Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

Comment 01 onFTP:
WWVECCC TR95-050Email

FTP: ftp.eccc.uni-trier.de:/pub/eccc/WWW: http://www.eccc.uni-trier.de/eccc/Email: ftpmail@ftp.eccc.uni-trier.de with subject 'help eccc'

Errata to ECCC Report 95-050 "On Yao's XOR-Lemma"

Oded Goldreich^{*} Noam Nisan[†] Avi Wigderson[‡]

December 8, 1995

The purpose of this errata is to correct some typos in the proof of Lemma 12.

- On page 23, the probability bound in Claim 12.3 should be $(1/2) + 2\epsilon$ (rather than $(1/2) + (\epsilon/2)$).
- On page 23, second line of the proof, ζ_z should be ζ_x .
- On page 24, the last line in the bound on the expectation (of $\sum_{x \in C} \zeta_x w_x$) should be $\rho(n) \cdot [(1/2) + \epsilon]$ (rather than $\rho(n) \cdot [(1/2) \epsilon]$).
- On page 24, in the Chernoff bound inequality, the treshold should be $\rho(n) \cdot [(1/2) + (4\epsilon/3)]$ (rather than $\rho(n) \cdot [(1/2) (3\epsilon/4)]$).
- On page 24, in the one-before-last sentence of the proof of Claim 12.3, the numerator should be bounded by $\rho(n) \cdot [(1/2) + (4\epsilon/3)]$ (rather than by $\rho(n) \cdot [(1/2) (3\epsilon/4)]$).
- On page 24, in the last inequality, the bound should be $(1/2) + 2\epsilon$ (rather than $(1/2) + (\epsilon/2)$).

Below we reproduce the entire corrected text (from Claim 12.3 to the end of the proof of Lemma 12).

claim 12.3: Let C_n be a circuit of size s'(n). Then,

$$\operatorname{Prob}[C_n(X_n) = f(X_n) | X_n \in R_n] < \frac{1}{2} + 2\epsilon$$

for all but a $2^{-(s'(n)^2+1)}$ measure of the choices of R_n .

proof: We define the same random variables $\zeta_x = \zeta_x(R_n)$ as in the proof of the previous claim; $\zeta_x(R_n) = 1$ if $x \in R_n$ and $\zeta_x(R_n) = 0$ otherwise. Also, as before, $w_x \stackrel{\text{def}}{=} \operatorname{Prob}[X_n = x]$, for every $x \in \{0, 1\}^n$. Let C be the set of inputs on which C_n correctly computes f; namely,

$$C \stackrel{\text{def}}{=} \{ x : C_n(x) = f(x) \}$$

For every choice of R_n , we are interested in the probability

$$\operatorname{Prob}[X_n \in C | X_n \in R_n] = \frac{\operatorname{Prob}[X_n \in C \land X_n \in R_n]}{\operatorname{Prob}[X_n \in R_n]}$$
(12)

We first determine the expected value of the numerator of Eq. (12), where the expactation is taken over the possible choices of R_n . We rewrite the numerator as $\sum_{x \in C} \zeta_x(R_n) \cdot w_x$, and bound it as follows

$$\mathbb{E}\left[\sum_{x \in C} \zeta_x \cdot w_x\right] = \sum_{x \in C} p(x) \cdot w_x$$

^{*}Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

[†]Institute for Computer Science, Hebrew University, Jerusalem, Israel.

[‡]Institute for Computer Science, Hebrew University, Jerusalem, Israel.

$$= \sum_{x \in C} \frac{\rho(n) \cdot \operatorname{Prob}[Y_n = x]}{\operatorname{Prob}[X_n = x]} \cdot \operatorname{Prob}[X_n = x]$$
$$= \rho(n) \cdot \operatorname{Prob}[Y_n \in C]$$
$$\leq \rho(n) \cdot \left(\frac{1}{2} + \epsilon\right)$$

where the last inequality is due to the hypothesis regarding Y_n . Next, we use Chernoff bound and get

$$\operatorname{Prob}\left[\sum_{x \in C} w_x \zeta_x > \left(\frac{1}{2} + \frac{4\epsilon}{3}\right) \cdot \rho(n)\right] < \exp\left(-\Omega\left(\frac{\epsilon^2 \rho(n)}{\max_x \{w_x\}}\right)\right)$$

Now, using the simplifying assumptions regarding the w_x 's and ϵ , the latter expression is bounded by $\exp(-\sqrt{s(n)}/\operatorname{poly}(n))$. Thus, for all but a $\exp(-s'(n)^2 + 2)$ measure of the R_n 's the numerator of Eq. (12) is bounded above by $(\frac{1}{2} + \frac{4\epsilon}{3}) \cdot \rho(n)$. Using the previous claim, we conclude that for a similar measure of R_n 's the denumerator of Eq. (12) is bounded below by $(1 - \frac{\epsilon}{3}) \cdot \rho(n)$. The claim follows. \Box

The lemma now follows by combining the above three claims. Claim 12.1 provides us with a suitable \mathbf{Y} for which we apply the probabilistic construction, whereas Claims 12.2 and 12.3 establish the existence of a set R_n such that both

$$\operatorname{Prob}[X_n \in R_n] > (1 - o(1)) \cdot \rho(n)$$

and

$$\operatorname{Prob}[C_n(X_n) = f(X_n) | X_n \in R_n] < \frac{1}{2} + 2\epsilon$$

for all $2^{s'(n)^2}$ possible circuits, C_n , of size s'(n). The lemma follows.