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Boolean complexity classes vs. their arithmetic
analogs

Anna Gal* Avi Wigderson'

Abstract

This paper provides logspace and small circuit depth analogs of
the result of Valiant-Vazirani, which is a randomized (or nonuniform)
reduction from NP to its arithmetic analog @P. We show a simi-
lar randomized reduction between the Boolean classes N L and semi-
unbounded fan-in Boolean circuits and their arithmetic counterparts.
These reductions are based on the Isolation Lemma of Mulmuley-
Vagzirani-Vazirani.

1 Introduction

Valiant and Vazirani [VV] gave a randomized reduction from NP to &P,
using universal hash functions. It follows that N P/poly C & P/poly.

It was an open problem if a similar result holds in the logspace world, i.e
does N L/poly C &L /poly ? One difficulty in applying the Valiant-Vazirani
reduction, is that while the computations of hash functions could be easily
embedded in CNF formulae (they used SAT as the N P-complete language
for their reduction), it is not clear how to embed them in graph reachability
or other N L-complete languages.

A similar problem exists for the circuit analog of these questions, namely
does SACT C @SAC! 7 Recall that SAC?, the circuit analog of N L, is the
class of Boolean circuits of depth O(logn) over {V, A, -} with unbounded
fan-in V and bounded fan-in A gates. Negations are allowed only at the input
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level. The uniform version of SAC? is the same as the class LOGCFL of
languages logspace reducible to context-free languages [S], [V1]. Properties
and characterizations of LOGC F'L are studied in [C], [SV]. Semi-unbounded
fan-in circuits of larger depths correspond to extensions of context-free lan-
guages [C, I, Ru, V1]. An interesting property of classes defined by semi-
unbounded fan-in circuits, proved by Borodin et al. [BCDRT], is that they
are closed under complementation for all depths that are Q(logn). We
consider the arithmetic analogs of the above complexity classes, defined by
semi-unbounded fan-in arithmetic circuits. These classes have been studied
for example in [AJ]. The class ®SAC?, the circuit analog of @L, is the
class of arithmetic circuits of depth O(logn) over {&, x}, with unbounded
fan-in @ and bounded fan-in x gates. (It is worth while to point out that
for all bounded or all unbounded fan-in circuits the analogous inclusion of
the Boolean in the arithmetic class is trivial.)

In this paper we prove both inclusions. We observe that the “right” re-
duction to use is the Isolation Lemma of Mulmuley-Vazirani-Vazirani [MVV].
We note that [MVV] showed how the Isolation Lemma can be used to
rederive the Valiant-Vazirani result for the clique function. The Isolation
Lemma can be embedded in graph reachability, generating from an arbi-
trary graph which has an s{-path another graph in which such a path is
unique. From this the N L/poly C &L /poly easily follows. Similarly, we use
an extension of the Isolation Lemma to generate from an arbitrary SAC?!
circuit which outputs 1, another circuit with the same output, which has
a unique “certificate subcircuit”. Again, the simulation by arithmetic cir-
cuits is then easy. We obtain analogous results for the corresponding classes
defined by semi-unbounded fan-in circuits of larger depths as well.

Both results extend to any finite field, not just GF(2). Moreover, both
results improve some earlier circuit complexity results.

The first is the general relation of Boolean and arithmetic circuits.
Razborov [Ra] showed that an m-input V can be well approximated by
degree log m polynomials over finite fields. Using these polynomials and am-
plifying the approximation it is possible to get O(dloglogn + logn) depth
and polynomial size semi-unbounded arithmetic circuits that simulate semi-
unbounded (and even completely unbounded fan-in) depth d Boolean cir-
cuits. Note however that we cannot hope for further improvement if we
try to simulate each Vv gate separately. Our “global” reduction gives depth
O(d + log n) simulation.

Our result on N L has an interesting application to the relationship be-
tween arithmetic and Boolean circuit depth for (arithmetic and Boolean,



respectively) matrix powering. Borodin [Bo] observed that, given a depth
d(n) arithmetic circuit for computing the nth power of an n x n 0/1 ma-
trix, it can be converted to a depth d(n)logd(n) Boolean circuit for the
transitive closure of that matrix. Moreover, the size blows up only polyno-
mially. The conversion uses arithmetic over small primes and the Chinese
Remainder Theorem. The loss in depth comes from a Boolean simulation
of the arithmetic operations over the small fields, and it was not clear if
this loss is necessary. Qur reduction of graphs to unique paths immediately
implies that any depth d(n) arithmetic circuit family as above yields a depth
O(d(n)) Boolean circuit family for transitive closure. Again, this entails no
more than polynomial blow up of size.

All our simulations (as well as Valiant-Vazirani’s) are non-uniform (or at
least randomized). A very interesting question that remains open is whether
one can remove the nonuniformity from any of these results. The only result
in this direction we are aware of is the observation in [KW] that SL C &I,
where 5L stands for symmetric logspace (the class of languages logspace
reducible to undirected s-t connectivity).

2 Preliminaries and Results

2.1 The Isolation Lemma

Let E be a finite set, and let w : F'— R be an arbitrary (weight) function.
Extend w to subsets of E by w(5) = ) .csw(e). Let F be a family of
subsets of E. For a fixed weight function w, denote by min(F, w) the weight
of the lightest set in F under w, and MIN (F,w) those subsets in F whose
weight is minimum. Clearly |MIN(F,w)| > 1 for every F and w. Now the
Isolation Lemma of Mulmuley, Vazirani and Vazirani states that choosing
w at random appropriately, there will be a unique minimum weight subset
in F with high probability.

Theorem 1 [MVV] Fiz an integer k. Pick w at random as follows: for
every e € F, w(e) is chosen uniformly from the integers in [1,k|E|], inde-
pendently of all other elements in E. Then for every F we have

Pr{IMIN(F,w)| > 1] < 1/k

In this paper we need a version of the Isolation Lemma that holds for
multisets as well, i.e. for sets possibly containing some elements with mul-



tiplicities. The support of a multiset F is the set of elements occuring in
F.

For multisets the Isolation Lemma does not hold in its original form.
However the proof of the Isolation Lemma in [MVV] yields the following.

Theorem 2 [MVV] Let F be a family of mullisets of the elements of E. Let
us assign integer weights to the elements of E uniformly and independently
from [1,k|E|]. Then with probability > 1 — 1/k, all minimum weight sets in
F have the same support.

We note that Nisan [N] proved that the Isolation Lemma holds for mul-
tisets as well if we allow larger weights depending on the maximum multi-
plicity.

2.2 Graphs, Languages and Complexity

All graphs and all paths mentioned in this paper are directed. G = G(V, F)
will denote a graph with vertices V and directed edges F, and s,{ will refer
to distinct vertices in V.

We will consider three logspace classes (and their nonuniform versions):
NL,&L, UL. The first two are captured respectively by their complete (un-
der deterministic logspace reductions) graph reachability languages STCONN,
ODD-STCONN defined below.

e (G,s,t) € STCONN iff G contains an s — ¢ path.

e (G,s,t) € ODD-STCONN iff G contains an odd number of s—¢ paths.

The class UL is not known to have such complete problems. Nevertheless
for our purposes it is captured by any language (which we generically call
UNIQUE-STCONN) satisfying the following two properties:

1. (G, s,t) has no s — ¢ path implies (G, s,t) ¢ UNIQUE-STCONN.
2. (G, s,t) has a unique s—1¢ path implies (G, s,t) € UNIQUE-STCONN .

We shall use two notions of reducibilities, performed respectively by
functions computable in RL (probabilistic logspace machines) and L/poly
(nonuniform logspace). Let T, T’ be two languages.

o T <y poty T"if there is a machine M € L/poly such that for all inputs
t,x €T < M(z)eT'.



o T <%; T"if there is a machine M € RL such that:
e T = Ma)gT’

ze€T = PriM(z)eT']>e¢

2.3 Arithmetic vs. Boolean circuits

We consider arithmetic circuits with gates from the basis {4+, —, X} (we dis-
allow division!) over a field F. Boolean circuits have the standard Boolean
basis {A,V,=}. Let dp(p) (resp. d(f)) denote the smallest depth of a poly-
nomial size arithmetic (resp. Boolean) circuit for the polynomial p (resp.
Boolean function f) using only constant fan-in gates. Semi-unbounded fan-
in circuits have constant fan-in x (resp. A) gates and unbounded fan-in +
(resp. V) gates. Semi-unbounded fan-in Boolean circuits may have nega-
tions only at the input level. We denote by dp(p) (resp. d(f)) the smallest
depth of polynomial size semi-unbounded fan-in arithmetic (resp. Boolean)
circuits for p (resp. f).

SAC* denotes the class of languages accepted by polynomial size, depth
O((logn)*¥) semi-unbounded fan-in Boolean circuits. @$SAC* denotes the
class of polynomials over G'F(2) computed by polynomial size, depth O((logn)¥)
semi-unbounded fan-in arithmetic circuits over GF(2).

As usual, we will be interested in circuit families for families of polyno-
mials and functions.

On input an n vertex graph G, presented by a 0/1 matrix, we consider
the polynomial #STCONN computing the number of s — ¢ paths in G.
This is the arithmetic analog of the Boolean function STCONN.

2.4 Main results

Theorem 3 STCONN <Y UNIQUE-STCONN

Theorem 4 STCONN <p,/,,;, ODD-STCONN
A direct corollary of the second theorem is the following:
Corollary 1 N L/poly C &L/poly

In fact, there is clearly nothing special about counting modulo 2. The
same result holds for the Mody L classes defined in [BDHM].



Corollary 2 N L/poly C ModyL/poly

Another corollary of Theorem 4 shows that the depth of polynomial
size Boolean circuits for STCON N is never worse than that of arithmetic

circuits for #STCONN.
Corollary 3 d(STCONN)= O(do(#STCONN))

We extend the techniques used for proving the above theorems to circuits.

Theorem 5 For every Boolean function f on m variables and every finite

field F, di(f) = O(d(f) + log n)
Corollary 4 LOGCFL/poly C $SAC!
Corollary 5 SACk C ¢SACk

Theorem 6 Fvery Boolean function f on n variables can be approximated,
i.e. computed on > (1 — 2_’“) fraction of the inputs, by semi-unbounded
fan-in arithmetic circuits over any fized finite field in polynomial size and

~

depth O(d(f) +logk), for arbitrary k > 0.

3 Proofs for logspace classes

3.1 Proof of Theorem 3

We first need some simple definitions and lemmas. Let G(V, E) be a directed
graph, and w a weight (distance) function on E. We let dy(a,b) denote
the length of the shortest path between two nodes a,b € V in this weighted
graph. The following lemma follows immediately from the Isolation Lemma,
taking the family of subsets F to be all s—{ paths in G.

Lemma 1 Let G be a graph with an s—t path. Let w be chosen at random
E|]. Then

with each weight independently taken uniformly from [1,2
Pr[3a unique s-t path of distance dw(s,t)] > 1/2

Comment: Observe that increasing the range of w to |V|?|E| would
yield a graph in which (with high probability) the shortest distance between
every pair of nodes is achieved by a unique path. We see no application of
this observation.



Now given a graph G(V, E), a weight function w and integer [ define the
(unweighted, layered) graph G (U, F) as follows. For every vertex a € V
and every integer 0 < ¢ < put the vertex < @, > in U (i.e. [+1 copies of V,
arranged in layers). For every edge e = (a,b) € E and every 0 < ¢ <[ —w(e)
put an edge (< a,i>,< b,i+ w(e) >)in F.

Lemma 2 G can be constructed from input G,w,l in deterministic logspace.

Lemma 3 e If G has no st path, then for every w and I, G, has no
< 8,0 >-< 1,1l > path.

o IfG has an s-t path and | = d(s,t) then G', has an < 5,0 >-< 1,1 >
path. Moreover the later path is unique if the shortest weighted s—t
path in G is unique.

We conclude Theorem 3 from the above lemmas as follows: Given G
we construct G%V with w picked at random as in Lemma 1, and 1 chosen
uniformly from [1,2|V]||E]]. Note that Pr[l = dw(s,t)] > 1/|V|>. Also, it
is clear that this reduction can be performed in RL, if we are allowed to
print the edges of the new graph in the “right” order (i.e in groups of edges
related to each weight).

Comment: We caution that the fact that this reduction can be carried
in RL does not mean that we can use it as a subroutine in a logspace
computation. If any algorithm needs to query some edge of the output

graph of this reduction more than once or in the “wrong” order, we need to
remember the random bits used for the weights. This will not hurt us later,
as we’ll move into nonuniform reductions.

3.2 Proof of Theorem 4

The random reductions of the previous subsection, together with a standard
counting argument yield the following.

Lemma 4 Fiz m = nt0

. There exists m pairs {(w;,1;)|1 < j < m} satisfy-
ing the following for every graph G on n vertices.

o For every j, l; and the weights in w; are integers below n>.

o If G has no s—t path, then for every j, if,j has no (s,0) = (t,1;) path.

o If G has an s—t path, then there exisls j such that ij,j has a unique
(‘97 0) - (ta lj) path.



We abbreviate by (G, s;,¢;) the triple (ijj,(.s,()), (t,15)).

Now assume we get as an advice (of polynomial length) a set of m pairs
satisfying Lemma 4. On input (G,s,t), we will construct (G’,s’,t’) such
that G’ has an odd number of s—¢ paths iff G had an s—¢ path. This uses a
standard idea of adding direct s—¢ edges to change the parity of the number
of s—t paths.

Construct the graphs (G}, s;,t;) for 7 € [m]. To each of them add the
direct edge (s;,¢;). Identify ¢; and s;41 for every j < m. Change the name
of 51 to s, and of ¢,,, to ¢’. Finally, add the direct edge (s',t’) and call the
new graph G'. It is easy to verify that (G’,s’,1') satisfies the requirement
above, and we are done.

3.3 Proof of Corollary 3

First notice that the construction of the gragh G’ from the input graph G
in the proof of Theorem 4 can be easily carried out by an NC? circuit, i.e.
a Boolean circuit D of polynomial size and O(logn) depth.

Now assume dg(#STCON N) = d(n) (note that logn < d(n) < (log n)?).
Let C’ be the arithmetic circuit for #5TCON N for n'° vertex graphs. Thus
C' has polynomial size and depth d(n'®) = O(d(n)) (using the upper bound
on d and assuming d is a reasonably smooth function). Convert C’ into a
Boolean circuit C' simply by thinking of the gates as performing the arith-
metic operations over GF(2), and then simulating them with Boolean gates.
Thus C' also has polynomial size and depth O(d(n)).

The Boolean circuit for STCON N we promised is obtained simply by
identifying the outputs of the circuit D with the inputs of the circuit C'. By
Theorem 4 it correctly computes STCON N for n vertex graphs, and by the
discussion above it has depth O(d(n) + logn) = O(d(n)) and polynomial

size.

4 Circuits and certificates

To obtain an analog of Theorem 3 for circuits, we need an analog of isolating
unique paths for circuits.

Let us consider an arbitrary Boolean circuit with V, A gates, provided
with the 2n input literals x1,...,2,,%1,...,Z,. Fixing a 0-1 assignment to
the variables z1,...,z, determines the values computed by each gate of the
circuit. We refer to the wires of the circuit as edges. The edges are oriented
from the inputs of a gate ¢ to g. For a fixed input assignment we label each



edge of the circuit with the value computed by the gate at the starting node
of the edge. For each gate that outputs 1, there is a set of edges all labelled
1 that forces the given gate to output 1. We call the graphs formed by
these edges certificates. A certificate depends on the gate it belongs to and
on the particular assignment to the input variables. There may be several
certificates for the same gate on the same input. Gates that output 0 on a
given input do not have certificates on that input.

Let us now give a formal definition of certificates. We denote the set of
gates that are inputs to a given gate g by I(g).

Definition 1 The circuit 7 is called a partial circuit of C if it satisfies the
following conditions:

o the setl of gates of Z is a subsetl of the setl of gates of C
o the oulput gate of 7 is the oulput gate of C,
o for every A gate g of Z, Iz(g) = I(g),
o Jor cvery V gate g of 7, 0 # Iz(g) C I(g),
where 17(g) stands for the set of input gates to g in the circuil Z.

Definition 2 A partial circuit 7 is minimal, if for every V gate g of Z,
[1z(g)| = 1.

Let a be a fixed assignment to the input variables. Let € € {0,1}. We
say that g(a) = € if the gate g outputs the value € on the input assignment
a. We say that C'(a) = € if the circuit C' outputs the value € on the input
assignment a.

Observation 1 If Z is a partial circuit of C' then given any input assign-
ment o, Z(a) < C(a).

Definition 3 A certificate for C(a) = 1 is a partial circuit 7 of C that
satisfies the condition that all the gates of Z output 1 on the assignment a.

We note that an equivalent definition is to require that all the literals
participating in Z are set to 1 by the assignment a.

Definition 4 For a given gate g of a circuit C' the subcircuit C is defined
as follows:



o the set of gates of C, is a subsel of the set of gates of C,
e the output gate of Cy is the gate g,
o for every gate h of Cy, Ic,(h) = I(h).
Definition 5 A certificate for Cy(a) = 1 is called a certificate for g(a) = 1.

We note that a certificate for g(a) = 1 exists if and only if g(a) = 1.

Definition 6 A certificate is minimal if the corresponding partial circuit is
minimal.

Observation 2 If there is a unique certificate for g(a) = 1, it has to be a
minimal certificate.

Let G be a partial circuit of the circuit C', and suppose that the edges of
(' have been assigned weights. Let F be the set of edges of GG. For a given
partial circuit G with edges F we define a multiset E(G) with support F
as follows. We expand G into a tree G by taking the output of G to be the
root and by splitting the nodes of G that have outdegree > 2 into several
copies. We define E(G) to be the multiset of edges of GG, taking each edge
with multiplicity according to (. We assign the weight of each edge of G to
all of its copies in E(G).

Definition 7 We define the weight of a partial circuit G to be the weight
of the multiset E(G).

We define the weight of a certificate to be the weight of the corresponding
partial circuit.

Lemma 5 Let us assign integer weights to the edges of the circuit C' uni-
formly and independently from [1,2m], where m is the number of edges of C'.
Then for every fized input assignment a such that C(«a) = 1, with probability
> 1/2, there is a unique minimum weight certificate for C(a) =1 .

Proof The statement of the lemma follows from Theorem 2, since multisets
with the same support belong to the same certificate.

Now we are ready to prove an analog of Theorem 3 for circuits.
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Lemma 6 Let C be a polynomial size, depth d = O(logn) circuit with un-
bounded fan-in V gates and bounded fan-in A gales. Let m be the number
of edges of C', and let ¢ be the maximum fan-in of the A gates. One can
construct a polynomial size, depth < 2d circuit C" with unbounded fan-in V
gates and bounded fan-in A gales, such that

1. if C(a) =0 then C'(a) =0

2. if C(a) = 1 then with probability > 1/c%4m, there is a unique certifi-
cate for C'(a) = 1.

Proof For simplicity, we present the construction for circuits with A gates
of fan-in 2. It can be generalized easily to any fan-in ¢. The size remains
polynomial if ¢ is constant.

We assume that both C' and C' are provided with the values of the 2n
input literals @1,..., %, T1,..., ZTp.

Let C' be a Boolean circuit with V gates of unbounded fan-in and A gates
of fan-in 2, that has polynomial size and depth d = O(logn). Let m be the
number of edges in the circuit. We assign a weight to each edge of the circuit
by chosing a random integer uniformly and independently from [1,2rm].

Next we choose a random integer I uniformly from [1,2%2m]. (292m is
the maximum possible weight of a minimal certificate.)

Let us denote by I'(C') the set of gates of the circuit C.

I'(C") will consist of two disjoint classes of gates: principal gates and
auxiliary gates. We denote the set of principal gates by ® and the set of
auxiliary gates by ®,,,. Thus T'(C") = ® U ®,,,.. All principal gates (except
the ones for the literals) will be V gates and all auxiliary gates will be A
gates.

® will be a subset of I'(C) x {1,...,L}. For a fixed ¢ € I'(C) the set
H(g) C{g}x{1,...,L} will denote the set of all principal gates of the form
(ga Z)a and ¢ = L'JgEF(C’)}I(g)'

If g is an A gate of C then the gate (g,7) € H(g) will be associated with
a set A(g,1) C @,y of auxiliary gates where 0 < |A(g,1)| < L2

We refer to the gates in the sets H(g) and A(g,t) as copies of g.

We construct the circuit C’ inductively. We say that a gate g € T'(C)
has been processed if we have created all its copies in C".

We start by processing the literals. For each literal zf we create a gate
labelled (z§,0). This gate will output the value of the corresponding literal
z{. Fach literal will have only one copy.
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Let g € I'(C') be an V gate that has all its input gates processed. Let wy,
denote the weight of the edge from h € I(g) to g. For each gate h € I(g) we
consider the set H(h). For each (h,i) € H(h) we create an V gate (g,i+ wp,)
if i+ wp, < L and if (g, 7+ wp) has not been created yet. The input gates to
the V gate (g,J) are the gates (h, i) with h € I(g) satisfying ¢ + wj, = j.

Let g € T(C) be an A gate with input gates hq, hy such that hy and hy
have been processed. Let wy and ws denote the weights of the corresponding
edges from hy and hgy, resp., to g. For each pair of gates (hy,i) € H(hy),
(ha,j) € H(hy) such that ¢ + j + wy + wy < L we create an A gate in
A(g,i4 7+ w1 +wq) with input gates (hy,%), (ho,7). Foreach k € {1,...,L}
such that A(g, k) # () we create an V gate (g, k) with input set I((g,k)) =
A(g, k).

Let gou: be the output gate of the circuit C'. The output gate of the
circuit C’ will be the gate (gous, L) if it exists. If we did not create such a
gate, we make the output of C' to be constant 0.

The circuit C’ we constructed has the following properties.

Observation 3 Let g be any gate of C. Then (g, w) € T'(C") if and only if
the circuit Cy has a minimal partial circuil with weight w.

Observation 4 Let a be a fized assignment to the input variables and
(g,w) € T'(C"). Then (g,w)(a) =1 if and only if there is a minimal certifi-
cate for g(a) = 1 with weight w.

We note that these properties hold only if we define the weight of partial
circuits and certificates as in Definition 7, and that these properties are
crucial for proving Lemma 6.

Next we show that the circuit C’ constructed this way satisfies the re-
quirements of Lemma 6.

The depth of €' is < 2d and the size of C" is < 2L28 = n®), where §
is the size of C'.

For any gate g of C' and all gates (g,7) of C’ we have (g,%)(a) < g(a) on
any assignment . Thus if C(a) = 0 then C’(a) = 0.

To prove that the second requirement of Lemma 6 is satisfied, we need
the following lemma.

Let a be a fixed input assignment such that C'(a) = 1. Let F, # 0 be
the family of all certificates for C'(a) = 1. Let W denote a fixed assignment
of weights to the edges of C. Let p(W, a) denote the weight of the minimum
weight certificate in F,.
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Lemma 7 Suppose there is a unique minimum weight certificate in F, and
suppose that I = p(W, @) . Then there is a unique certificate for C'(a) = 1.

Proof From the conditions of the lemma it follows that there is a minimal
certificate of weight L for C'(a) = 1. By Observations 3 and 4 this means
that in the circuit C” there is a gate (gouz, L) (Where g,y is the output gate
of C'), and that C'(a) = (gous, L)(a) = 1.

Thus, there is a certificate for C’(a) = 1. If it is not unique, then there
is more than one minimal certificate for C'(a) = 1 with weight L, and we
get a contradiction. This proves Lemma 7.

The probability that there is a unique minimum weight cerificate in F,
and L = p(W,a) is at least 1/2-1/(2%2m) (by Lemma 5 and by choosing
L uniformly from [1,292m]). Thus, we proved that if C((a) = 1 then with
probability > 1/2%4m there is a unique certificate for C’(a) = 1. This
concludes the proof of Lemma 6.

5 Proof of Theorem 5 and Theorem 6

Let us first consider the case of depth d = O(logn) circuits. By a stan-
dard probabilistic argument it follows from Lemma 6 that there exist T' =
c“8nm = n©(M) circuits C1,...,C7 such that the following is true for every
input assignment «

o if C(a)=0thenVie {1,...,T}, C'(a) =0,

o if C(a)=1then 35 € {1,...,T} such that there is a unique certificate
for C7(a) = 1.

Now we are ready to construct the simulating arithmetic circuit. In each
circuit C* we replace each V gate by a + gate and each A gate by a X
gate. We denote the new circuit by $C?. We let the circuits $C1, ..., HCT
compute in parallel over a common input zq,...,2,,1 —21,...,1—z,. To
their outputs we apply a transformation that turns any value that is different
from 1 into 0, and keeps the values that are equal to 1 unchanged. Over
a given finite field this takes a constant number of gates for each OC".
To compute the V of these values, recall that the vV of T variables can be
represented by a polynomial of degree T over the given field. We compute
this polynomial by a logT depth semi-unbounded fan-in circuit with + and
x gates. Let us denote the circuit obtained this way by {$C'.

The circuits $C1, ..., HCT have the following property:

13



o if C(a)=0then Vic {1,...,T}, $C'(a) =0
o if C(a)=1then 35 € {1,...,T} such that $C’(a) = 1.

This follows from the corresponding properties of the circuits C',...,C7T
and from the fact that if there is a unique certificate for C7(a) = 1 then
OC (a) = 1.

We conclude that on any input assignment a, C'(a) = $C(a). This
proves Theorem 5 if d = O(logn).

For larger d we divide the circuit C' into r = logn depth parts and
perform the above simulation on each part. The total depth of the simulating
circuit will be < (d/r)-(2r + O(logn)) = O(d + logn), which concludes the
proof of Theorem 5.

For proving Theorem 6 we construct the circuits $C', ..., OCT and
transform their outputs to Boolean values as above. To achieve the O(d +
logk) depth for approximate simulations over a fixed finite field we use
polynomials of degree k that approximate the V of these values. By [Ra]
(cf. [Sm], Lemma 1) given any probability distribution on the 27 inputs
there exist polynomials of degree k£ that compute the V of T variables with
probability > (1—27%) over the input distribution. This concludes the proof
of Theorem 6.
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