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Abstract

We establish significantly improved bounds on the performance of the greedy algorithm for
approximating minimum set cover and minimum partial cover. Our improvements result from
a new approach to both problems. In particular,

(a) we improve the known bound on the performance ratio of the greedy algorithm for
general covers without cost, showing that it differs from the classical harmonic bound by a
function which approaches infinity (as the size of the base set increases);

(b) we show that, for covers without cost, the performance guarantee for the greedy algorithm
is significantly better than the performance guarantee for the randomized rounding algorithm,;

(c) we prove that the classical bounds on the performance of the greedy algorithm for com-
plete covers with costs are valid for partial covers as well, thus lowering, by more than a factor
of two, the previously known estimate.
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1 Introduction

In the minimum set cover problem, the goal is to find a smallest subcover of a cover of a finite
“base set”. This can be generalized for covers with costs, where the goal is to find a subcover
with minimum cost. These problems are NP-hard (see [6] or [3]), hence efficient approximation
algorithms are of great interest. One of the best known algorithms for approximating the minimum
set cover is the so called greedy algorithm. The classical bound on its performance ratio (see e.g.

[1], [5], or [8]) is
I < (d), ()

Cmin
where ¢greeqy and ¢y, are the costs of a minimum subcover and the subcover output by the greedy
algorithm, respectively, d bounds the size of the sets in the cover, and H(d) =1+ ---+1/d. For
general covers (a priori unknown bound on the size of the covering sets), this reduces to
el < g (m), (2)
C’mzn
where m is the size of the base set.

Recently, other algorithms for approximating the minimum sel cover were introduced, among
them the randomized rounding technique of Raghavan and Thompson ([11]). In the case of covers
with constant costs, Srinivasan in [12] showed that the approximation guarantee for the randomized
rounding algorithm is

Crra < Couin (m(c*ﬂ_) +0(Inln(——)) + 0(1)) , (3)

mn mn
making it appear at that point that the performance ratio for the randomized rounding technique
was better than the performance ratio for the greedy algorithm. (Here ¢} ;. < ¢pin is the optimum
cost of the LP relaxation of the minimum cover problem.)

The minimum partial cover problem further generalizes the minimum set cover problem. The
goal here is to find a subcollection of sets covering at least a p-fraction, 0 < p < 1, of the base
set with minimum cost. This problem is also NP-hard, since it contains the minimum setl cover
as a special case (p =1, ¢4 = ¢3 = --- = ¢, = 1), and the solution can again be approximated
by a greedy algorithm ([7]). Even though this algorithm (see Preliminaries) is a straightforward
modification of the greedy algorithm for complete covers, its output is less predictable, hence the
approach used by Chvatal, Johnson, or Lovasz for proving (1) and (2) cannot be generalized.
In [7, p. 69], Kearns proves that for 0 < p < 1

Sorcedy < 9f(m) + 3.
Cmin,
This is much worse than the bounds for minimum set cover and only shows how complicated the
behavior of the “greedy” partial cover can be.

Our Results

In Section 2, we discuss the minimum partial cover problem for covers with costs. We introduce
a new simple but powerful technique based on the fact that the worst possible “greedy” partial
cover can be made of one-element sets. This enables us to prove that (1) is indeed true for minimum
partial cover as well (given that the size of sets in the cover is bounded by d), and that

Cgreedy

~— < H([pm]) (4)

szn



for general covers. Hence we establish a classical bound for a non-classical problem. These results
clearly contain, as a special case, the bounds proved by Chvatal and Johnson, and significantly
improve Kearns’s estimate.

Section 3 is devoted to general covers with equal costs, i.e. ¢4 = ¢3 = --- = ¢,. Lund and Yan-
nakakis in [9] proved that even in this special case, assuming DTLME[nan(l) " £ NTLME[nan(l) "1,
no polynomial time algorithm can approximate minimum setl cover to a performance ratio of better
than clog, m, for any ¢ < 1/4. This hardness result has renewed interest in improving the per-
formance ratio. Recently, Halldérsson ([4]) improved the performance guarantees (1) and (2) by
11/42 using local improvement modification of the greedy algorithm, but the bound of H(m) for
the classical greedy algorithm has remained the best that was known (for general covers) despite a
fair amount of work by many people. In this paper, we are able to show that the greedy algorithm
performs better than was previously thought; in particular we prove that the performance ratio of
the greedy algorithm differs from the harmonic bound by a function that goes to infinity as the size
of the base set approaches infinity. We will prove this in the setting of partial covers, and show,
among other things, that, for any 0 < p < 1,

Coreely < nu— f(u), (5)
Cmin
where v = [pm] and f(u)=0(Inln u) (hence lim f(u) = oo). This improves not only our inequality
(4) for the minimum partial cover problem but also the classical bound (2) for the minimum
(complete) cover problem ([1],[5],[8]).

In proving the results, we introduce two new methods which should be generally useful for
attacking other similar problems. For example, our approach to analyzing the greedy algorithm for
covers with equal costs yields the bound

1 m
Cyreedy S <C:mn - 5) hl( * ) + C’yrﬂnin7 (6)

Conin

which is clearly stronger than (3). Hence the performance guarantee for the greedy algorithm is
significantly better than that for the randomized rounding technique.

Preliminaries

Definition 1 Let U be a finite set, S = {51,5,,...,5,} be a cover of U (i.e. U =J5;), and
c ={c1,¢9,...,¢,} be positive real costs of each set in the cover. We identify the cover S with the
set of indices J = {1,2,...,n} and any subset S* of S with the corresponding set J* C J. Define
m = |U|. Let 0 < p < 1. We say that J* (or alternatively S*) is a p-partial cover of U (or simply
a p-cover of U) if

LU sil=1 U 55> pm.

jeJ* S; eS8
We call ¢(J*) = ¢(S*) = Z ¢; the cost of the p-cover J* (S*).

JeJ*

This definition leads immediately to the following optimization problem:

Minimum Partial Cover
Instance: Finite set U (|U]| = m), finite cover S, positive costs ¢, 0 < p < 1.
Question: What is the minimum cost of a p-cover J* of U?



Greedy Algorithm

We will use a minor modification of the greedy algorithm for minimum partial cover given by
Kearns in [7].

Step 1. Set J* = 0.

Step 2. Set r = pm —|U;cg3+ 5jl, i.e. 7 is the number of elements of U yet to be covered in order
to obtain a p-cover.

Step 3. If r <0, then STOP and output J*.

Intuitively, the more elements a set has and the cheaper it is the more likely it is in a minimum
p-cover. On the other hand, a set having more than r elements is no better than a set with exactly
r elements. That motivates the following step.

Step 4. Find 7 € J\ J* that minimizes the quotient m, for j € I\ J* and S; # 0. In case
)9y
of a tie, take the smallest such z.

Step 5. Add i to J*. Foreach j € J\ J*set S; = 5;\ 5. Set U = U\ S;. Return to Step 2.

2 Covers with General Costs

Denote by k£ the number of sets in a p-cover obtained by the greedy algorithm. We can assume
without loss of generality that the sets in the cover S are ordered in such a way that the greedy
algorithm chooses the index 7 in its ¢-th iteration, i.e. after every iteration ¢ of the greedy algorithm,
J*=4{1,2,...,i}.

Let {j1,72,...,7:} be a minimum p-cover of U with the cost ¢,,;,. To simplify the nota-
tion, denote the sets of this p-cover by Ay, Ay,..., A; and their costs by {ay,as,...,q;}, ie.

{A1,A2_,---,Al} = {9,,95,,-..,9;} and ¢pin = 01 + a3 + -+ + ;. Also denote by AQ), S](-Z)
and U the sets A,, S;, and U after the i-th iteration of the greedy method. Finally, denote by

d; the number of elements of U after the i-th iteration yet to be covered to obtain a p-cover and
define ugz) to be min(d;, |S](-Z)|).
Lemma 1 Let S = {51,...,5,} be a cover of U, A C S a p-cover with minimum cost, and S* a
p-cover oulput by the greedy algorithm. Then there is a cover T D S (enrichment of the original
cover) such that

(i) the cost of a minimum p-cover B C T is at most the cost of A, i.e. ¢(B) < ¢(A), and

(i1) the greedy algorithm applied on T outpuls a p-cover T* consisting of one-element sets that
is at least as expensive as the p-cover S*, i.e. ¢(T*) > ¢(S*).

This Lemma (proved in the Appendix) shows that the greedy p-cover can be made (possibly)
more expensive by replacing each set in the greedy p-cover by an appropriate number of singletons
with appropriate costs while (possibly) lowering the cost of a minimum p-cover. Hence the worst
possible case for the quotient ¢4reedy /Cmin can be obtained by considering only those greedy p-covers
of U consisting of singletons with appropriate costs.

Note: The Lemma does not claim that the worst case greedy p-covering cannot be achieved by
bigger sets. It simply says that a greedy p-covering by bigger sets cannot be worse than a greedy
p-covering by singletons with appropriate costs.



In our quest for the worst possible p-cover output by the greedy algorithm, Lemma 1 enables
us to restrict ourselves to single-element-set greedy p-covers. Let J* = {1,....k} be such a p-cover.
Then clearly k£ = [pm|] and the greedy condition implies that

aS

Cip1 $ ———=5———
min(|A£Z) |, d;)

for all s =1,...,1 for which A # 0.
Without loss of generality, we can assume that the sets A, in the minimum p-cover are disjoint
and that

l
Z:IASI = [pm]. (7)

This can be accomplished by possibly deleting some elements of the sets A;, hence (possibly)
increasing the worst case cost of the greedy p-cover.
Consider all fractions of the form
a
k—s, s=1,...,0, ky=1,...,|A;].
S

Note that we have k = [pm]-many fractions. Let us rearrange these fractions into a nondecreasing
sequence e1 < €3 < - -+ < eg. Then the following inequality (proved in the Appendix) holds.

Lemma 2 For eachi=1,...,k we must have

c; < e;.
As a straightforward consequence of Lemma 2, we easily obtain:
Lemma 3
o+t <ert+ - tep=arH(|A])+ -+ o H(|A)]).
Now we can state (and prove) the generalization of (1).
Theorem 1 Let U be a finite set of sizem, S = {S1,...,5,} be a cover of U, ¢ = {cq,...,¢,} be the

costs of the sels in the cover, and 0 < p < 1. Let d € N be such that |S;| < d forallj=1,...,n.
Then

Cyreedy < CmZnH(d) (8)

Proof: The theorem is a straightforward consequence of Lemmas 1, 2, and 3 and the fact that

H(|As|) < H(d)forall s=1,...,I. O

The equality (7) implies that |As] < [pm] for all s = 1,...,l. This and Lemma 3 prove the
following theorem.

Theorem 2 Let U, S, ¢, and p be as above. Then
Coreety < CminH([pm]). (9)

Theorem 2 might seem to be a weaker version of Theorem 1. Of course, this is the case when
p =1, since d < m. On the other hand, for p < 1, it might be that d > [pm], and in this case,
Theorem 2 is stronger than Theorem 1.



3 Covers without Cost

Let us now consider the case, where all the sets in the cover S = {51,955,...,5,} have the same
cost,i.e. ¢y =cy = -+ = ¢y,
It is easy to show that even in this special case, the bound on the greedy algorithm performance
(8) cannot generally be improved. On the other hand, we can obtain some improvements of (9).
We consider general covers, that is, covers where we do not know beforehand a bound on the
size of the sets in the cover. For simplicity, set v = [pm]. Since we are estimating the quotient
Cgreedy/ Cmin, We can assume without loss of generality that

co=cy=---=¢, = 1. (10)

Then, if the number of sets in a minimum cover is [ and the number of sets in the cover output by
the greedy algorithm is k, we have ¢gyceqy = k and ¢y, = 1.

The case ¢, = 1, that is the case where U can be p-covered by one set, is not interesting,
since the greedy algorithm will also output a single set, hence ¢grecdy = €min. Therefore in what
follows, we will consider only covers for which ¢, = 1 > 2.

At each step, ¢, of the greedy method, we delete ¢; elements. We have k steps, hence

k
Zqi = u. (11)

We know that U can be p-covered by [ sets. By the pigeon hole principle, at least one of the sets
in the minimum p-cover contains at least [7] elements. Hence

@2 [7]
Similarly,
u—
%= [ qu
and, in general,
u—(q+ -+ -
gz (LB aen)y (12)
fori=2,...,k. Using (11), we can rewrite (12) in the form
i+t G
g > [T (13)
Solving for ¢; gives
qiz[W1 fori=1,... k. (14)
For given [ > 2, set
a| = 1
and
ay + -+ a—
a; = [————| (15)

-1
for i = 2,3,.... Then, clearly, a1 < ¢x, a2 < ggp_1, - .., ap < ¢1, hence

k k
Zai < ZQi' (16)

=1 =1



Define

k

N(k,[)=> a; fork=12,.... (17)

=1
From the discussion above, it is fairly immediate that for & > [, N(k,!) represents the smallest u
for which there is a cover S of some set U with u = [pm] such that ¢,,;, = [ and ¢gpeeqy = k.
Indeed, for u < N(k,l)and ¢, = [, inequality (16) implies that c¢greeqy < k, whereas if u > N(k,1)
one can easily construct a cover S such that ¢,,;, =l and cypceqy = k. As far as this later point is
concerned, see the following example.

S12 S13 S14 S1s S16 S17
Si|/| e ° ° ° ° o |52
S4
S3|| e ° ° ° ° ® |55
o o o o o o

S S Ss So S

6 7 10
S@ S@ SQ SQ SQ So3
Q Q S@ SQ S@ S29

Figure 1: Example of a cover for which ¢grecdy = k, ¢min = I, and w = N(k,1).

S S

Example 1 Let £ > 1,0 < p <1,and u > N(k,l) be given. Set m = |u/p| (hence u = [pm]) and
define U = {1,2,...,m}. Since u > N(k,[) there are positive integers ¢i, ..., ¢; satisfying (14) and
(11). Define a cover S of U in the following way.
(i) Fori=1,...,k set
Si={a+ - +ga+tlLa+-+aa+2,..,0+ - +aq},

i.e. each 5; contains exactly ¢; elements, the sets are disjoint, and Ule S;={1,...,u}.
(ii) Set d = [u/l]. Then one can write u = l;d 4 l(d — 1) for some Iy, I3 such that Iy + [y = [.
Define

Skt = {0+ 1. i+ 1(d=-1)} fori=1,...,0
and

St ={i, 0+ 1. i+ 1(d=2)} fori=1 +1,...,1L



Then, clearly, the first [; sets contain d elements each, the next [ sets contain d — 1 elements each,
the sets are disjoint, and U§=1 Seri = {1,...,u}.
(iii) Finally, define

Sitiyi ={u+i} fori=1,...,m—u.

Figure 1 shows this construction for m = 30, u = [pm] =18,d=3,1 =6, k = 11.

We claim that the greedy algorithm outputs a p-cover J* = {1,...,k}. Indeed, ¢; > d, hence in
the first iteration Sy is chosen. Assume that after the i-th step, J* = {1,...,¢}, leaving ¢;+1+- - -+
max{|Si, _
cover, we have r — 1 < |S,(CZ_})_]| <rforall j=1,...,0. Hence ¢iy1+ -+ qx =) ; |S,(CZ_|)_]| > (r—1)I
and thus ¢;41 > r by inequality (13). As a result, the greedy algorithm will choose the set S;4; in
its (¢ + 1)-st step. |

elements to cover. Set r = max{|59,, .| : j = 1,...,1}. Because of the construction of the sets in the

It is now clear that, for fixed ¢;i, = [, u < N(k,[) implies ¢greedy < k. On the other hand, if
uw > N(k,l), there are covers for which ¢,,;,, = and ¢yreeqy = k. This proves the following Lemma:

Lemma 4 For any set U and any 0 < p < 1 such that uw = [pm] > 2, and for any cover S of U,
TEE k
L < max{ | Nk, 1) < u}. (18)

Cmin

Moreover, for any u > 2, there are covers for which the equality is attained.

Lemma 4 establishes a tight bound on the quotient ¢yrceqy/Cpmin. Unfortunately, it is of little
practical use since we know almost nothing about the numbers N(k,[). The only immediate facts
we have (as a consequence of (17) and (15)) are that, for any 2 <[ <k, N(l,l) =1 and

N(k+1,0)= N(k, 1) + [A;(_k’ll)w = [ _l N (R, 1)]. (19)

Hence we can generate N(k,l) for any k > [ > 2. This allows us to evaluate the bound for the
quotient ¢yreedy/Cmin for small u, but it does not say much about asymptotic behavior. Let us now
establish some asymptotic properties of N(k,1).

Using (19), one can show that

k-1

k-1
N(k,1)> <%> N, )y>eT1 (20)
which easily gives
InN(k,1)> k/l+1Inl - 1. (21)

The following lemma improves the above inequality. The proof uses more involved estimates
and is in the Appendix.

Lemma 5 Foranyk >12>2

2
InN(k,)>Inl+ (k-1)—/—-. (22)
20— 1
Rearranging (22) gives immediately
Eo21—1
7§ 57 (InN(k,l)—Inl)+1 (23)

for any & > 1 > 2.
This and Lemma 4 prove the following.



Proposition 1 For any set U such that w = [pm| > 1 and any cover S of U, the p-cover output
by the greedy algorithm satisfies

c 2¢min — 1
greedy < T (Inu —In epin) + 1.
Cmin 2¢min
The bound of Proposition 1 is not very useful - we need a bound without specific dependence

On Cpin. Tedious analysis (details can be found in the Appendix) proves

Theorem 3 Define M(u) to be max{k/l| N(k,l) < u} = “the worst case for cyreedy/Cmin”. Then
there is a function f(u) = O(lnlnw) such that

M(u) <lInwu— f(u).
Thus

Sgreedy <Ilnwu—Q(nlnu).

Cmin

Note: One can show analytically that f(u) > Inlnu — a for v > u, where a > In2 and u,
depends on a. Actual evaluation of M(u) for u < u, shows that Inu — M(u) > Inlnu — a for any
a>a,=3+Inln32—-In32~ .78 and 2 < u < u,. Therefore
Egreedy <Mu)<Inu—Inlnu+a,
Cmin

for all u > 2.

4 Further Improvements

The bounds in the previous section are incomparable with those of [12]. In this section we further
improve our estimates for covers with equal costs and show that the performance guarantee of the
greedy algorithm is better than that of the algorithms based on randomized rounding technique.

Generalizing [8] we define a fractional p-cover T of U to be a system of weights T = {{1,...,1,}
such that for at least u = [pm] points 2 € U we have

Z t; > 1.

{7 |=€5;}

Denote by ¢*(T) the cost of the fractional p-cover T, i.e.

n n
C*(T) = thc]- = Et]‘
7=1 71=1
and let
min

*in = min *(T).
c mrll‘nc()

This formulation is equivalent to the LP relaxation of the set cover problem considered by Srinivasan
n [12]. Obviously, ¢ . < ¢nin-

min —

Let us follow the steps in Section 3. Set I* = ¢; . . A simple argument shows that ¢ . =1
implies ¢, = 1, hence by considering only those covers for which ¢, = | > 2, we actually
consider covers for which ¢}, =1 > 1. Now,

n

WD IES SIS 30 SINED S SEET St

j=1 €5, z€U {j|z€S;)



hence ¢; > [;]. Similarly, ¢; > [ﬂfll*‘l*—ﬂi—l)w
Next, we can define af = 1 and

Gt
*—1 ’

a=

and obtain as before S5, a; < Sk ¢ Let us define

k
N*(k,1*)=>_af fork=1,2,.... (24)
=1

*

From the discussion above, it is clear that v < N*(k, ¢},

following counterpart of Lemma 4 holds.

) implies ¢4peeqy < k hence the

Lemma 6 For any set U and any 0 < p < 1 such that w = [pm] > 2, and for any cover S of U,
Cyreedy < maX{k | AT(]C ct ) < u}

s “min
We have again that

N*(k,I*) e N (ke 1], (25)

N*(k+1,07) = Nk, 1) + [ =1 = [ ]

and, with a small adjustment, N*(|I*|,1*) = |I*| for any [* > 1. Careful analysis shows that
l*
-1

k—1*

k—[1*]
)N 2 (26)

N*(k,I*) > <
for k > I*, hence
In N*(k,I*) > /I + Inl* — 1. (27)

Thus we have shown the following.

Proposition 2 For any set U such that w = [pm] > 1 and any cover S, the p-cover outpul by the
greedy algorithm satisfies

Cgreedy < Cpin(Inw —1Incp 4+ 1). (28)

Proceeding as in Section 3, we can further improve (28) and obtain the following analogy of Propo-
sition 1. The proof is in the Appendix.

Theorem 4 For any set U such that w = [pm] > 1 and any cover S, the p-cover output by the
greedy algorithm satisfies

1
Cgreedy < (Crmn - 5) (lnu —In Crmn) + Crm'n' (29)

Theorem 4 shows that the performance guarantee for the greedy algorithm is substantially

better than the performance guarantee (3) for the randomized rounding algorithm. Moreover, the

*

above inequality is of the same form as the bound in Proposition 1, only ¢,,;,, is replaced by ¢, ...

Thus a simple repetition of the steps in the proof of Theorem 3 proves that

Cgieedy <Inwu-—0(nlnu).
c

min
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Appendix

Proof[Lemma 1]:  In every iteration (7 + 1) of the greedy method, we choose a subscript j for

which c]/u is minimum. Assume, as before, that the greedy algorithm chooses index # in its i-th
iteration. Deﬁne

f(U(i)) = min {% lj=1i+ 1,...,n} = Cif)l
ujl k3

Uit1
forall i =0,...,k— 1. Clearly, f(U®)) < f(UG)) for any i = 0,...,k — 2.
Assume that k& < [pm]. Then there is at least one i such that uZ(Ql > 1 (ie. at the (1 4+ 1) st

iteration, we delete at least two elements). For some z € Sz(j_)l, define

Spp1 = {2}, Snpz = SEL\ {2}y enpr = F(UD), and epp = FUDN\ {2})(ul); - 1),

Consider the cover

R = {Rla .- '7Rn+2} = {Sla .- '75i75n+175n+275i+27 .. -75n75i+1}

consisting of the sets of the original cover S and the two new sets S,,+1 and S,45. Clearly, enriching
the cover S by the two sets in no way increases the minimum cost of a p-cover - it might only decrease
it. On the other hand, because of the choice of the costs ¢,,+1 and ¢4 and the fact that in the
case of two sets having the same cost per element, the one with smaller subscript is chosen, the
greedy algorithm applied on R will output a p-cover

R™ = {Rb .. -aRk+1} = {Sla ooy iy Sn+17 Sn+27 Si+27 R Sk}
Since

tort+enpz = SO+ FUON {2}) () - 1)
Nt LU, —1) = Sl = e

(AY4
=
=

we have

c¢(R™) > ¢(S7).
Hence after adding sets 5,41 and 5,42 (with appropriate costs) to the original cover, and appro-
priate rearranging, the greedy algorithm outputs a p-cover of k+ 1 sets that is at least as expensive
as the p-cover output originally.
For simplicity, set w = [pm] and N = n + 2([pm] — k). Applying the above method repeatedly
(u — k) times, we obtain a cover R = {Ry,..., Ry} such that the minimum cost of a p-cover for R
does not exceed ¢(A) and the greedy algorithm applied on R outputs a p-cover R* = {Ry,..., Ry}

such that ¢(R*) > ¢(S*). Also u( ) =1foralli=0,...,u—1,ie. only one element of each set R;
contributes to our greedy p—cover Deﬁmng

i—1 _
Ryyi=Ri\ | JR;= RV fori=1,...,u—1
7=1
and
RNy =4z} for some z € Ri(bu_l)7
gives us

|Rngi1] == |BNyo| = 1.
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Set eny; = ¢; forall e =1,...,u. Then the cover
T={T1,...,TN+u} ={BN+1,.. -, RN4u, Rut1,..., BN, R1,..., Ry_1, Ry }.

proves the Lemma. a

Proof[Lemma 2]:  After i-th iteration of the greedy algorithm, ¢ = 0,...,k — 1, there are exactly
d; = k — 1 elements to be covered, i.e. there are th least k — ¢ elements in |J As not deleted in the
previous steps. Hence, if we define bl = m1n(|A | d;), we have Y\ _, bt > d; = k—1. The greedy
condition implies that

Qg
Cit1 < bg_z)
for all s =1,...,1 for which bﬁ” > 0. Therefore
i1 < Z :
forall s=1,...,0and all k, = 1,...,5%) ie.
i1 < €

for at least k£ — ¢ indices j. But e; < --- < e, hence

Cit1 < €p_(k—i)+1 = €i+1
forany¢e=0,...,k—1. a

Proof{Lemma 5]:  Since the function y = 1/z is convex (concave up), we have
b 2b

1 b)—Ina > = —
n(a+b)—1Ina a—}—% 5010

for any a,b > 0. Also, forany 0 < a < b<e, b .2
Q[ﬁN(k,lﬂ S QﬁN(k‘,l) _ 2
2N (k, 1)+ [ N(k,1)] ~ 2N(k, 1)+ 25N (k1) 20-1

Applying the above inequality repeatedly yields

InN(k+1,1)—In N(k,1) >

2

In N(k,1) > In N(I,1) + (k — ) =——— g

2
571 =Inl+ (k-

Inu —Inl

57 +Inl —1 and f(u) =

Proof[Theorem 3]: Set k = cCyreedys | = Cmin, 9(l,u) =
miny<i<y g(I, ). By Proposition 1, we have

Inu— M(u) > g(l,u) > f(u).
The partial derivative of g(I,u) with respect to [ is

dg(l,u) 1 N

ol 212
hence, for fixed 1 < u < 2¢€®, g(I,u) is an increasing function of [, and for fixed u > 2¢®, g(I,u) is a
unimodal function with both relative and absolute minimum at l = l where [ satlsﬁes Inu = h(l)

20+ Inl—Inu-—1),
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with
Inu=h(l)=Ini+20-1. (30)
Therefore
g(?,u):h‘T“+314L2—1 for 1 < u < 263,
J =3 gliw)=tmi— & =mh-1(1 L f 2¢°
g(,u)_n—Q—i_n (nu)—m or u > 2e”.

Here h~! is the inverse of h. Since h Is increasing, so is h=1, hence f is also increasing. Clearly,
limy_ o f(u) = oco. Finally, Inu = ©O(/) hence [ = O(In u), therefore f(u) = O(Inl) = O(Inln u).
Hence M(u) < Inu — O(Inlnu). (Detailed analysis shows that 0.4Inlnu < f(u) <Inlnu for u >
e?) O

S 2

Proof[Theorem 4]:  In order to simplify the notation, let us omit the when referring to N*

and [*. Hence [ > 1 is now a rational number. As before

2
111 ]V(k -|- 1,[) - IIIN(k,l) > m,
hence
2(k = [1]) 2(k 1)
). > _— = =
InN(k,1)>1n|l| + Y] Inl+ 5] 1 + w,
where

Set @« =1 — |l|. Then
20 2 a a(l - 2a)

= In(l — a) — logl > — = .
w=gog til—e)—logl = o = = G i
Thus for 0 < @ < 1/2 and any k£ > [ > 1, we have w > 0, hence
20k =1
In N(k,l)>Inl+ él 1). (31)

If @« > 1/2, then [ > 3/2, hence N([I],1) = |I] + 2. Therefore

In N(k,1) > In([I] +2) + % =it Qé;c__ll)

+ €,

where

2=
Similarly as above,
20—2 2—« 204+ 3a -4
> = >0
T Tyl T @i+~

hence (31) is valid for & > 1/2 as well. Rearranging (31) completes the proof. O




