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Abstract

The main result of this paper is a Q(n1/4) lower bound on the size
of a sigmoidal circuit computing a specific ACY function. This is the
first lower bound for the computation model of sigmoidal circuits with
unbounded weights. We also give upper and lower bounds for the same
function in a few other computation models: circuits of AND/OR gates,
threshold circuits, and circuits of piecewise-rational gates.

1 Introduction

One of the main trends in circuit complexity has been to establish lower bounds
for circuits made of increasingly powerful gates. Threshold circuits have been
quite popular. Here we study generalizations of this computation model. A
gate with p inputs zq,...,z, outputs y = ¢, wjz; — 0) where ¢ : R - R
is a fixed real function. The numerical parameters wy, ..., w, and 8 are called
weights (6 is also often called a threshold). When ¢ is the sign function H,
the threshold circuit model is recovered. Of particular interest is the so-called
standard sigmoid o(z) = 1/(14+€~"). This computation model has been studied
due to its frequent usage in empirical machine learning work, and perhaps also
because it gives rise to mathematically challenging problems.

Up to now, it had been possible to prove lower bounds in this model only
by assuming that an upper bound on the magnitude of the weights is given?! [3,
4, 10]; one also had to assume a certain separation ¢ > 0 between network
outputs for accepted and rejected inputs In this paper, we give the first lower
bound which does not rely on any weight bound or separation. This progress
was made possible by a recent breakthrough regarding the VC dimension of
sigmoidal circuits [7]. It is to the author’s knowledge the first application of
VC dimension to circuit complexity. Our Q(n'/*) lower bound on the size of
sigmoidal circuits holds for a certain function in ACJ which we call SELECTION.

'Here we give direct lower bounds. These papers contain only indirect bounds, in the sense
that they compare the computational power of sigmoidal circuits and other models, such as
threshold circuits, splines, and rational functions.



This function can be computed by a circuit of about n AND/OR gates, which
is optimal. The same upper bound holds for sigmoidal gates since they are
more powerful than AND/OR gates. In fact, we show that one can do better:
SELECTION can be computed by a circuit of O(y/n) sigmoidal gates. The same
upper bound holds for circuits using the so-called linear-bounded sigmoid, and
this is optimal up to a constant factor.

2 Technical preliminaries

We shall just recall the definition of the Vapnik-Chervonenkis dimension. A
few references on this topic can be found in [7].

Definition 1 Let F be a class of {0, 1}-valued functions on a domain X. We
say that F shatters a set A C X if for every function f : A — {0,1} there
evisls g € F such thalt [ = gja. The VC dimension of F is the cardinalily of
the largest set that is shattered by F.

Here is a more formal definition of our computation model.

Definition 2 A network (or circuit) is a directed acyclic graph with only one
vertex of fan-out 0 (the oulput gate). Let n be the number of vertices of fan-in 0
(the input gates, labeled by input variables). The network computes a function
F : {0,1}* — R which is defined in the usual inductive way. Namely, each
vertez (or gate) g of fan-in p > 0 oulputs ¢(35_, wiw; — 0). Here ¢ : R - R
is a real function and the x;’s are either input variables or outputs of preceding
gates linked to g, enumerated in some fized order.

It is often the case that the output function ¢ is the same for all gates. Since
we are interested in computing boolean functions, the output of a sigmoidal
network has to be converted to a binary value. We use the following convention:
an output y > 1/2 is converted to 1, and it is converted to 0 if y < 1/2.

In Definition 2, weights and thresholds have fixed numerical values. One
could also treat some of them as programmable parameters. This gives rise to
a network architecture. For each setting of the programmable parameters, we
have a different sigmoidal network. One can thus associate a family of boolean
functions to a network architecture. By VC dimension of an architecture, we
mean the VC dimension of the corresponding family of functions.

The lower bound proof method is quite general. Given a function f :
{0,1}* — {0,1}, we fix a subset I C {1,...,n} of indices. For notational
simplicity, let us assume that I is of the form {p+ 1,p+ 2,...,n}. Consider
the following family of restrictions:

F=A{fo {0, 1} = {0,1}; fu(u) = f(u,v)}
where v € {0,1}""7. The method goes as follows:

1. From the definition of f, compute a lower bound on the VC dimension

of F.



2. Assume that f can be computed by a “small” network C'. Then F can
be computed by a “small” network architecture. Show that F must then
have “small” VC dimension. If C' is too small, this will be in contradiction
with the lower bound established at step 1.

This method will be applied to the SELECTION function, which is defined as
follows. When n is a power of 2, the restriction SELECTION,, of SELECTION to
inputs of length n+logn maps an input (z,y) to SELECTION, (z,y) = y,. Here,
x € {0,1}'°" and y € {0,1}". So z is interpreted as an integer, and we just
select bit number z of y. In the following, we consider without loss of generality
only inputs of this form. SELECTION can be extended to {0, 1}* by padding with
dummy inputs for other lengths.
We shall use the following family of restrictions:

Fo= ALy 40,1357 = {0,1}; fy(2) = f(z,9)} (1)

where y € {0,1}". It is clear that F, shatters {0,1}'°": an arbitrary function
f:{0,1}°e" — {0,1} can be implemented by f, wherey = f(0)f(1)f(2)...f(n
1). Hence F, has VC dimension n.

SELECTION is in ACg (i.e., can be computed by a depth-2 boolean circuit
of polynomial size) since

n—1
SELECTION, (z,y) = \/ [ A (z = 1)]
i=0

and
logn

(@=1d)= A (z;=1) (2)
j=1

(here ¢; is the j-th bit in the binary representation of i.) The corresponding
circuit is made of one OR gate and n AND gates. SELECTION,, can be computed
by a threshold circuit of n + 1 gates since an OR or an AND gate can be
simulated by a threshold gate. It is a folk theorem that a threshold circuit
can be simulated by a sigmoidal circuit of the same size. (the weights have
to be multiplied by a large constant, and some thresholds must be shifted; see
e.g. [8] for more details.) Hence SELECTION,, can be computed by a circuit of
n + 1 sigmoidal gates. It will be shown in Theorem 7 that one can do better:
SELECTION,, can be computed by a sigmoidal circuit of size O(y/n).

3 Upper and lower bounds

Our main result is as follows.

Theorem 1 There is a lower bound of Q(n'/*) on the size (number of gates)
of any sigmoidal network computing SELECTION,,.

This is a straightforward consequence of the following more general result.



Theorem 2 Assume that SELECTION, can be computed by a sigmoidal net-
work N with M gates, m of which are linked to one of the last n inputs. Then
m*M? > Cn for some universal constant C'.

Proof. For any y € {0,1}", the function f, defined in (1) can be implemented
by a circuit which is obtained from A" by changing the thresholds of the m gates
linked to the last n inputs, and removing the corresponding links. Therefore
all functions in F can be computed by a fixed architecture of M gates with m

programmable parameters. By [7], the VC dimension of such an architecture is
O(m?*M?). We are done since F,, has VC dimension n. O

Theorem 1 follows from the obvious observation that m < M. In many cases,
m is significantly smaller than M. For instance, if one works with layered
networks, m will be bounded by the number of gates in the first hidden layer.

The same technique can be used to give lower bounds for networks that use
an arbitrary Pfaffian function instead of o, or apply a polynomial function to
their inputs instead of taking a linear combination. The suitable VC dimension
bounds are in [7]. Interestingly, this technique also makes it possible to prove
the optimality for circuits of AND/OR gates of the construction showing that
SELECTION € AC) (as is customary in circuit complexity, we can assume that
there are no negations in the circuit by pushing them down to the input level).

Theorem 3 Let s(n) be the minimum number of AND and OR gates needed
to compute SELECTION,. Thenn < s(n) < n+ 1.

Proof. We have already seen that s(n) < n+1. In order to show that s(n) > n,
consider a circuit of AND/OR gates where m gates are linked to at least one
of the y inputs. Assign some fixed values to y,...,y, and let g be one of the
m gates, for instance an OR gate. Gate g computes a function of the form

(y ;) V (y vi)

where u; is a (possibly negated) z input or the output of another gate, and v; is
a (possibly negated) y input. Depending on the values of y1, ..., y,, the second
term is the constant 0 or the constant 1. Hence gate g can compute only two
different functions. The same holds for an AND gate. This implies that the
cardinality of F,, is upper-bounded by 2™. Thus m > n since |F,| =2". O

We do not have such a tight bound for threshold circuits.

Theorem 4 Let s(n) be the minimum number of threshold gates needed to
compute SELECTION,. Then C.n/logn < s(n) < n+ 1 for some universal
constant C.

Proof. The upper bound s(n) < n 4 1 was discussed in section 3. The lower
bound follows from the fact that for a circuit of M threshold gates the VC
dimension of F,, is O(Mlog M) [1]. O



We now study more powerful computation models.

Theorem 5 Let ¢ : R — R be some fized piecewise-rational function. There is
a Q(y/n) lower bound on the size of a ¢-nelwork computing SELECTION,,.

Proof. By [5], the VC dimension of F for a circuit of M ¢-gates is O(M?). O

This lower bound can actually be achieved with a very simple activation func-
tion: the linear-bounded sigmoid 7. This function is defined as follows: 7(z) =
0forz <0,7(z) =z for 0 <z <1and m(z) =1 for > 1. Threshold gates
can be simulated by m-gates with “large” weights, just as for sigmoidal gates.
The linear part of 7 also makes it possible to simulate linear gates (i.e., gates
where the output function is the identity). These two properties are used in

the proof of the next theorem.

Theorem 6 SELECTION,, can be computed by a network of O(y/n) m-units.

Proof. Let us first assume for simplicity that n is of the form 22*, and let
p = y/n = 25, The construction is in several stages. In the first stage, we
encode the n 'y’ bits into p groups of p bits. This can be done by p units in the
first hidden layer computing

2 »
Wo=m (Z Q_iyi_l) N (Z 2_iyn_p+i_1) .
i=1 i=1
Let u,v € {0,...,p— 1} be the unique integers such that x = pu + v. We need
to compute bit number v of W,. Such a construction is described in [8], with
the difference that the W;’s were programmable parameters in that paper. This
implies a difference in the construction of the second stage, where we select W,,.
To the unit computing W; we associate another unit outputting b; = 1 if u =12
(i.e., if W; should be selected) and b; = 0 otherwise. Note that u is simply
given by the k most significant bits of . The test v = ¢ can thus be performed
as in (2) with a single AND gate, and therefore also by a single 7 gate. The
selection of W, can now be implemented as follows:

p—1
W,=r lzr(Wi — bi)] : (3)
i=0
In the two final stages, we need to decode the p digits of W, and output
bit number v. This can be done almost as in [8] with O(p) units. We de-
scribe that construction here for the sake of completeness. First, we define a
multi-output network which maps W, to its binary representation f(W,) =
(Wai, ..., Wyp). Assume by induction that we have a net A; that maps W, to
(W, oo oy Wiy 0.Wy, 41 ... W,p). Since

) 1 .
Wyisi = HOW, iy ... W, —1/2) =1 [QIH (;e - (5 - 2_(,,_1)))]

and 0.W, j40... W, = 7(2 X 0.Wyip1 ... Waun — Wy ig1), Ny can be obtained
by adding two gates to N; (as well as 4 weights)?. It follows that N, has 2p

2with the usual convention H(z) =1 for # > 0 and H(x) = 0 otherwise.



gates and 4p weights. Finally, we define a net N’ which takes as input v, f(W,)
and outputs W,,. We would like this network to be as follows:

P P
(o, W) =7 |Wy + E Wy.m(20—2241) — Z Wy oam(20 — 22 + 1)

2=2 2=2

(v can be computed as a linear combination of k£ input bits). This is not
quite possible, because the products between the W,,’s and the 7-gates are
not allowed. However, since we are dealing with binary variables one can write
af = 7(2a+ 26 —1). Thus N’ has 4p — 3 gates and 12(p — 1) + p weights.

In the case where n is of the form 2%*! (recall that n is always assumed to
be a power of two) we break the n 'y’ bits into 2% groups of length 2*+'. The
rest of the construction is essentially unchanged. O

The same O(y/n) upper bound applies to the standard sigmoid. We first need
the following intermediate result.

Lemma 1 SELECTION,, can be computed by a network of O(\/n) linear, thresh-
old, and product units.

Proof. This follows from a simple modification of the construction of Theorem 5.
In that construction, threshold or linear units can be used instead of w-units
everywhere except in (3). However, the selection stage is trivial to implement
with product units: W, = Y72, b:;W;. O

The following result applies in particular to the standard sigmoid.

Theorem 7 Let ¢ : R — R be such that lim,__,_, ¢(z) =0, lim,__,,, ¢(z) =
1 and ¢'(a) exists and is non-zero for some a € R. Then SELECTION,, can be
computed by a network of O(\/n) ¢-units.

Proof. This follows from Lemma 1 and the fact that for any finite set of inputs,
a network of linear, threshold and product gates can be simulated by a network
of ¢-gates of the same size, up to a constant factor [8]. O

4 Final Remarks

The Q(n'/*) lower bound for sigmoidal circuits is still rather small. Tt would
be very interesting to improve it, possibly by choosing another target function
than SELECTION. The ultimate goal could be to prove an exponential lower
bound for constant-depth sigmoidal networks, as was done for threshold nets [6].
(note however that to the author’s knowledge, such bounds are known to hold
only for threshold nets with “small” weights.) Proving such superlinear lower
bounds would require other tools than the VC dimension since, as a rule of
thumb, the VC dimension of an architecture is at least linear in the number of
programmable parameters. It is probably safe to say that purely combinatorial
arguments will not suffice: deep algebraic and geometric tools, such as those
used in the proof of the Karpinski-Macintyre bound [7], will have to play an
important role.



It would also be interesting to close the gap between the upper and the lower
bound in Theorem 4. The optimal upper bound in Theorem 6 was obtained
from a modification of the construction of piecewise-linear circuits of quadratic
VC dimension [8], which is as large as possible. It has also been known that the
O(wlogw) upper bound on the VC dimension of threshold net is optimal [9].
However, it seems harder to obtain a O(n/logn) upper bound for SELECTION,
from the corresponding construction.
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