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Abstract

A fundamental Lemma of Yao states that computational weak-unpredictability
of functions gets amplified if the results of several independent instances are XOR
together. We survey two known proofs of Yao’s Lemma and present a third alter-
native proof. The third proof proceeds by first proving that a function constructed
by concatenating the values of the function on several independent instances is much
more unpredictable, with respect to specified complexity bounds, than the original
function. This statement turns out to be easier to prove than the XOR-Lemma.

Using a result of Goldreich and Levin and some elementary observation, we derive
the XOR-Lemma.
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1 Introduction

A fundamental Lemma of Yao states that computational weak-unpredictability of pred-
icates gets amplified if the results of several independent instances are XOR together,
analogously to the information theoretic wire-tape channel Theorem (cf., Wyner). By
weak-unpredictability we mean that any efficient algorithm will fail to predict the predi-
cate with probability beyond a stated bound, where the probability is taken over all pos-
sible inputs (say with uniform probability distribution). In particular, the lemma known

as Yao's XOR Lemma asserts that if the predicate f is weakly-unpredictable (within some

complexity bound) then F(z1, ..., z;) % @_, f(z;), for sufficiently large t, is almost unpre-

dictable within a related complexity bound (i.e., algorithms of this complexity cannot do
substantially better than flip a coin for the answer).

Yao stated the XOR Lemma in the context of one-way functions, where the predicate f
is the composition of an easy to compute Boolean predicate and the inverse of the one-way
function (i.e., f(z) = b(g~'(x)), where g is a 1-1 one-way function and b is an easy to
compute predicate). Clearly, this is a special case of the setting described above. Yet, the
XOR Lemma is sometimes used within the more general setting described above (under the
false assumption that proofs for this setting have appeared in the literature). Furthermore,
in contrary to common beliefs, the lemma itself has not appeared in Yao’s original paper
“Theory and Applications of Trapdoor Functions” [9] (but rather in oral presentations of
his work).

A proof of Yao’s XOR Lemma has first appeared in Levin’s paper [6]. Levin’s proof is for
the context of one-way functions and is carried through in a uniform model of complexity.
The presentation of this proof in [6] is very succinct and does not decouple the basic
approach from difficulties arising from the uniform-complexity model. In Section 3, we
show that Levin’s basic approach suffices for the general case (mentioned above) provided
it is stated in terms of non-uniform complexity. The proof also extends to a uniform-
complexity setting, provided that some sampling condition (which is satisfied in the context
of one-way functions) holds. We do not know whether the XOR Lemma holds in the
uniform-complexity model in case this sampling condition is not satisfied.

Recently, Impagliazzo has shown that, in the non-uniform model, any weakly-unpredictable
predicate has a “hard-core”! on which it is almost unpredictable [5]. Using this result, Im-
pagliazzo has presented an alternative proof for the general case of the XOR-Lemma within
the non-uniform model. We present this proof in Section 4.

A third proof for the general case of the XOR-Lemma is presented in Section 5. This
proof proceeds by first proving that a function constructed by concatenating the values of
the predicate on several independent instances is much more unpredictable, with respect
to specified complexity bounds, than the original predicate. Loosely speaking, it is hard

1 Here the term ‘hard-core’ means a subset of the predicate’s domain. This meaning is certainly
different from the usage of the term ‘hard-core’ in [3], where it means a strongly-unpredicatable predicate
associated with a one-way function.



to predict the value of the function with probability substantially higher than 6, where §
is a bound on the probability of predicting the predicate and ¢ is the number of instances
concatenated. Not surprisingly, this statement turns out to be easier to prove than the
XOR-Lemma. Using a result of Goldreich and Levin [3] and some elementary observation,
we derive the XOR-Lemma.

We remark that Levin’s proof yields a stronger quantitative statement of the XOR
Lemma than the other two proofs. In fact, the quantitative statement provided by Levin’s
proof is almost optimal. Both Levin’s proof and ours can be transformed to the uniform-
complexity provided some natural sampling condition holds. We do not know how to
transform Impagliazzo’s proof to the uniform-complexity setting, even under this condition.

A different perspective on the concatenating problem considered above is presented in
Section 6 where we consider the conditional entropy of the function’s value given the result
of a computation (rather than the probability that the two agree).

2 Formal Setting

The basic framework consists of a Boolean predicate f:{0,1}*—{0,1} and a non-uniform
complexity class such as P/poly. Specifically, we consider all families of polynomial-size
circuits and for each family, {C,, }, we consider the probability that it correctly computes f,
where the probability is taken over all n-bit inputs with uniform probability distribution.
Alternatively, one may consider the most successful n-bit input circuit among all circuits
of a given size. This way we obtain a bound on unpredictability of f with respect to a
specific complexity class.

In the sequel, it will be more convenient to redefine f as mapping bit string into {+1}

and to consider the correlation of a circuit (outputting a value in {+1}) with the function

(i.e., redefine f(x) o (—1)7®)). 2 Also, we generalize the treatment to arbitrary distribu-

tions over the set of n-bit long inputs (rather than uniform ones) and to “probabilistic”
predicates (or processes) that on input x return some distribution on {1} (i.e., for a fixed
z, f(x) is a random variable distributed over {+1} rather than a fixed value). One moti-
vation for this generalization is that it allows us to treat as a special case ‘hard predicates’
of one-way functions, when the functions are not necessarily 1-1.

Definition 1 (algorithmic correlation): Let P be a randomized process/algorithm that

maps bit strings into values in {+1} and let X % {X,} be a probability ensemble so that,

for each n, the random variable X, is distributed over {0,1}". The correlation of a circuit
family C = {C,} with P over X is defined as c:IN—R so that

c(n) = E[Co(X,) - P(X)]

2This suggestion, of replacing the standard {0,1} by {£1} and using correlations rather than prob-
abilities, is due to Levin. It is indeed amazing how this simple change of notation simplifies both the
statements and the proofs.



where the expectation is taken over the random variable X,, ( and the process P). We say
that a complexity class (i.e., set of circuit families) has correlation at most c(-) with P over
X if, for every circuit family C in this class, the correlation of C with P over X is bounded

by c(-).
The above definition may be used to discuss both uniform and non-uniform complexity

classes. In the next subsection we relate the above definition to the standard treatment of
unpredictability within the context of one-way functions.

The context of one-way functions

For sake of simplicity, we consider only length-preserving functions (i.e., functions f :
{0,1}*— {0, 1}* satisfying |f(z)| = |z| for all ). A one-way function f:{0,1}*—{0,1}*
is a function that is easy to compute but hard to invert. Namely, there exists a polynomial-
time algorithm for computing f, but for any probabilistic polynomial-time?® algorithm A,
the probability that A(f(x)) is a preimage of f(x) is negligible (i.e., smaller than 1/p(|x|)
for any positive polynomial p), where the probability is taken uniformly over all z € {0,1}"
and all possible internal coin tosses of algorithm A.

Let 6:IN—R. The predicate b: {0, 1}*— {£1} is said to be at most 6-correlated to f in
polynomial-time if b is easy to compute (i.e., there exists a polynomial-time algorithm for
computing b), but b(z) is hard to predict from the value of the function (i.e., from f(x)).
Namely, for any probabilistic polynomial-time algorithm G, the expected correlation of
G(f(z)) and b(zx), is at most 6(n) (for all but finitely many n’s). (Again, the probability
space is uniform over all € {0,1}" and all possible internal coin tosses of the algorithm.)

Suppose, first, that f is 1-1 and that b is an easy to compute predicate. Then, saying
that b is at most §-correlated to f in polynomial-time is equivalent to saying that the

class of (probabilistic) polynomial-time algorithms has correlation at most §(-) with the

predicate P(z) % b(f~'(x)), over the uniform distribution. Note that in this case, although

P is assumed not to be polynomial-time computable, it is easy to generate randomly pairs
(y, P(y)) for randomly distributed y’s. This is done, by uniformly selecting r € {0,1}"
and outputting the pair (f(r),b(r)) = (f(r), P(f(r))).

The treatment is extended to one-way functions which are not necessarily 1-1 as follows.
Let f be such a function and b a predicate which is at most 6-correlated to f (by polynomial-
time algorithms). Define the probability ensemble X = { X, } by letting X,, = f(r), where
r is uniformly selected in {0,1}" and define the randomized process P(z) by uniformly
selecting r € f~!(x) and outputting b(r). Now, it follows that the class of (probabilistic)
polynomial-time algorithms has correlation at most 6(-) with the predicate P over X.
Again, although P is not polynomial-time computable, it is easy to generate randomly
pairs (z, P(z)), with distribution identical to (X,, P(X,)), where n = |z|.

3Here we adopt the standard definition of one-way function; however, our treatment applies also to
the general definition where inverting is infeasible with respect to a specified time bound and success
probability.



Getting random examples

An important issue regarding the general setting, is whether it is possible to get random
examples of the distribution (X,, P(X,)). As mentioned in the previous subsection, in the
context of one-way functions such random examples can be generated by a (uniform) proba-
bilistic polynomial-time algorithm. On the other hand, the effect of such random examples
can be easily simulated by non-uniform polynomial-size circuits (i.e., random/typical ex-
amples can be hard-wired into the circuit). Random examples are needed in all known
proofs of the XOR Lemma (i.e., they are used in the algorithms deriving a contradiction to
the difficulty of correlating the basic predicate). Thus, we can prove the XOR Lemma both
in the general non-uniform complexity setting and in the (uniform-complexity) context of
one-way functions.

Three (non-uniform) forms of the XOR Lemma

Following the description in the introduction (and Yao’s expositions), the basic form of the

XOR Lemma states that the tractable correlation of the XOR-predicate P®) (x4, ..., z;) e
[I:_, P(z;) decays exponentially with ¢ (upto a negligible fraction). Namely,

Lemma 1 (XOR Lemma — Yao’s version): Let P and X = {X,} be as in Definition 1,
s:N+—1N be a size function, and 6 : N+ [—1,+1] be a function that is bounded-away-from-
1 (ie., |6(n)] <1— zﬁ’ for some polynomial p and all sufficiently large n’s). For every
function t:IN+— N, define the predicate

t(n)
P(t)(wla axt(n)) déf H P(Il) )

=1

where 1, ..., Tyny € {0,1}", and let xX® 9 {X®} be a probability ensemble such that X
consists of t(n) independent copies of Xp.

(hypothesis) Suppose that 6 is a bound on the correlation of families of s(-)-size circuits
with P over X.

(conclusion) Then, there exists a bounded-away-from-1 function §' and a polynomial p
such that, for every function ¢:INw— [0, +1], the function

5O (n) = p(n) - 8'(n)"™ + e(n)

is a bound on the correlation of families of s'(-)-size circuits with P®) over X®
where

S (t(n) -n) < poly (%) - s(n) = poly(n - t(n))



All three proofs presented below establish Lemma 1. The latter two proofs do so for various
values of ¢ and p (i.e., in Impagliazzo’s proof §'(n) = %ﬂ +0(1 —6(n)) and p(n) = 2,

whereas in our proof §'(n) = 1/ %(") and p(n) = o(n)). Levin’s proof does even better; it
establishes the following

Lemma 2 (XOR Lemma — Levin’s version): Yao’s version holds with §' = 6 and p = 1.

Lemma 2 still contains some slackness; specifically, the closest one wants to get to the
“obvious” bound of §®(n) = &(n)X™, the more one losses in terms of the complexity
bounds (i.e., bounds on circuit size). In particular, if one insists on having s'(t(n) - n) =
p%yﬁ(n% then one only gets a result only for e(n) = 1/poly(n) (i.e., 6()(n) = & (n)4™+1/p(n),
for any polynomial p). We do not know how to remove this slackness. We even do not
know if it can be weaken “a little” as follows.

Lemma 3 (XOR Lemma — dream version — a conjecture): For some fized negligible func-
tion p (e.g., p(n) & 9=n or even p(n) &l 9o, ")?), Yao’s version holds with 60 (n) =
§'(n)™ + p(n), and s'(t(n) - n) = =)

poly(n)

Steven Rudich has observed that the Dream Version does not hold in a relativized world.
Specifically, his argument proceeds as follows. Fix p as in the Dream Version and set ¢ so
that 6 < p(n). Consider an oracle that for every (z1,...,zym) € ({0,1}")%™ and for a
241(n) fraction of the r’s in {0, 1}, answers the query (1, ..., Zy(n), ) With (P(z1), ..., P(24)),
otherwise the oracle answers with a special symbol. These r’s may be selected at random
(thus constructing a random oracle). The hypothesis of the lemma may hold relative
to this oracle, but the conclusion cannot possibly hold. Put differently, one can argue
that a (polynomial-time) “black-box” reduction of the task of correlating P (by > 6)
to the task of correlating P® (by > 2u) cannot possibly work. The reason being that
the polynomial-time machine (effecting this reduction) cannot distinguish a black-box of
negligible correlation (i.e., correlation 2u) from a black-box of zero correlation.

Uniform forms of the XOR Lemma

Above, we have stated three forms of the XOR Lemma in terms of non-uniform complex-
ity. Analogous statements in terms of uniform complexity can be made as well. These
statements relate to the time required to construct the circuits in the hypothesis and those
in the conclusion. For example, one may refer to circuit families, {C,}, for which, given
n, the circuit C,, can be constructed in poly(|C,,|)-time. In addition, all functions referred
to in the statement of the lemma (i.e., s,t:N—N, §: N+ [—1,+1] and e: N+ [—1,+1])
need to be computable within corresponding time bounds. Analogues of the two first
versions can be proven, provided that one can construct random examples of the distri-
bution (X,, P(X,)) within the stated (uniform) complexity bounds (and in particular in
polynomial-time). See comments in the subsequent sections.
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3 Levin’s Proof

The key ingredient in Levin’s proof is the following lemma which provides an accurate
account of the decrease of the computational correlation in case two predicates are xor-ed
together. It should be stressed that the statement of the lemma is not symmetric with
respect to the two predicates.

Lemma 4 (Isolation Lemma): Let Py and Py be two predicates, | : N — N be a length

function, and P(z) % Pi(y) - Py(2) where z = yz and |y| = I(|z]). Let X = {X,} be

a probability ensemble so that the first I(n) bits of X, are statistically independent of the

rest, and let Y = {Yj)} (resp., Z = {Z,_yn)}) denote the projection of X on the first I(-)

bits (resp., last n — l(n) bits).

(hypothesis) Suppose that 61(-) is a bound on the correlation of families of s1(-)-size
circuits with Py over Y, and that 65(-) is a bound on the correlation of families of
Sq(+)-size circuits with Py over Z.

(conclusion) Then, for every function e:IN+— R, the function

§(n) ¥ 6,(1(n)) - 62(n — I(n)) + e(n)

is a bound on the correlation of families of s(-)-size circuits with P over X, where

< min —Sl(l(n)) So(n—=1I(n)) —n
o) min{ LR sl =t = nf

The lemma is asymmetric with respect to the dependency of s(-) on the s;’s. The fact that
s(+) maybe almost equal to sy(-) plays a central role in deriving the XOR Lemma from the
Isolation Lemma.

Proof: Assume to the contradiction that a circuit family C (of size s(-)) has correlation

greater than §(-) with P over X. Thus, denoting by Y; (resp., Z,,) the projection of X,

on the first I % [(n) bits (resp., last m % n — I(n) bits), we get

§(n) < E[Cu(Xn)- P(X,)]
= E[C,(Y1,Z,) - PL(Y) - Py(Z,,)]
E[P\(Y)) - E[Co(Yi, Z) - Pa(Zim)]]

where, in the last expression, the outer expectation is over Y; and the inner one is over Z,,.
For every fixed y € {0, 1}, let

T(y) € E[Ca(y, Zm) - Po(Zm)]

Then, by the above,
E[T(Y) - Pi(Y)] > 6(n) (1)
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We shall see that Eq. (1) either contradicts the hypothesis concerning P, (see Claim 4.1)
or contradicts the hypothesis concerning P; (by a slightly more involved argument).

claim 4.1: For all but finitely many n’s and every y € {0, 1}
T(y)| < b63(m)

proof: Otherwise, fixing a y contradicting the claim, we get a circuit C’ (2) % C,(y, 2) of
size s(n)+1 < sy(m), having greater correlation with P, than that allowed by the Lemma’s
hypothesis. O

By Claim 4.1, the value T'(y)/62(m) lies in the interval [—1,+1]; and, on the other hand
(by Eq. (1)), it has good correlation with P;. In the rest of the argument we “transform”
the function 7" into a circuit which contradicts the hypothesis concerning P;. Suppose for
a moment, that one could compute 7'(y), on input y. Then, one would get an algorithm
with output in [—1,+1] that has correlation §(n)/6s(m) > 6:(1) with P; over Y;, which
is almost* in contradiction to the hypothesis of the lemma. The same holds if one can
approximate T'(y) “well enough” using circuits of size s;(1). Indeed, the lemma follows by
observing that such an approximation is possible. Namely,

claim 4.2: For every n, l =1(n), m=n—1, ¢ = poly(n/e(n)) and y € {0, 1}, let

T(y) = > Cu(y,2) - 0i

=1

| =

where (21,01), ..., (%2¢,04) is a sequence of ¢ independent samples from the distribution
(Zm, Po(Z,,)). Then, .
Prob||T(y) — T(y)| > e(n)] < 27'™

proof: immediate by the definition of 7'(y) and application of Chernoff bound. O

The above claim suggests an approximation algorithm (for the function 7T"), which is given
as auxiliary input a sequence of samples from the distribution (Z,,, P»(Z,,)). (The algo-
rithm merely computes the average of C,,(y, z;)-0; over the sample sequence (z1,01), ..., (24, 0)-)
If such a sample sequence can be generated efficiently, by a uniform algorithm (as in the
context of one-way functions), then we are done. Otherwise, we use non-uniformity to
obtain a fixed sequence which is good for all possible y’s. (Such a sequence does exist since
with positive probability, a randomly selected sequence, from the above distribution, is
good for all 2™ possible y’s.) Thus, there eists a circuit of size poly(n/e(n)) - s(n) that,
on input y € {0, 1} outputs (T'(y) £ €(n))/62(m). We note that this output is at least
62((2) - 52((’2) = 61(1) correlated with P; which almost contradicts the hypothesis of the
Lemma. The only problem is that the resulting circuit has output in the interval [—1, +1]

4

4See discussion below; what is
a binary value in {£1}.

‘wrong” is that the output is in the [—1,+1] interval rather than being



instead of a binary output in {£1}. This problem is easily corrected by modifying the
circuit so that on output r € [—1,+1] it outputs +1 with probability (1 + r)/2 and —1
otherwise. Noting that this modification preserves the correlation of the circuit, we derive
a contradiction to the hypothesis concerning P;. W

The stronger version of the XOR Lemma (i.e., Lemma 2) follows by a (careful) succes-
sive application of the Isolation Lemma. Loosely speaking, we write P (2, 2o, ..., Tyn)) =
P(z1) - PU"D(zy, ..., Ty ), assume that PU~D is hard to correlate as claimed, and apply
the Isolation Lemma to P - P¢~D. This way, the lower bound on circuits correlating P(*)
is related to the lower bound assumed for circuits correlating the original P and is almost
the bound derived for P(~Y (losing only an additive term!).

Remarks concerning the uniform complexity setting

A uniform-complexity analogue of Lemma 2 can be proven provided that one can construct
random examples of the distribution (X, P(X,)) within the stated (uniform) complexity
bounds. To this end, one should state and prove a uniform-complexity version of the Iso-
lation Lemma which also assumes that example from both distributions (i.e., (Y}, P1(Y}))
and (Z,, Py(Z,,))) ® can be generated within the relevant time complexity; certainly, sam-
pleability in probabilistic polynomial-time suffices. Furthermore, in order to derive the
XOR Lemma it is important to prove a strong statement regarding the relationship be-
tween the time required to construct the circuits referred to in the lemma. Namely,

Lemma 5 (Isolation Lemma — uniform complexity version): Let Pi, Py, I, P,X,Y and Z
be as in Lemma 4.

(hypothesis) Suppose that 61(-) (resp., 8) is a bound on the correlation of ti(-)-time-
constructible families of s1(-)-size (resp., ta(-)-time-constructible families of so(-)-
size) circuits with Py over Y (resp., Py over Z). Furthermore, suppose that one can
generate in polynomial-time a random sample from the distribution (Y1, Zmy, Po(Zm)).-

(conclusion) Then, for every function e:IN+— R, the function

§(n) ¥ 6,(1(n)) - 6s(n — I(n)) + e(n)

is a bound on the correlation of t(-)-time-constructible families of s(-)-size circuits
with P over X, where

4 nin —Sl(l(n)) sa(n—1IUn))—n
o) & min{ T o) =)

and
tn) = min{ti(i(n) , ta(n = U(n))} = poly(n/e(n)) - s(n)
5 Actually, it suffices to be able to sample the distributions ¥; and (Zm, Pa(Zm)).
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The uniform-complexity version of the Isolation Lemma is proven by adapting the above
proof as follows. First, a weaker version of Claim 4.1 is stated, asserting that (for all but
finitely many n’s)

Prob[|T(V})| > 82(m) + € (n)] < €(n)

where € (n) € €(n)/3. The new claim is valid, since otherwise, one can find in poly(n/e(n))-
time a y violating it; to this end we need to sample Y; and, for each sample y, approximate
the value of T'(y) (by using poly(n/e(n)) samples of (Z,,,, P;(Z,,))). Once a good y is found,
we incorporate it in the construction of C),, resulting in a circuit which contradicts the
hypothesis concerning P,. (We stress that we have presented an efficient algorithm for con-
structing a circuit for P, given an algorithm that constructs the circuit C,,. Furthermore,
the running time of our algorithm is the sum of the time required to construct C,, and the
time required for sampling (Z,,, P»(Z,,)) sufficiently many times and for evaluating C,, on
sufficiently many instances.)

Clearly, Claim 4.2 remains unchanged (except for the replacing e(n) by €'). Using the
hypothesis that samples from (Z,,, P»(Z,,)) can be efficiently generated, we can construct a
circuit for correlating P within time ¢(n)+poly(n/e(n))-(n+s(n)). This circuit is merely an
approximater of the function 7" which operates by averaging (as in Claim 4.2); this circuit
is constructed by first constructing C,,, generating poly(n/e(n)) samples of (Z,,, P»(Z,,))
and incorporating them in corresponding copies of C,, — thus justifying the above time and
size bounds. However, unlike in the non-uniform case, we are not guaranteed that |T(y)|
is bounded above (by 6,(m) +€'(n)) for all y’s. Yet, if we modify our circuit to do nothing
whenever its estimate violates the bound, we loss at most €'(n) of the correlation and we
can proceed as in the non-uniform case.

As in the non-uniform case, the (strong form of the) XOR Lemma follows by a (careful)
successive application of the Isolation Lemma. Again, we write P(T)(:vl,:cQ, iy Tr(n)) =
P(z,)- P (xy, ..., Tr(n)—1), assume that P(=1) ig hard to correlate as claimed, and apply
the Isolation Lemma to P - P~ This way, the lower bounds on circuits correlating P(")
is related to the lower bound assumed for circuits correlating the original P and is almost
the bound derived for P("Y (losing only an additive terms!). This almost concludes the
proof, except that we have implicitly assumed that we know the value of 7 for which the
XOR Lemma first fails; this value is needed in order to construct the circuit violating the
hypothesis for the original P. In the non-uniform case this value of 7 can be incorporated
into the circuit, but in the uniform-complexity case we need to find it. This is not a big
problem as they are only polynomially many possible values and we can test each of them
within the allowed time complexity.

4 Impagliazzo’s Proof

The key ingredient in Impagliazzo’s proof is the notion of a hard-core of a weakly-unpredictable
predicate and a lemma that asserts that every weakly-unpredictable predicate has a hard-
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core of substantial size.

Definition 2 (hard-core of a predicate): Let f:{0,1}*+— {0,1} be a Boolean predicate,
s:IN—1N be a size function, and e:IN+—[0,1] be a function.

o We say that a sequence of sets, S = {S,, C {0,1}"}, is a hard-core of f with respect
to s(-)-size circuits families and advantage €(-) if for every n and every circuit C,, of
size at most s(n),

Prob[C,(X,)=f(X,)] < % + ¢(n)

where X,, is a random variable uniformly distributed on S, .

e We say that f has a hard-core of density p(-) with respect to s(-)-size circuits families
and advantage €(-) if there exists a sequence of sets S = {S, C {0,1}"} so that S is
a hard-core of f with respect to the above and |S,| > p(n) - 2".

We stress that the usage of the term ‘hard-core’ in the above definition (and in the
rest of this section) is different from the usage of this term in [3]. Observe that every
strongly-unpredictable predicate has a hard-core of density 1 (i.e., the entire domain itself).
Impagliazzo proves that also weakly-unpredicatabe predicates have hard-core sets, but
these have density related to the amount of unpredictability. Namely,

Lemma 6 (existence of hard-core for unpredictable predicates): Let f:{0,1}* +— {0,1}
be a Boolean predicate, s:N+— N be a size function, and p: N [0,1] be a non-negligible
function (i.e., p(n) > 1/poly(n)), so that for every n and every circuit C,, of size at most
s(n) —

Prob[C,(Un)=f(Un)] <1 = p(n)

where U, is a random variable uniformly distributed on {0,1}". Then, for every function
e:IN— [0, 1], the function f has a hard-core of density p'(-) with respect to s'(-)-size circuits

families and advantage €(-), where p'(n) € (1—0(1))- p(n) and s'(n) % s(n)/poly(n/e(n)).

The proof of Lemma 6 is given in the Appendix. Using Lemma 6, we derive a proof of
the XOR~Lemma, for the special case of uniform distribution, as follows —

Suppose that §(-) is a bound on the correlation of s(-)-circuits with f over the uniform
distribution. Then, it follows that such circuits cannot guess the value of f better than with

probability p(n) % %ﬂ and the existence of a hard-core S = {S,} (w.r.t. s'(n)-circuits
and e(n)-advantage) with density ¢/(n) € (1 — 0(1)) - (1 — p(n)) follows. Clearly,

1—-6(n) 1
pln) =(1—o(l)) —7—>z-(1-6n)
Now, suppose that in contradiction to the XOR Lemma, the predicate F(t)(xl, vy Tt) aef
@: f(z;) can be correlated by “small” circuits with correlation greater than ¢(n) % 2 -
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(2+‘;(n))t + €(n). In other words, such circuits can guess F® with success probability
> 2+ 1 (n). With probability at most (1 — p'(n))" none of the ¢ arguments to F(*) falls
in the hard-core. Thus, conditioned on the event that at least one argument falls in the

hard-core S, the circuit guess F®) correctly with probability at least

1 1 o . 1 €(n)
2-i-2-c(n)—(1—,0(n)) >2+ 9
For every non-empty I C {1,...,t}, we consider the event, denoted E;, that the argu-
ments to F') which fall in the hard-core are eaxctly those with index in I. We have just
shown that, conditioned on the union of these events, the circuit guesses the predicate

F® correctly with probability at least % + @ Thus, there exists an (non-empty) I so

that, conditioned on E, the circuit guesses F® correctly with probability at least %—i— 6(2—")
Let ¢+ € I be arbitrary. By another averaging argument, we fix all inputs to the circuit
except the *! input and obtain a circuit which guesses f correctly with probability at least
% + 6(2—") (For these fixed s, j # i, the circuit incorporates also the value of ®;;f(x;).)
This contradicts the hypothesis that S is a hard-core.

We have just established the validity of the Lemma 1 for the case of the uniform probability
ensemble and parameters p(n) = 2 and §'(n) = %(") The bound for ¢’ can be improved

to ¢'(n) = %ﬂ + 0(1 — 8§(n)). The argument extends to arbitrary probability ensembles.
To this end one needs to properly generalize Definition 2 and prove a generalization of
Lemma 6 as done in the Appendix.

5 Going through the direct product problem

The third proof of the XOR Lemma proceeds in two steps. First it is shown that the
success probability, of feasible algorithms which try to predict the values of a predicate
on several unrelated arguments, decreases exponentially with the number of arguments.
This statement is a generalization of another theorem due to Yao [9], hereafter called the
Concatenation Lemma. Invoking a result of Goldreich and Levin [3], the XOR-Lemma
follows.

The Concatenation Lemma

Lemma 7 (concatenation lemma): Let P, X = {X,}, s:N—N, and §: N [—1,+1] be

as in Lemma 1. For every function t : N — N, define the function F®(x,, ey Ti(n)) e

(P(x1), ..., P(2y(n))), where x1,...,24n) € {0,1}*, and the probability ensemble X® =
{X®O}, where X consists of t(n) independent copies of X,,.
(hypothesis) Suppose that ¢ is a bound on the correlation of families of s(-)-size circuits
with P over X. Namely, suppose that for every n and for every s(n)-size circuit C':
1+ 6(n)

Prob[C(X,.)=P(X,)] < p(n) & —~=

11



(conclusion) Then, for every function e: N+ [0, +1], for every n and for every poly(f(:)).
s(n)-size circuit C':

Prob[C"(X{") = FO(X)] < p(n)"™ + ¢(n)

Remark: Nisan et. al. [8] have used the XOR-Lemma in order to derive the Concatenation
Lemma. Our feeling is that the Concatenation Lemma is more “basic” than the XOR
Lemma, and thus that their strategy is not very natural. In fact, this feeling was our
motivation for trying to find a “direct” proof for the Concatenation Lemma. Extrapolating
from the situation regarding the two original lemmata of Yao (i.e., the XOR Lemma and
the Concatenation Lemma w.r.t. one-way functions)®, we believed that such a proof (for
the Concatenation Lemma) should be easy to find. Indeed, we consider the following proof
of Concatenation Lemma much simpler than the proofs of the XOR Lemma (given in
previous sections).

Lemma 7 is derived from Lemma 8 (below) analogously to the way Lemma 2 was derived
from Lemma 4; that is, we write F) (21, Ty, ..., Tym)) = (P(21), F¢D (g, ..., Tyn))), assume
that F(*~1) is hard to guess as claimed, and apply the Concatenation Lemma to (P, F (t_l)).
This way, the lower bound on circuits guessing F*) is related to the lower bound assumed
for circuits guessing the original P and is almost the bound derived for ¢~ (losing only
an additive term!). It is thus left to prove the following:

Lemma 8 (two argument version of concatenation lemma): Let F} and Fy be two func-

tions, | : N — N be a length function, and F(z) % (Fi(y), Fx(z)) where z = yz and

ly| = U(|z]). Let X ={Xn}, Y = {Yim)} and Z = {Z,,_yn)} be probability ensembles as in

Lemma 4 (i.e., Xn = (Y}(n), Zn—l(n)))-

(hypothesis) Suppose that pi(-) is a bound on the probability that families of s1(-)-size
circuits guess Fy over Y. Namely, for every such circuit family C = {C}}

Prob[Ci(Y;) = F1(Y)] < pi(1)

Likewise, suppose that ps(-) is a bound on the probability that families of so(-)-size
circuits gquess Fy over Z.

6Yao’s original XOR Lemma (resp., Concatenation Lemma) refers to the setting of one-way functions.

In this setting, the basic predicate P is a composition of an easy to compute predicate b and the inverse

of a 1-1 one-way function f;i.e., P(x) Lef b(f~1(z)). For years, the first author has considered the proof

of the XOR Lemma (even for this setting) too complicated to be presented in class; whereas, a proof of
the Concatenation Lemma (for this setting) has appeared in his classnotes [1] (see also [2]).

12



(conclusion) Then, for every function €: N — R, the function p(n) % pi(I(n)) - pa(n —
I(n)) + €(n) is a bound on the probability that families of s(-)-size circuits guess F
over X, where

def . s51(l(n)) }
min{ —————"— , s2(n—=1I(n)) —n
{ovtajeey =10

Proof: Let C = {C,} be a family of s(:)-size circuits. Fix an arbitrary n, and write
C=C,, e=¢n),l=1In),m=n-In), Y=Y, and Z = Z,,. Abusing notation, we
let C(z,y) denote the first component of C(z,y) (i.e., the guess for Fi(z)) and likewise
Cy(z,y) is C’s guess for Fy(y). It is instructive to write the success probability of C' as
follows:

Prob[C(Y, Z)=F(Y,Z)] = Prob[Cy(Y,2)=Fy(2) (2)
 ProblCy(Y, 2)=F(Y) | Co(Y, 2)=Fy(2)]  (3)

The basic idea is that using the hypothesis regarding F;, allows to bound the first factor
by pa(m), whereas the hypothesis regarding F; allows to bound the second factor by ap-
proximately p;(l). The basic idea for the latter step is that a sufficiently large sample of
(Z, F5(Z)), which may be hard-wired into the circuit, allows to use the conditional probabil-
ity space (in such a circuit), provided the condition holds with noticeable probability. The
last caveat motivates a separate treatment for y’s with noticeable Prob[Cy(y, Z) =Fy(Z)]
and for the rest.

We call y good if Prob|Cy(y, Z)=F5(Z)] > €¢/2 and bad otherwise. Let G be the set of
good y’s. Then, we bound the success probability of C' as follows

Prob[C(Y, Z)=F(Y,Z)] = ProblC(Y,Z)=F(Y,Z) & Y €G] (4)
+ Prob|C(Y, Z)=F(Y,Z) & Y ¢G] (5)
< ProblC(Y,Z2)=F(Y,Z) & Y €G] + g (6)

where the inequality follows by observing that for any y & G"

Prob|[C(Y, Z)=F(Y, Z)] < Prob[Cy(Y, Z)=Fy(Z)] < g .
Thus, using p(n) = p1(I)pa(m) + €, it remains to prove that
Prob[C(Y,Z)=F(Y,Z) & Y €G] < p1(1) - pa(m) + ¢/2 (7)

We proceed according to the above outline. We first show that Prob[Cy (Y, Z)=Fy(Z)]
cannot be too large, as otherwise the hypothesis concerning F3 is violate. Actually, we
prove
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claim 8.1: For every v,
Prob[Cs(y, Z) = F5(Z)] < pa(m)

proof: Otherwise, using any y € {0, 1} so that Prob[Cy(y, Z) = Fy(Z)] > ps(m), we get a
circuit C'(2) o Cs(y, z) that contradicts the lemma’s hypothesis concerning F,. O

Next, we use claim 8.1 in order to relate the success probability of C' to the success
probability of small circuits for Fj.

claim 8.2: There exists a circuit C’ of size s;(l) so that

o Prob[C(Y,Z)=F(Y,Z) & YeG] ¢
Prob[C'(Y)=F,(Y)] > Do) 5

proof: The circuit C’ is constructed as suggested in the outline above. Specifically, we take

a poly(n/e)-large sample, denoted S, from the distribution (Z, F»(Z)) and let C'(y) oo

Ci(y, z), where (z, 3) is a uniformly selected among the elements of S for which Cy(y, z) =
holds. Details follow.

Let S be a sequence of ¢ ef poly(n/e€) pairs, generated by taking ¢ independent samples
from the distribution (Z, F5(Z)). We stress that we do not assume here that such a
sample can be produced by an efficient (uniform) algorithm (but, jumping ahead, we
remark that such a sequence can be fixed non-uniformly). For each y € G C {0,1}},
we denote by S, the set of pairs (z,4) € S for which Cy(y,2) = . Note that S, is a
random sample for the residual probability space defined by (Z, F5(Z)) conditioned on
Cy(y, Z) = Fy(Z). Also, with overwhelmingly high probability, |S,| = Q(l/em?) (since
y € G implies Prob[Cy(y, Z) =F3(Z)] > ¢/2). Thus, with overwhelming probability (i.e.,
probability greater than 1 — 27%), taken over the choices of S, the sample S, provides a
good approximation to the conditional probability space, and in particular

{(z,8) € Sy : Cily, 2)=Fi(y)}|
Syl

Thus, with positive probability, Eq. (8) holds for all y € G C {0,1}". The circuit C’
guessing F} is now defined as follows. A set S = {z;, ;} satisfying Eq. (8) for all good y’s
is “hard-wired” into the circuit C’. (In particular, S, is not empty for any good y.) On
input y, the circuit C’ first determines the set .S, by running C' for ¢ times and checking,
for each i = 1,...,t, whether Cy(y,2;) = f;. In case S, is empty, the circuit returns an
arbitrary value. Otherwise, the circuit selects uniformly a pair (z, ) € S, and outputs
Ci(y, z). (This latter random choice can be eliminated by a standard averaging argument.)
Using the definition of C’, Eq. (8), claim 8.1, and some trivialities, we have:

Prob[C'(Y)=F,(Y)] > > Prob[Y =y]-Prob[C'(y)=Fi(y)]

> Prob[C1(y, Z)=F1(y) | Ca(y, Z)=F»(Z)] - (8)

DN

_ rob[V —u . 12 0) € 8y 2 Culy, 2) =F1(y)}|
- e s,
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> Y Prob[Y =y - (Prob[Cl(y, 2 =Fi(y) | Coly, Z) = Fy(Z)] — —)

yeG

. Prob[Cu(y, Z)=Fi(y) & Ca(y, Z) = Fy(Z)]
P

where the last inequality is due to claim 8.1. The claim follows. O

Now, by the lemma’s hypothesis concerning Fy, we have Prob[C'(Y)=F(Y)] < p1(1),
and so using claim 8.2 we get

ProbY €e G & C(Y,Z)=F(Y, Z)] (p1(1) + €/2) - pa(m)

p1(1) - pa(m) + €/2

This proves Eq. (7) and the lemma follows. Il

Deriving the XOR Lemma from the Concatenation Lemma

Using the techniques of [3], we obtain the following

Lemma 9 (Goldreich and Levin): Let F:{0,1}*—{0,1}*, p:N+—[0,1], and s: N— N,
and let X = {X,} be as in Lemma 1. For o, € {0,1}*, we denote by IPy(c,3) the
inner-product mod 2 of a and B viewed as binary vectors of length £.

(hypothesis) Suppose that for every n and for every s(n)-size circuit C':

Prob[C(X,) =F(X,)] < p(n)

(conclusion) Then, for some constant ¢ > 0, for every n and for every poly(2™) - s(n)-

size circuit C': "
1
Prob|[C'(X,,,U,) =IPy(F(X,),U,)] < 3 +c-Jn?-p(n)

where U, denotes the uniform distribution over {0, 1}, with £ %< |F(X,,)|.

(That is, C" has correlation at most 2¢{/n?p(n) with IPy over (F(X,), U,).)
Proof Sketch: Let ¢(n) % ¢ ¢¥n?p(n). Suppose that C’ contradicts the conclusion of
the lemma. Then, there exists a set S so that Prob[X,, € S| > ¢(n) and for every z € S
the probability that C'(z,U,) = IPy(F(z),U,) is at least 3 + @, where the probability
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is taken over U, (while z is fixed). Employing the techniques of [3], we obtain a circuit
C (of size at most a poly(n/p(n)) factor larger than C”) which, for every z € S, outputs
F(x) with probability at least ¢’ - (¢(n)/n)* (where the constant ¢’ > 0 is determined in
the proof of [3] according to Chebishev’s Inequality).” Thus, C satisfies

Prob[C(X,)=F(X,)] > Prob[C(X,)=F(X,)A X,€S]
= Prob[X,€S]-Prob|C(X,)=F(X,)|X,€S]

> q(n)- (¢~ (q(n)/n)") = p(n)
in contradiction to the hypothesis. The lemma follows. Wi

Combining the Concatenation Lemma (Lemma 7) with Lemma 9 we establish the validity
of Lemma, 1 for the third time; this time with respect to the parameters p(n) = cn?/® = o(n)

and 6'(n) = /). Details follow.

Starting with a predicate for which ¢ is a correlation bound and using Lemma 7, we
get a function that is hard to guess with probability substantially higher than (%("))t(”).
Applying Lemma 9 establishes that given (z1,...,24»)) and a uniformly chosen subset
S C{1,2,..,t(n)} it is hard to correlate @®;csP(x;) better than with correlation

| (14 8) ™ S\ ™
O Jn <T> :O(n).< T)

This is almost what we need, but not quite (what we need is a statement concerning
S = {1,...,t(n)}). The gap is easily bridged by some standard “padding” trick. For
example, by using a sequence of fixed pairs (z;,0;), such that o; = P(z;), we reduce the
computation of ®;csP(x;) to the computation of GBE(Z"I)P(yi) (by setting y; = x; if i € S
and y; = z; otherwise). Thus, Lemma 1 follows (with the stated parameters).

Remarks concerning the uniform complexity setting

A uniform-complexity analogue of the above proof can be carried out provided that one can
construct random examples of the distribution (X,,, P(X,)) within the stated (uniform)
complexity bounds (and in particular in polynomial-time). Actually, this condition is
required only for the proof of the Concatenation Lemma. Thus we confine ourselves to
presenting a uniform-complexity version of the Concatenation Lemma.

Lemma 10 (Concatenation Lemma — uniform complexity version): Let P,X,s,6,t and
F® be as in Lemma 7.

"The algorithm in [3] will actually retrieve all values o € {0,1}* for which the correlation of C(z,Uy)
and IP;(a, Uy) is at least g(n). With overwhelming probability it outputs a list of O((n/q(n))?) strings
containing all the values just mentioned and thus uniformly selecting one of the values in the list yields
F(z) with probability at least 1/0((n/q(n))?).
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(hypothesis) Suppose that 6(-) is a bound on the correlation of T(-)-time-constructible
families of s(-)-size circuits with P over X. Furthermore, suppose that one can
generate in polynomial-time a random sample from the distribution (X,, P(X,)).

(conclusion) Then, for every function ¢ : N — [0,+1], the function q(n) % p(n)i™ +
e(n) is a bound on the correlation of T'(-)-time-constructible families of s'(-)-size
circuits with F over X where T'(t(n) - n) = poly(e(n)/n) - T(n) and s'(t(n) - n) =

poly(e(n)/n) - s(n).

The uniform-complexity version of the Concatenation Lemma is proven by adapting the
above proof as follows. Firstly, we observe that it suffices to prove an appropriate (uniform-
complexity) version of Lemma 8. This is done by first proving a weaker version of Claim 8.1
which asserts that for all but at most an €(n)/8 measure of the y’s (under V),

Prob[Cy(y, Z)=F3(Z)] < pa(m) + €(n)/8

This holds since otherwise one may sample Y to find a y for which Prob|[Cy(y, Z) = F»(Z)] >
pa(m) holds, and then use this y to construct (uniformly!) a circuit that contradicts the
hypothesis concerning F5. Next, we prove a weaker version of Claim 8.2 by observing that,
for a uniformly selected pair sequence S, with overwhelmingly high probability (and not
only with positive probability), Eq. (8) holds for all good y € {0, 1}. Thus, if we generate
S by taking random samples from the distribution (Z,,, F»(Z,,)), then with overwhelmingly
high probability we end-up with a circuit as required by the modified claim. (The modified
claim has py(m) + ¢/8 in the denominator (rather than py(m)) as well as an extra additive
term of €/8.) Using the hypothesis concerning F;, we are done as in the non-uniform case.

6 A Different Perspective: the Entropy Angle

The XOR Lemma and the Concatenation Lemma are special cases of the so-called “direct
sum conjecture” asserting that computational difficulty increases when many independent
instances of the problem are to be solved. In both cases the “direct sum conjecture” is
postulated by considering insufficient resources and bounding the probability that these
tasks can be performed within these resources, as a function of the number of instances.
In this section we suggest an analogous analysis based on entropy rather than probability.
Specifically, we consider the amount of information remaining in the task (e.g., of comput-
ing f(x)) when given the result of a computation (e.g., C'(x)). This analysis turns out to
be much easier.

Proposition 11 Let f be a predicate, X be a random variable and C be a class of circuits

so that for every circuit C € C
H(f(X)|C(X)) > €
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Furthermore, suppose that, for every circuit C € C, fizing any of the inputs of C yields a
circuit also in C. Then, for every circuit C' € C

H(F(XO), s [KOICXD, ., XO)) > 1
where the X s are independently distributed copies of X.

We stress that the class C in the above Proposition may contain circuits with several
Boolean outputs. Furthermore, for a meaningful conclusion, the class C must contain cir-
cuits with ¢ outputs (otherwise, for a circuit C' with much fewer outputs, the conditional
entropy H(f(z1), ..., f(x1)|C(z1, ..., z¢)) is large merely due to information theoretical rea-
sons). On the other hand, the more outputs the circuits in C have, the stronger the
hypothesis of the Proposition is. In particular, the number of outputs must be smaller
that | X| otherwise the circuit C(z) = = determines f(z) (i.e., H(f(x)|z) = 0). Thus, a
natural instantiation of the Proposition is for a family of small (e.g., poly-size) circuits
each having ¢ outputs.

Proof: By definition of conditional entropy, we have for every C' € C,
H(f(XD), ..., f[XD)C(XY, .., XxV)) = ZH (XDCX®, ., XO), fF(XD), ..., f(XED))
> ZH FXO) XD, xO) xO x =1y

Now, for each 7, we show that
H(f(XD)ox®, .., xO) xO  x0-1)> ¢

We consider all possible settings of all variables, except X, and bound the conditional
entropy under this setting (which does not effect X(®). The fixed XU) = z; can be
eliminated from the entropy condition and incorporated into the circuit. However, fixing
some of the inputs in the circuit C' yields a circuit also in C and so we can apply the
proposition’s hypothesis and get

H(f(X(Z))|C(.’L'1, vy Li—1, X(Z)7 Tit1y ey '/Et)) 2 €
The proposition follows. W

Additional Comments: Let C be a family of small (e.g., poly(n)-size) circuits each
having ¢ outputs and X be distributed over {0, 1}".

e For t = O(logn), the hypothesis in the Proposition is related to the hypotheses used
in all Lemmas above (and in particular in the Concatenation Lemma). Clearly, an
entropy lower bound (on a single bit) translates to some unpredictability bound on
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this bit. (This does not hold for many bits as can be seen below.) The other direction
(i.e., unpredictability implies a lower bound on the conditional entropy) is obvious for
t = 1, but we need to consider the conditional entropy with respect to circuits which
have t > 1 outputs. However, for each possible value of the circuit, there exists a
value for f which is more likely. These 2¢ values can be incorporated into the circuit,
since t = O(logn), and so a small circuit offering small conditional entropy can be
translated into a small circuit which predicts the value of f better than postulated.

e As for the conclusion of the Proposition, it is significantly weaker than the conclusion
of Concatenation Lemma. In particular, it is possible that C(z, ..., z;) determines all
the f values correctly with probability 1 — ¢, and yields no information (e.g., outputs
a special fail symbol) otherwise. Thus, although C' may predict f simultaneously on
many instances with probability 1 — ¢, the conditional entropy is (1 —€) -0+ €- ¢t
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A Proof of a Generalization of Lemma 6

We first generalize Impagliazzo’s treatment to the case of non-uniform distributions; Im-
pagliazzo’s treatment is regained by letting X be the uniform probability ensemble.

Definition 3 (hard-core of a predicate relative to a distribution): Let f:{0,1}*+— {0,1}
be a Boolean predicate, s: N +— N be a size function, € : N — [0,1] be a function, and
X ={X.,} be a probability ensemble.

o We say that a sequence of sets, S = {S, C {0,1}"}, is a hard-core of f relative to X
with respect to s(-)-size circuits families and advantage €(-) if for every n and every
circuit C, of size at most s(n),

Prob[C(Xa) = (Xa)| X €5,] < 5 +e(n)

e We say that f has a hard-core of density p(-) relative to X with respect to s(-)-size
circuits families and advantage €(-) if there exists a sequence of sets S = {S, C
{0,1}"} so that S is a hard-core of f relative to X with respect to the above and
Prob[X, €5S,] > p(n).

Lemma 12 (generalization of Lemma 6): Let f:{0,1}*— {0,1} be a Boolean predicate,
s:N+—1N be a size function, X = {X,} be a probability ensemble, and p:WN —[0,1] be a
non-negligible function, so that for every n and every circuit C, of size at most s(n),

Prob[C,,(X,) = f(Xn)] <1—p(n)

Then, for every function € : N — [0,1], the function f has a hard-core of density p'(-
d

relative to X with respect to s'(-)-size circuits families and advantage €(-), where p'(n) <=

(1= o(1)) - p(n) and s'(n) = s(n)/poly(n/e(n)).

proof: We start by proving a weaker statement; namely, that X “dominates” an ensem-
ble Y under which the function f is strongly unpredictable. Our notion of domination
originates in a different work of Levin [7]. Fixing the function p we define domination
as assigning probability mass which is at least a p fraction of the mass assigned by the
dominated ensemble; namely

definition: We say that the ensemble X = {X,,} dominates the ensemble Y = {Y,,} if for
every string «,
Prob[X,=a] > p(|a|) - Prob[Y,=q]

In this case we also say that Y is dominated by X. We say that Y is critically dominated by
X if for every string « either ProblY, =a] = (1/p(]a|)) - Prob[X,, =«] or Prob[Y,=a] = 0.
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(Actually, we allow at most one string a € {0, 1}" to satisfy 0 < Prob[Y,,=«a] < (1/p(||))-
Prob[X,,=q].)

The notion of domination and critical domination play a central role in the proof which
consists of two parts. In the first part (cf., claim 12.1), we prove the existence of a ensemble
dominated by X so that f is strongly unpredictable under this ensemble. In the second
part (cf., claims 12.2 and 12.3), we essentially prove that the existence of such a dominated
ensemble implies the existence of an ensemble which is critically dominated by X so that
f is strongly unpredictable under this ensemble. However, such a critically dominated
ensemble defines a hard-core of f relative to X and the lemma follows. Before starting, we
make the following simplifying assumptions (used in claim 12.3).

simplifying assumptions: Without loss of generality

e Prob[X, =1z < poly(n)/s(n), for all x’s.
(Since z’s violating this condition cannot contribute to the hardness of f with respect
to X, — as one can incorporate all these s(n)/poly(n) many violating x’s with their
corresponding f(z)’s into the circuit).

o poly(e(n)) > poly(n)/s(n).

(Since otherwise the claim of the lemma holds vacuasly — as §'(n) = % <1).
claim 12.1: Let T'(n) = 1/p(n). Under the hypothesis of the lemma it holds that there
exists a probability ensemble Y = {Y,,} so that Y is dominated by X and so that, for
every s'(n)-circuit C,,, it holds

Prob[C,, (Vo) = f(Ya)] < 5 +€(n) (9)

motivation: Suppose that for every Y dominated by X, Eq. (9) does not hold (i.e., for
every such Y, there exists a small circuit C, so that Prob[C,(Y,)=[(Y,)] > % + €(n)).
Suppose that we could have applied the min-max principle (which we can’t since we do
not have a bound on the behaviour of C,,’s under all distributions — we only have a bound
for X-dominated distributions). We would have inferred that there is a randomized cir-
cuit R, so that Prob[R,(z)=f(z)] > 5 + €(n), for every z € {0,1}". By amplifying the
advantage of the circuit R, (using repeated trials) we would have obtained a circuit that
for every z € {0,1}", guesses correctly f(z), with overwhelmingly high probability. This
stands in contradiction to the hypothesis of the lemma. However, we cannot apply the
min-max principle directly to X-dominated distributions; instead, we consider an arbi-
trary superposition of X-dominated distributions and apply the min-max principle in that
context.

proof: Consider the (finite) set, denoted D, of all distributions that are critically dominated
by X,. Recall, that Y is critically dominated by X,, if for every a either Prob[Y =a] =
T(n) - Prob[X,,=a] or Prob[Y =a] = 0. (Actually, this is inaccurate and we should allow
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a single string « for which 0 < Prob[Y=a] < T'(n) - Prob[X,,=«].) Let Y¥,Y3,..., Y% be an
enumeration of all the elements in D (i.e., enumeration of all the critically X-dominated
distributions) and let = (p; : i € D) be an arbitrary probability distribution on the set
D.

Let C' be an arbitrary deterministic circuit. For every critically dominated distribution
Y;, denote by c¢; the probability that C' guesses f correctly on input Y;. We now consider
the expected value of ¢; when 7 is selected according to the probability space p. That is,
we consider the average

ZPz"Ci = ZPi'PTOb[C(Yi)=f(Yi)] (10)
= > pi- ) Prob[Yi=y| - x(C(y)=1(y)) (11)

where x(B) is the indicator function of the Boolean expression B (i.e., x(B) = 1 if B holds
and x(B) = 0 otherwise). Now, consider the r.h.s. of Eq. (11). Each y appears in the sum
with weight =, p; - ProblY; =y|. Now, since all ¥;’s are critically dominated by X it follows
that, for each y and Y;, the probability Prob[Y;=y] is either T'(n) - Prob[X,, =a] or zero.
Denoting by D, the subset of critically dominated distributions in which y appears with
non-zero probability, we infer that each y appears in the sum with weight
> pi+ProblYi=y] = > p;-T(n)-ProblX,=y]
i i€Dy
= T(n)-Prob[X,=y]- Y pi
i€Dy

< T(n)-Prob[X, =1y]

Thus, any probability distribution on the set of critically X-dominated distributions in-
duces an X-dominated distribution. Therefore, assuming to the contrary of the claim
that for every X-dominated distribution there exists a s'-size circuit family {C,, } violating
Eq. (9), it follows that for every distribution 7 on D there exists a circuit C' so that

> i ProblC(V) = f(¥)] > 1 + €n) (12)

Now, we can apply the min-max principle (to Eq. (12)) and obtain a “randomized circuit”
R (actually a distribution of circuits) which satisfies

ProbR(Y)=f(V)] > 5 + e(n) (13)

for every critically dominated distribution Y. We will use the “randomized circuit” R to
derive a contradiction to the hypothesis of the lemma. We first denote by B the set of
instances on which R performs badly; namely

BY {3; : Prob|R(z)=f(z)] < % + e(n)}
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Now, Prob[X, € B] < ﬁ since otherwise we can define a critically dominated distribution
Y for which Eq. (13) does not hold; suppose for simplicity that Prob[X, € B] = ﬁ then
Y is defined by letting Prob]Y =z| = T'(n) - Prob[X,,=z] if z € B and Prob[Y=z| = 0
otherwise. Now, using standard amplification techniques we derive a “randomized circuit”
R’ (actually a distribution over larger circuits) satisfying for each = ¢ B

Prob[R'(z)=f(z)] >1—-27"

(Here we need to increase the size of the circuit by a factor of poly(n/e(n)).) Thus, with
positive probability, a circuit selected by the distribution defining R’ is correct on all z’s in
{0,1}" — B, and so there exists such a circuit, denoted C’. This contradicts the hypothesis
of the lemma since

Prob[C'(X,)=f(X,)] > Prob[X,&B]- Prob|C'(X,)=f(X,)| X, ¢B]

> 1 1
T(n)
Thus, the claim follows. O

In the rest of the proof, we fix an arbitrary ensemble, denoted Y = {Y,} satisfying
Claim 12.1. Using this ensemble, which is dominated by X, we prove the validity of the
lemma by a probabilistic argument. Specifically, we consider the following probabilistic
construction.

probabilistic construction: We define a random set R, C {0,1}" by selecting each string
z € {0,1}" to be in R, with probability

p(x) def p(n) - Prob[Y, =z

Prob[ X, =z] =1 (14)
independently of the choices made for all other strings. The inequality is due to the
domination condition.

First we show that R, is likely to be hit by X, with the desired probability (i.e.,
Prob[X, € R,] = p(n)).
claim 12.2: Let @ > 0 and suppose that Prob[X,=z] < p(n) - a®/poly(n), for every z.
Then,

|Prob[ X, € R,| — p(n)| < a- p(n)

for all but a 27P°Y(™) measure of the choices of R,,.

proof: Let w, 2 Prob[X,=z], for every z € {0,1}". We define random variables (, =
Cz(Ry), over the probability space defined by the random choices of R,, so that (, indicate
whether z € R,,. Namely, the (,’s are independent of one another, Prob[(, =1] = p(z) and
(z = 0 otherwise. Thus, for every choice of R, we have

Prob|X,€R,| = Z Ce(Rn) - wy
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and consequently we are interested in the behaviour of the sum ), w,(, as a random
variable (over the probability space of all possible choices of R,). Taking expactation over
the possible choices of R,,, we get

- Prob[X,, =]

Prob [ > a-p(n)

E[Z WeCs] = Zp(a:) * Wy
3 p(n) - ProblY,, =z]
—  Prob[X,=x]

= p(n)
Now, using Chernoff bound, we get
a’p(n)
S st ol0) e
Now, using the claim’s hypotheses w, < a?-p(n)/poly(n) (for all z’s), the latter expression
is bounded by exp(—poly(n)) and the claim follows. O
Next we show that R, is likely to be a hard-core of f realtive to X (w.r.t. sufficiently
small circuits).
claim 12.3: Let C,, be a circuit of size s'(n). Then,
1
Prob|C,(X,) = f(X,)|Xn€R,] < 5 + 2¢
for all but a 2= (™’+1) measure of the choices of R,.
proof: We define the same random variables (, = (,(R,) as in the proof of the previous

claim; (,(R,) = 1 if € R, and (,(R,) = 0 otherwise. Also, as before, w, % Prob[X, =],
for every z € {0,1}". Let C be the set of inputs on which C,, correctly computes f; namely,

C= {a: Cale)=f(2)}
For every choice of R,,, we are interested in the probability
Prob[X,€C A X, €R,] (15)
Prob[X, € R,]
We first determine the expected value of the numerator of Eq. (15), where the expactation

is taken over the possible choices of R,. We rewrite the numerator as >, cc (:(Ry) - o,
and bound it as follows

B Grws] = Y pl@)-ws

Prob[X, €C|X, €R,] =

zelC zeC
p(n) - Prob[Y, =1]
= - Prob[X,, =
rBEZC Prob[ X, =z] rob| 7]

p(n) - ProblY,, € C]
p(n) - (% + e)
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where the last inequality is due to the hypothesis regarding Y,,. Next, we use Chernoff
bound and get

1 4e e2p(n)
Prob eCe > (= 4+ =) - Q| ——
10 [mezcw Ce > (2 + 3) p(n)] < exp ( (maxm{wz}
Now, using the simplifying assumptions regarding the w,’s and ¢, the latter expression is
bounded by exp(—,/s(n)/poly(n)). Thus, for all but a exp(—s’(n)*+2) measure of the R,,’s

the numerator of Eq. (15) is bounded above by ( 4+ ¥) - p(n). Using the previous claim,
we conclude that for a similar measure of R,’s the denumerator of Eq. (15) is bounded
below by (1 — %) - p(n). The claim follows. O

The lemma now follows by combining the above three claims. Claim 12.1 provides us
with a suitable Y for which we apply the probabilistic construction, whereas Claims 12.2
and 12.3 establish the existence of a set R,, such that both

Prob[X, € Ra] > (1 — o(1)) - p(n)

and .
Prob|C,.(X,)=f(X,)| X, €R,] < 3 + 2¢

for all 25’ possible circuits, C,, of size s'(n). The lemma follows. W
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