sults from [Hertrampf et al 93]: Let D = REG be the regular languages, and
let C' be PSPACE. Then long(PSPACFE) =L ¢ REG, but on the other hand
BLeaf”(REG) =PSPACE by [Hertrampf et al 93]. O

The lemma can be used to give an alternative proof of the upgrading theorem:

Corollary 4 The Upgrading Theorem, I1
Let C and D be complexity classes, s.t. long(C) C D. If A is D-hard under
PLT-reductions then sA is C-hard under projection reductions.

Proof: Suppose that long(C) C D, and let A be D—hard under PLT reduc-
tions. By Lemma 9 it follows that C C BLeaf” (D). Let L € D, then L <FPLT A
and therefore, we conclude with Lemma 2.13, [Bovet et al 92] that BLeaf”' (L) C
BLeaf"(A), and that BLeaf” (D) = U,p BLeaf” (L) C BLeaf” (A4). Therefore,
C C BLeaf”(D) C BLeaf”(A). Hence, s(A) is C-hard under projection reduc-
tions. O

27

5 Completeness Results

5.1 Problems Involving Circuits

In this section, we deal exclusively with self-embeddable problems. Therefore, we
can apply the encoding by a single circuit.

The problem CIRCUIT SAT is the decision problem if there exists an assign-
ment to the input gates of a given circuit, s.t. the circuit outputs 1. CIRCUIT
SAT is well-known to be NP complete under logspace reductions. We show that
completeness even holds for projection reductions:

Corollary 5 CIRCUIT SAT is NP complete under projection reductions.

Proof: Let 7 = (T'), Lyp = {A € Struct(r) : [T#| # 0}. s(Lyp) is a natural
encoding of CIRCUIT SAT: A circuit C is a true instance of s(Lyp) iff T9¢(¢) is
not empty iff there exists an assignment to the input gates of C, s.t. C evaluates
to 1. By Theorem 2, we conclude that s(Lxp) is complete for BLeaf” (Lyp) under
projection reductions.

On the other hand, BLeaf" (Lyp) = NP, since as a leaf pattern, Lyp says
that a string is accepted iff there exists at least one accepting computation path
(see [Hertrampf et al 93]). This concludes the proof. O

Remark: Note that the encoding of Lyp as a binary string coincides with the
language OR in [Jenner et al 94].

This technique applies to yet another central problem in complexity theory:
Given a circuit C' and an assignment to its input gates, CIRCUIT VALUE is the
problem of computing the output value of the circuit.

Corollary 6 CIRCUIT VALUE is P complete under projection reductions.

Proof: Let 7 = (T), Lp = {A € Struct(r) : A = T(0)}. A circuit C is in
s(Lp) iff C outputs 1 upon setting all input gates to 0. s(Lp) is a reasonable
encoding of CIRCUIT VALUE, because other input values can be simulated by
adding negation gates.

BLeaf”(Lp) = P because the pattern says that a string is accepted iff it is
accepted by the NP machine in its leftmost branch where it guesses only Os.
However, such an NP Turing machine is a P Turing machine. O

28

Remark: By Lemma 4, it follows that even CIRCUIT VALUE with negation
restricted to input gates is P complete under projection reductions. Essen-
tially, this can be seen as an encoding of MONOTONE CIRCUIT VALUE, see
[Papadimitriou 94].

Thus, Upgrading Theorem 1 allows us to sharpen Theorem 20.2 and its Corol-
lary 2 from [Papadimitriou 94]:

Corollary 7 SUCCINCT CIRCUIT SAT is NEXP complete under projection
reductions.
SUCCINCT CIRCUIT VALUE is EXP complete under projection reductions.

Of course, this upgrading can be iterated, see Section 6.

5.2 Completeness under Monotone Projections

In this section, we show the announced completeness results under monotone
projection reductions. All results of this section hold for both compact and
normal succinct encoding.

Let us review why the results of Sections 3 and 4 did not work out for com-
pleteness under monotone projection reductions:

1. In the proofs of Lemma 6 and Theorem 2 we faced the problem that a
monotone reduction cannot map a relation into a boolean circuit in such
a way that each tuple is mapped to a gate which evaluates to 1 (0) if the
tuple is contained (not contained resp.) in the relation. The reason is that
monotone reductions can use only the positive facts (i.e. the tuples which
are contained in the relation) to construct the circuit, because checking if
a tuple is not contained in the relation certainly involves a negation.

2. In Proposition 1 we have proved that completeness under monotone reduc-
tions indeed is impossible. The major argument in the proof of Proposition
1 was the fact that a circuit once constructed cannot be changed by simply
adding new gates.

We can overcome those difficulties by introducing implicit circuits. Recall that
in Section 2 we have postulated that all gates are computed from other gates.
Implicit circuits, however, have a somewhat looser syntax: we allow (and in
fact encourage) circuits with gates pointing to positions where no other gate is

29

explicitely situated. Those empty positions are assumed to compute the constant
zero function.

We immediately observe that the proof idea of Proposition 1 fails, because
empty positions can be changed into gates later on. In fact, it is now possible
to project a relation into a circuit in the way described above. Without loss
of generality, let R be a unary relation. Then we define the following arity 2
monotone mapping into a circuit:

~(<2,1>,<1,1>) =
U(<3,1><2,1><1,1>) =
U(<z,0>,<3,1><3,1>) = R(x)

< 3,1 > computes the constant 1 function. It is easy to see that the gates < z,0 >
evaluate to the truth value of R(x). Thus, we can easily adapt the above proofs,
such that both Lemma 6 and Theorem 2 hold for monotone projections, therefore
both Conversion Lemmas coincide and we obtain a strictly stronger version of
Theorem 1 (the Upgrading Theorem) with the projection reductions replaced by
monotone projection reductions. Instead of s(II) we write i(II) to denote the
implicit succinct version of II.

Corollary 8 [i(II)]™ = BLeaf” (II)

proj —

Thus, we obtain stronger completeness results at the cost of losing the struc-
tural distinction between monotone projections and other projections. While
s(IT) =po% s(Z) means that IT and = are closely related, i(IT) =97 i(Z) follows

already from Il =p;7 =. Thus, the E;"T‘;’;- clusters of the s encoding are finer.

From Corollary 8, we can easily obtain concrete problems complete under
monotone projection reductions. In fact, it was stated by Stewart in [Stewart 93a,
Stewart 94| that no problems are known to be complete under monotone projec-
tions for natural TM-defined complexity classes. (For monotone NP, Stewart
has proven completeness under monotone reductions in [Stewart 94].)

Corollary 9 IMPLICIT CIRCUIT SAT is NP complete under monotone pro-
jection reductions.

IMPLICIT CIRCUIT VALUE is P complete under monotone projection reduc-
tions.

While IMPLICIT CIRCUIT SAT appears to be unnatural, IMPLICIT CIR-
CUIT VALUE is a natural encoding of CIRCUIT VALUE where all gates without
explicit description serve as input gates with value 0.

30

In a similar way, using the leaf string characterizations of [Bovet et al 92|, one
can show the following results:

Corollary 10 The implicit version of Xy QUANTIFIED CIRCUIT SAT is &
complete under monotone projection reductions. Its succinct version is NEXP -
complete under monotone projection reductions.

In [Stewart 91] it has been shown that HP is not complete for NP under
monotone reductions unless NP=co-NP. It follows that i(Lxp) %707 H P unless

NP=co-NP. In fact, one can show that i(Lxp) £,5% HP, using the following
observation:

Proposition 2 Let IT C Struct(m) be a nonmonotone problem, and let = be a
monotone problem. Then IT L7 =

—

proj

Proof: Let M, M’ € Struct(r), s.t. M € II, M' ¢ I, and M C M’. Such
structures must exist, because II is nonmonotone. Let ® be a monotone reduction

from IT to =. Then ®(M) € = and ®(M') ¢ Z. On the other hand, the
monotonicity of ® implies that ®(M) C ®(M’), whence the montonicity of =
implies that ®(M’) € Z, contradiction. O

Thus, we can sharpen Corollary 4.3 from [Stewart 91]:

Corollary 11 HP is not NP-complete under monotone projection reductions.

Proof: HP is monotone, hence the result follows from Proposition 2. O

In particular, we obtain

Corollary 12 II <™ j(Lyp) &M% I, for all monotone 11 which are NP-

proj proj
complete by projection reductions.

To the end of this section, let us demonstrate how to obtain completeness
results for less common complexity classes: The class parity P, i.e. @ P, consists
of those languages which are accepted by an NP machine if it has an odd number
of accepting computation paths. It is immediate to find a complete problem for
@ using our approach: Let Lgyp = {(n,T") s.t. |{z: T(z)}| is odd.}. Then
i(L® p) is complete for @ P under monotone projection reductions. Similary,

31

the class PP has a complete problem i(Lpp), where Lpp = {(n,T?) : |{z :
T(x)}| > |{z : “T(X)}|}. Note that Lgyp is self-embeddable, therefore the
normal succinct encoding suffices. On the other hand, PP needs the compact
succinct encoding.

6 Iteration

Our improvement of the complexity upgrading results allows iterative application.
That is, given a problem A complete under PLT reductions, we can assert the
complexity of s(A), i(A), s(s(4)), i(i(A)), etc.

For this purpose, we define the notion of k—fold succinct representation: For
a problem II, its k—fold succint representation is 45 (II) := (... (¢(II)...). As an
———r

. Lo . k times
informal problem description, this amounts to

k—1I
Instance: A circuit C
Query: gen(...(gen(C)...) €11 ?
—_—

k times

We define the tower function
2774

t(n, k) = 2%

k times

It is now easy to give a lot of complexity characterizations. This is exemplified
by the following few corollaries:

Corollary 13 IfII is NP-complete under PLT-reductions, then ix(I1) is
NTIME(t(n, k)) complete under monotone projection reductions.

Thus, for example k—CIRCUIT SAT is complete for k-INEXP under mono-
tone projection reductions.

Corollary 14 If 11 is logspace-complete under PLT-reductions, then ix(I1) is
DSPACE(t(logn, k)) complete under monotone projection reductions.

Corollary 15 IfII is ©; complete under PLT-reductions, then iy (1) is
DSPACE(t(logn, k))szl complete under monotone projection reductions.

32

The class ELEMENTARY is defined as U;so DTIME(¢(n,7)). Since the
classes mentioned above can be easily seen to be located between the levels of
ELEMENTARY, we obtain the following characterization for elementarily de-
cidable problems:

Corollary 16 II € Struct(7) is an elementarily decidable problem iff there exists

a constant k, s.t. IL <7o% ix(Lp).

A computational problem IT C Struct(7) gives rise to a generalized quantifier
[IT](Ax : ¢(x)) which evaluates to true iff the structure described by ¢ belongs to
II. (For exact definitions, refer to [Immerman 87).)

Consider the logic FO, + [ix(Lp)], i-e. the extension of first order logic by the
generalized quantifier obtained from ix(Lp). FO4+ [i*(Lp)] denotes the logic ob-
tained by adding all such quantifiers to F'O,. Then it is easy to see the following:

Corollary 17 FO; + [i*(Lp)] captures ELEMENTARY.

It follows that both logics have normal forms, i.e. each class of structures de-
finable in one of the above logics is definable by a sentence of the form [sy (Lp)](Ax :
#(x)), where ¢ is a monotone projection formula.

7 Conclusion

The succinct representation technique has been shown to match the NP leaf
language approach to unify the treatment of complexity classes in a fortunate
manner. In particular, it was possible to find generic complete problems under
very weak logical reductions for all leaf language definable syntactic complexity
classes.

The notion of self-embeddability has been shown to be very helpful for proving
completeness results under weak logical reductions. In fact, one can argue that
an informally stated problem should be encoded in a self-embeddable manner to
allow easy reducibility.

A natural question to ask is if there is a similar correspondence between
circuits and NL leaf languages, as investigated by [Jenner et al 94].

This hardly seems to be possible using our method because a result in the
style of Theorem 2 involves simulating NL machines by boolean circuits. This

33

rises the old open problem of NC versus logspace, so it seems to be a challenging

question.

In future work we would like to extend the approach of this paper to the
general framework presented in [Bovet et al 92, Bovet et al 91] where the pat-
tern sets for acception and rejection are not necessarily complementary, and the
boolean circuits are equipped with oracles.

References

[Balcdzar et al. 88|

[Balcdzar et al. 92]

[Balcdzar 95]

[Barrington 89|

[Bovet et al 91]

[Bovet et al 92]

[Cai, Furst 87]

[Eiter et al. 94]

J.L.Balcazar, J.Diaz, J.Gabarro: Structural Com-
plexity I. Springer Verlag, 1988.

J.L.Balcdzar, A.Lozano, J.Toran: The Complexity
of Algorithmic Problems on Succinct Instances. Al-
gorithms Review 2(3), 1992.

J.Balcazar: The Complexity of Searching Implicit
Graphs. In: Proceedings of the ICALP 95. Report
LSI-95-3-R, Universitat Polytecnica de Catalunya.
To appear in Siam Journal of Computing.

D.A.Barrington: Bounded-Width Polynomial-Size
Branching Programs Recognize Exactly Those
Languages in NC'. Journal of Computer and Sys-
tem Sciences, 38, 150-164 (1989).

D.P.Bovet, P.Crescenci, R.Silvestri: Complexity
classes and sparse oracles; Proceedings of the 6th
Structure in Complexity Theory Conference (1991),
pp-102-108.

D.P.Bovet, P.Crescenci, R.Silvestri: A uniform ap-
proach to define complexity classes. Theoretical
Computer Science 104(1992), pp.263-283.

J.-Y. Cai, M.Furst: PSPACE Survives Three-Bit
Bottlenecks. International Journal of Foundations
of Computer Science 2 (1991), pp.67-76.

T.Eiter, G.Gottlob, H.Mannila: Adding Disjunc-
tion to Datalog. In: Proceedings of the Tuwelfth
ACM SIGACT SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS-94), 1994.

34

[Enderton 72

[Fagin 74]

[Galperin, Widgerson 83]

[Gottlob et al 95]

[Gurevich 88]

[Hertrampf et al 93]

[Hodges 93]

[Immerman 87]

[Jenner et al 94]

[Lozano, Balcdzar 89]

H.B. Enderton: A Mathematical Introduction to
Logic. Academic Press, 1972.

R.Fagin: Generalized First Order
Spectra and Polynomial-Time Recognizable Sets.
In: R.M.Karp, ed., Complexity of Computation,
pp.43-74. AMS, 1974.

H.Galperin, A.Widgerson: Succinct Representa-
tion of Graphs. Information and Control 56, 183-
198 (1983).

G.Gottlob, N.Leone, H.Veith: Second Order Logic
and the Weak Exponential Hierarchies. Technical
Report CD-TR 95/80, Christian Doppler Labora-
tory for Expert Systems, TU Vienna. Short version
in Proceedings of the MFCS 95, Prague, 1995.

Y.Gurevich: Logic and the Challenge of Computer
Science. In: Trends in Theoretical Computer Sci-
ence, E.Borger, ed., Computer Science Press, 1988.

U.Hertrampf, C.Lautemann,
T.Schwentick, H.Vollmer, K.W.Wagner: On the
Power of Polynomial Bit-Reductions. Proceedings
of the 1993 Structure in Complexity Theory con-
ference, pp.200-207.

W.Hodges: Model Theory. Cambridge University
Press, 1993.

N. Immerman: Languages that Capture Complex-
ity Classes. SIAM J. Computation, Vol. 16, No. 4,
pp.760-778, 1987.

B.Jenner, P.McKenzie, D.Thérien: Logspace and
Logtime Leaf Languages. Report L.SI-94-1-R,, Uni-
versitat Polytecnica de Catalunya.

A .Lozano, J.L.Balcazar: The Complexity of Graph
Problems for Succinctly Represented Graphs. In:
G.Goos,J.Hartmanis, eds., Graph-Theoretic Con-
cepts in Computer Science. Lecture Notes in Com-
puter Science 411, Springer, 1989, 277-286.

35

[Papadimitriou 94]

[Papa, Yann 85]

[Stewart 91]

[Stewart 92]

[Stewart 93a]

[Stewart 93b]

[Stewart 94]

[Vardi 82]

[Veith 94]

C.H. Papadimitriou, Computational Complexity,
Addison Wesley, 1994.

C.H. Papadimitriou and M. Yannakakis, A Note on
Succinct Representations of Graphs, Information
and Control, 71:181-185, 1985.

[.A.Stewart: Complete Problems Involving
Boolean Labelled Structures and Projection Trans-
actions. Journal of Logic and Computation, Vol.1
No.6, pp-861-882, 1991.

[LA. Stewart: Using the Hamiltonian Path Opera-
tor to Capture NP. Journal of Computer and Sys-
tem Sciences 45, pp. 127-151 (1992).

[.A.Stewart: Methods for proving completeness via
logical reductions. Theoretical Computer Science
118 (1993), 193-229.

[LA.Stewart: On Completeness for NP via Projec-
tion Translations. Lecture Notes in Computer Sci-
ence 626 (1993), pp.353-366.

[.A.Stewart : Logical Descriptions of Monotone NP
Problems. J.Logic Computat., Vol. 4 No 92-18, pp.
1-21, 1994.

M.Vardi: Complexity of Relational Query Lan-
guages. In Proceedings 14th STOC, pp.137-146,
1982.

H.Veith: Logical Reducibilities in Finite Model
Theory. M.Sc. Thesis, Technical University of Vi-
enna, Vienna, 1994.

36

