Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 058 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

On Extracting Randomness From Weak Random Sources *
Extended Abstract

Amnon Ta-Shma!

Abstract

We deal with the problem of extracting as much randomness as possible from a defec-
tive random source. We devise a new tool, a “merger”, which is a function that accepts d
strings, one of which is uniformly distributed, and outputs a single string that is guaran-
teed to be uniformly distributed. We show how to build good explicit mergers, and how
mergers can be used to build better extractors.

Previous work has succeeded in extracting “some” of the randomness from sources
with “large” min-entropy. We improve on this in two respects. First, we build extractors
for any source, whatever its min-entropy is, and second, we extract all the randomness in
the given source.

Efficient extractors have many applications, and we show that using our extractor
we get better results in many of these applications, e.g., we achieve the first explicit
N-superconcentrators of linear size and polyloglog(N) depth.

*This work was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli
Academy of Sciences.
Hnstitute of Computer Science, Hebrew University of Jerusalem. email: am@cs.huji.ac.il

1 Introduction

1.1 The Problem

We deal with the problem of “extracting” as much randomness as possible from a “defective”
source of randomness. There are various ways to define what a “defective” source is, the most
general one [Zuc90] assumes nothing about the nature of the source, except that no string
has too high a probability in the given distribution:

DEerINITION 1.1 The min-entropy of a distribution D is H (D) = ming(—log(D(z)).

An extractor [NZ93] is a function F(z,y) s.t. the distribution of E(z,y) is very close
to uniform, for any source X with large min-entropy, when z is taken from X and y is a
short truly random string. I.e., the extractor uses the short random string y to extract the
randomness present in X.

DEFINITION 1.2 (A variation on [NZ93]') E :{0,1}"x{0,1} — {0,1}™ is an (n,m,t,m’,)-
extractor, if for any distribution X on {0,1}" whose min-entropy is at least m, the distribu-
tion of E(z,y) when choosing x according to the distribution X and y uniformly in {0,1},
1s within statistical distance of € from uniform.

1.2 Previous Work and Our New Extractor

Extractors have been studied extensively in many papers [Zuc90, Zuc91, NZ93, SZ94, Zuc93,
Zuc]. Much research has also been done on a related structure, called disperser, in which the
output bits are not necessarily close to uniform, but have a weaker random property that
suffices ,e.g., for “RP simulations” [WZ93, SSZ95]. In the following table we list some of the
currently known explicitly constructible extractors:

‘ required min-entropy ‘ no. of truly random bits ‘ number of output bits ‘ reference ‘

m = Q(n) t = O(log?n - log(1)) m' = Q(m) [NZ93]

m = Q(n) t = 0(log(n) + log(L)) | m' = Q(m) [Zuc]

m = Q(n'/217) t = O(log?n - log(1)) m' =n®, §<xy [SZ94]

m = Q(n7) t = O(logn) m =n®, §<¥y [SSZ95]
Disperser

We improve upon previous results in two ways. First, our extractor works for any min-
entropy, small or large. Second, we extract all the randomness present in the source:

Theorem 1 For every € = e(n) and m = m(n) < n, there is an explicit family of (n,m,t =
poly(log(n),log(L)),m' = m, €)-extractors E,, that can be constructed and run in polynomial
time in n.

In addition we use our new technique to construct a different extractor:
Theorem 2 For every constant k and v > 0 there is some constant 6 > 0 and an

(n,n",0(log(n)log®™n), Q(n?), L) extractor, where log®)n = loglog . . .log n.
—_———
k

lsee remark 3.1.

Non-constructive extractors require only O(log(n)+ log(1)) truly random bits, matching
the current lower bound of [NZ93], while our construction requires poly(log(n), log(%)) truly
random bits. Thus, we can add to the above table:

‘ required min-entropy ‘ number of truly random bits ‘ number of output bits ‘

any m t = poly(log(n) + log(1)) m' =m Theorem 1
m = Q(n") t = O(log(n) - log®™n) m' = Q(n®),8 < v e=21 Thm 2
any m t = O(log(n) + log(1)) m' =m Lower bound

Reducing ¢ to the optimal remains the major open problem.

1.3 Our Technique

The main new tool we use is the notion of a “merger”. This is a function that accepts d
strings, one of which is uniformlly distributed, and outputs a single string which is guaranteed
to be uniformly distributed. The difficulty of designing such a merger is that we do not know
beforehand which of the strings is the uniformly distributed one, and that the other strings
may be correlated with it in an arbitrary manner. In fact, we use the merger under more
general conditions: the index of the “uniformly distributed” string may be a random variable
itself, and may be correlated with the input strings.

Mergers, as extractors, extract randomness from a defective source of randomness. How-
ever, mergers deal with random sources having “simple” structure, which simplifies the task
of constructing good mergers.

We briefly illustrate how mergers can be used to build extractors. Suppose for any random
source X there is some hint Y = Y'(z) s.t. it is easy to extract randomness from (X | Y),
and suppose we do not know what this value Y = Y(X) is. Using mergers, we can build an
extractor by trying to extract randomness from (X | Y = y) for all possible values y of Y,
and then merging all these possibilities into a single quasi-random string using a merger.

1.4 Applications

Our new construction improves many of the known applications of extractors. We list only
three applications here, the rest (along with the proofs) appear in appendix E.

Corollary 1.1 (following [WZ93]) For any N and 1 < a < N there is an explicitly con-
structible a—expanding graph with N vertices, and mazimum degree O(%onlyloglog(N)) 2,

Corollary 1.2 (following [WZ93]) For any N there is an explicitly constructible supercon-
centrator over N verlices, with linear size and polyloglog(N) depth °.

Corollary 1.3 For any 6 > 0 and k > 0, BPP can be simulated in tvme pOlog®)n) using a
weak random source X with minentropy at least n® * .

2The obvious lower bound is % The previous upper bound [WZ93, SZ94] was O(% . 2l°g(N)1/2+0(1)). A
proof of this corollary appears in appendix E.2.

*This improves the current upper bound of O(log(N)J/Q‘i'o(l)). A proof of this corollary appears in appendix

*This improves the [SZ94] n°(°9(") bound. For RP, [SSZ95] showed this can be done in polynomial time.
The corollary immediately follows Theorem 2. A sketch of the proof of Theorem 2 appears in Appendix F.

1.5 Paper Organization

In section 2 we describe our notation, and in section 3 we give some preliminary defresults and
results. In section 4 we prove Theorem 1, assuming two theorems on mergers and composition
of extractors which we prove in section 5 and section 6 respectively.

Due to lack of space, many of the technical proofs appear in the appendix, where full and
detailed proofs are given. We also sketch the proof of Theorem 2 in Appendix F.

2 Notation

We use standard notation for random variables and distributions. We distinguish between
random variables and distributions: the value of a random variable is the result of some trial
done in a probability space, and thus random variables may be correlated, as opposed to
distributions that are merely functions assigning probabilities to events. Given a random
variable A we denote by A the distribution A induces.

We use capital letters to denote random variables and distributions, and small letters to
denote elements. If X is a distribution, € X denotes picking = according to the distribution
X. If A and B are (possibly correlated) random variables then (A | B = b) is the conditional
distribution of A given that B = b. We denote by U; the uniform distribution over {0, 1}*.

For a random variable X = Xjo0...0 X, over {0,1}" we write X|; ;) as an abbreviation to
the random variable X; 0 X[;14...0 X}, where o stands for concatenation. The same applies
for instances z[; ;.

We define the variation distance between two distributions X and Y defined over the
same space, as d(X,Y) = 3[X = Y|y = 1%,/X(a) — Y(a)|. We say X is eclose to Y if
d(X,Y) < e. We say two random variables A and B are e—close if d(A, B) < e. We say X
is € quasi-random if it is e-close to uniform. In appendix A we list some of the well known
properties of variation distance.

3 Preliminaries

3.1 Extractors
DEFINITION 3.1 The min-entropy of a distribution D is Huo(D) = min,(—log(D(z)).

DEFINITION 3.2 E : {0,1}" x {0,1}¢ — {0,1}™ is an (n,m,t,m’, €)-extractor, if for any
distribution X on {0,1}" with H.o(X) > m, the distribution of E(z,y) when choosing z € X
and y € Uy, is € close to Uy

REMARK 3.1 This definition is slightly different from the one in [NZ93, S794], where E is
called an extractor if E(xz,y)o y is close to uniform, while we only demand that E(z,y) is
close to uniform.

3.2 Explicit Extractors

DEFINITION 3.3 We say E is an explicit (n,m,t,m’,€) —extractor, if there is a Turing ma-
chine that given n, outputs an (n,m = m(n),t = t(n),m' = m'(n), e = €(n))-extractor E,, in
polynomial time in n.

As mentioned in the introduction, various explicit extractors have been built so far. Of
those we use the following two extractors:

Lemma 3.1 [SZ94] There is some constant ¢ > 1 s.t. for any m = Q(log(n)) there is an
explicit (n,2m,m, cm,2_m/2)f extractor A,,. We denole this constant ¢ by c,.

Lemma 3.2 [S794] ® Let m(n) > n'/?t7 for some constant v > 0, then for any € there is
2
an explicit (n, m(n),0(log’n - log(1)), mnﬂ, €)— extractor.

The first extractor is actually a restatement of the existence of explicit tiny families of
hash functions [SZ94, GW94], and can easily be achieved using small e-biased sample spaces
[S7.94].

We also need the following simple lemma from [NZ93]:

Lemma 3.3 [NZ93] Let X andY be two correlated random variables. Lel B be a distribulion,
and call an © “bad” if (Y | X = z) is not € close to B. If Prob, < (z is bad) <7 then X oY
1s € + 1 close to X x B.

3.3 More of The Same

Suppose we have an extractor F that extracts randomness from any source having at least
m min-entropy, how much randomness can we extract from sources having M min-entropy
when M >>m?

The following algorithm is implicit in [WZ93]: use the same extractor £ many times over
the same string z, each time with a fresh truly random string r;, until you get M — m output
bits. The idea is that as long as the length of E(z,71)0...0 E(z,r) is less then M — m,
then with high probability (X | E(z,ry)o...0 E(z,rt)) still contains m min-entropy, and
therefore we can use the extractor E to further extract randomness from it. Thus, we have
the following two lemmas, that are proven in detail in appendix A:

Lemma 3.4 Suppose that for some m = m(n) there is an explicit (n,m,t,m’, €)—extractor
E,.. Then, for any M = M(n) > m, and any safety parameter s > 0, there is an explicit
(n, M, kt, min{km', M — m — s}, k(e + 27%))-extractor.

Lemma 3.5 Suppose that for any m > m there is an explicit (n,m,t(n), %,
E,.. Then, for anym, there is an explicit (n, m,O(f(n)log(n)t(n)), m—im,log(n)(e+271 ("))~
extractor.

€(n))-extractor

4 Main Theorem

In this section we prove Theorem 1, using our new tool of mergers. In subsection 4.1 we
define what a “merger” is, and in subsection 4.2 we explicitly build “mergers”. In subsection
4.3 we use mergers to efficiently compose extractors, and in subsection 4.4 we show how good
somewhere random mergers imply good extractors. Finally, in subsection 4.5 we use this to
prove our main theorem.

®The parameters here are simplified. The real parameters appearing in [SZ94] are somewhat better.

4.1 Somewhere Random Mergers

DEFINITION 4.1 X = Xjo0...0Xy is a d-block (m, €, n) somewhere random source, if each X;
is a random variable over {0,1}™, and there is a random variable Y over [0..d] s.t. for any
i € [1..d]: d((X;|Y =14),Unm) < € and Prob(Y = 0) < n. We also say that Y is an (m,€,n)
selector for X.

A somewhere random merger is a function extracting randomness from a somewhere
random source:

DEFINITION 4.2 M : {0,1}%" x {0,1}¢ — {0,1}™ is a (d,m,t,m/, €)-somewhere random
merger, if for any d-block (m,0,0) somewhere random source X, the distribution of E(x,y)
when choosing x € X and y € Uy, is € close to Uy,.

4.2 Explicit Somewhere Random Mergers

DEFINITION 4.3 We say M is an explicit (d, m,t, m',€) —~somewhere random merger, if there
is a Turing machine that given d, m oulputs a (d = d(n),m = m(n),t = t(n),m' = m/(n),e =
€(n))-somewhere random merger M, in polynomial time in dm.

It turns out that any (2m,m, ¢, m/, ¢)-extractor is a (2,m,t, m’, €)-somewhere random
merger. Having a 2-block somewhere random merger, we build a d-block merger by merging
the d blocks in pairs in a tree wise fashion. Thus, we have the following theorem, which we
prove in detail in section 5:

Theorem 3 Assume for every m there is an explicit (2m, m,t(m), m—k(m), e(m)) extractor
E,., for some monotone functions t and k. Then there is an explicit (2!, m, 1 t(m),m — 1 -
k(m),l-e(m)) somewhere random merger.

The [SZ94] extractor of lemma 3.2 works for any source with Ho(X) > n'/?t7. Thus,
using lemma 3.4, by repeatedly using the [SZ94] extractor, we can extract from a source

having H.(X) > 5 at least 3 — n'/2t7 quasi-random bits. Thus, we have a 2-merger that
does not lose much randomness in the merging process. Applying Theorem 3 we get a good
n—merger. Thus we have the following lemma, that is proven in detail in Appendix B :

Lemma 4.1 Let b > 1 be any constant and suppose f = f(m) = f(m(n)) is a function s.t.
f(m) < %/m and for every m > mo(n) : f(m) > b-log(n). Then for every m > mq there
is an ezplicil (n,m,log(n) - polylog(m) - f*(m) -log(%), m — 7, log(n) - poly(m)- €) somewhere
random merger.

Corollary 4.2 For every m > 2V199(") there is an (n, m, polylog(n) - log(%),Q(m),poly(n)-
€)—somewhere random merger M = M,,.

Proof: Take f(m) = log?m for some constant d > 2. For any constant b, m > 2V log(n)
and n large enough, log?m > b - log(n), and the corollary follows lemma 4.1. L]

Notice that Theorem 3 and corollary 4.2 take advantage of the simple structure of some-
where random sources, giving us an explicit somewhere random merger that works even for
sources with very small min-entropy that can not use the [SZ94] extractor of lemma 3.2.

4.3 Composing Extractors

Having good somewhere random mergers, we can efficiently compose extractors. The idea is to
split the input string « into two consecutive strings 10z, s.t. X7 and (X3 | X7 = 1) contain
a lot of randomness. Given such a splitting point, we can use Fy to extract randomness from
xq, and use Fy with the extracted randomness to further extract randomness from z;. We
show that for most strings such a splitting point exists. An obvious difficulty is that given a
string we do not know what is the right splitting point. We solve this by trying all |z| = n
possible splitting points. This gives us a somewhere random source with n blocks, that can
be merged into a single quasi-random string if we have a good somewhere random merger.
We call this new extractor the composed extractor.

ALGORITHM 4.1 Suppose Ey is an (n,mq,1q,13,(1)—extractor, Ey is an (n,mg,ls,13,(2)-
extractor, and M is an (n,ls, j1,01,(3)-somewhere random merger. Define the function

M
Ey © FEy as follows: Given a € {0,1}", toss r1 € {0,1}1, and r5 € {0,1}+1.
o Lel g = El(a[i,n]7rl) and z; = E?(a[l,i—l]7Qi)) fOT’ t=1,...,n.
M
o Let E2 @El = 21 0...02,, and E2 ® El = LM(EgeEl,Tg).

Theorem 4 Suppose Ey is an (n,mq, 11,1, (1)-extractor, Ey is an (n, ma, s, 3, (2)-extractor,
and M is an (n,ls, g1, 01, (3)—somewhere random merger. Then for every safely parameter

M
s>0, By © Ey isan (n,my + mg + 8,41 + p1,01, (1 + G2 + (3 + 8n2_5/3)fextmct0r.

Now we define composure of many extractors by:

DEFINITION 4.4 Suppose E; is an (n, m;, t;,tiy1 + Sit1, () —extractor, fori=1,...,k, s; >0
and sy = 0. Suppose M; is an (n, 2+ Siya, li, tiye, (;) ~somewhere random merger, for any
My_q My

M.
1=1...k—1. We define by induction the function F, ¢ FEp_1 © ...FE3 @1 F4 to equal

My

Mk—2 M1
Ey © (Bkex © .. Ey O Ey).

REMARK 4.1 In appendiz D.3 we explain why we choose right associalivity rather than left
associativily.

My
Theorem 5 Suppose F;, M; are as above, then for any safely parameter s > 0, £ = Fj 6 '
Mk—2 M1 . _ 1=
Epo1 O ...Ey @ Eyisan (n, S5 m+ (k= 1)s, 01+ S50 ey tegr, S5, G+ S5 G+ (k-
)n273/3%3) —extractor. If E;, M; are explicit, then so is E.

4.4 Good Somewhere Random Mergers Imply good Extractors

Assume for every m > m we have a good somewhere random merger M. Then we can let

E = A,]\éf e Ay]\éf Aps,]\é Ay, where A; is the extractor of lemma 3.1 and b is some
constant, 1 < b < ¢s,, to get an extractor that extracts (m) bits from sources having m
min-entropy. Using lemma 3.5, we get an extractor that extracts m bits. Thus, we see that
good somewhere random mergers imply good extractors. We prove the following lemma in
detail in Appendix B :

Lemma 4.3 Suppose m = m(n) is a function s.t. for every m > m(n) there is an explicit

(n,m,t,m — Z, ¢€) somewhere random merger, where ¢ is the constant 6203_21, and cg, is the
sz

constant in lemma 3.1. Then for any m there is an explicit (n,m,O(in - log(n) - log(L) +
log*(n) - t), m, poly(n) - €)- extractor.

Unfortunately, corollary 4.2 asserts the existence of good mergers only for m > 2V/13(7)
and therefore plugging this into lemma 4.3 we get:

Corollary 4.4 For every m there is an (n,m,0(2V tog(n) -polylog(n)-log(%)), m, poly(n)-€)-
extractor B,,.

4.5 Putting It Together

The extractor B in corollary 4.4 uses O(2V'9(") . polylog(n) - log(1)) truly random bits to

extract all of the randomness in the given source. Although O(2V'9(") . polylog(n) - log(1))
is quite a large amount of truly random bits, we can use the [SZ94] extractor, to extract n'/?
bits from n?/? min-entropy, and then use these n'/? >> 0(2V°9(") . polylog(n)- log(1)) bits,
to further extract all of the remaining min-entropy. More precisely, if B is the extractor in
corollary 4.4, F, the extractor from lemma 3.2 and M the merger from corollary 4.2, then

M
E = B (0 E,, extracts Q(m) bits from sources having m > n2/3 min-entropy, using only
polylog(n) truly random bits! That is, we get the following lemma (whose proof appears in
detail in Appendix B) :

Lemma 4.5 Lel € > 27" for some constant v < 1. There is some constant 3 < 1 s.t. for
every m > n® there is an explicit (n, m, polylog(n)- log(%), Q(m), poly(n) - €) extractor.

Now that we know how to extract all the randomness from sources having Q(n?) min-entropy
with only polylog(n) truly random bits, by lemmas 3.5 and Theorem 3 we have good some-
where random mergers, for every m. Thus by lemma 4.3 we have good extractors for every
m. We prove in detail in Appendix B that:

Theorem: For every constant ¥y < 1, € > 27" and every m = m(n) there is an explicit
(n, m, polylog(n) - log(L), m, €)-extractor.

5 Explicit Somewhere Random Mergers

In this section we build explicit somewhere random mergers. We observe that a 2-block
merger can be obtained from the previously designed extractors of [NZ93, SZ94]. Once such
a merger is obtained, any number of blocks can be merged in a binary-tree fashion.

5.1 A 2-block somewhere random merger

A d-block (m, €, n)-somewhere random source X, can be viewed intuitively as a source com-
posed of d strings of length m, with a selector that for all but an » fraction of the inputs, can
find a block that is € quasi-random. Thus, it is natural to suspect that X is € + 7 close to a
distribution with m min-entropy. The following lemma (proved in appendix C.1) states this
precisely:

Lemma 5.1 (1) Any (m,e€,n) somewhere random source X is € + n close to an (m,0,0)-
somewhere random source X'. (2) For any (m,0,0) somewhere random source X, Ho(X) >
m.

Since a (2m, m,t, m/, ¢)—extractor E extracts randomness from any source X with H,(X) >
m, in particular it extracts randomness from any (m,0,0) somewhere random source, and
therefore by definition E is a (2, m, ¢, m/, e)-somewhere random merger. Thus:

Corollary 5.2 Any(2m,m,t, m/, €)—extractor is a (2, m,t, m', €)-somewhere random merger.

5.2 A d-block somewhere random merger

Given a d-block somewhere random source, we merge the blocks in pairs in a tree like fashion,
resulting in a single block. We show that after each level of merges we still have a somewhere
random source, and thus the resulting single block is necessarily quasi-random.

ALGORITHM 5.1 Assume we can build a (2,m,t(m),m — k(m),e(m))-somewhere random
merger F, for some monotone functions t and k. We build M; : {0, 1}2lm x {0, 1}1t0m)
{0,1}7=1607) by induction on 1:

Input : 2! =zto.. .33121, where each zt € {0,1}™.

Output : Tosst =1ty 0...1, where t; € {0, 1}t(m). If 1 = 0 oulput 2!, otherwise:

o Letzl™ = E(al, [oab,, 1)), fori=1,...,27".

o Let the oulput be sz_l(ajll_l o.. _$127_11 , tio. . ti_1).

Theorem: [Same as Theorem 3] M is a (2", m,l-t(m),m — 1 - k(m),l-e(m)) somewhere
random merger.

J

Proof: For j=1,...,0 denote by Z7 the random variable whose value is 27 = x{ 0...Ty,,

where the input z is chosen according to X, and t is uniform. Notice that Zlis the distribution
X, and Z0 is the distribution of the output.

The theorem follows immediately from the following claim:

Claim 5.1 Denote mj = m — (I — j)k(m). If X is an (my,0,0) somewhere random source,
then for any 1 <i <27, d((Z] | Y € [277(i— 1)+ 1,2"794]) , Uy,) < (I1—j)-e(m)

O

The proof of the claim is by downward induction on j. The basis j = [simply says that
for any ¢, d((X; | Y =14), Uy) = 0, which is exactly the hypothesis. Suppose it is true
for j. Informally, the induction hypothesis says that if Y “points” to Zj, , then ZJ. , is
uniform, and if Y “points” to Zgi then Zgl- is uniform. Thus, it is natural to suspect that if Y’
“points” to Zgz- or to Zéz-, then Z2jz-_1 o Zgz is a 2-block somewhere random source. Indeed, we
show that Zgz-_l o Zgz- with the right conditioning on Y is (I — 5) - €(m) close to some W with
Hoo(W) > m;. Since Zg_l = E(Zgz-_1 o Zgz , ;) and E is an extractor the claim follows. A
full proof appears in Appendix C.

REMARK 5.1 Notice that we use the same random string t; for all merges occuring in the j 'th
layer, and that this is possible because in a somewhere random source we do nol care about
dependencies between different blocks. Also notice that the error is additive in the depth of
the tree of merges (i.e. in 1), rather than in the size of the tree (2').

6 Composing Extractors

In subsection 6.1 we show how to efliciently compose two extractors, and in subsection 6.2
we compose many extractors.

6.1 Composing Two Extractors

The algorithm computing the composed extractor was presented before as algorithm 4.1,
along with Theorem 4, that we prove here.

Proof: [Of Theorem 4]
Obviously, it is enough to show that F1 & Fy is an (13, (14 (e, 8n2_3/3)7s0mewhere random

source. To prove this, assume H.(X) > my + ma + s. Denote by @; and Z; the random
variables with values ¢; and z; respectively. Also, let €3 = 2_5/3, €2 = 2¢3, and €1 = 2¢5. We
define a selector for Z = Zyo0...0%4, = FEi 6 FE;in two phases: first we define a function
f which is almost the selector but has few “bad” values, then we correct f to obtain the
selector Y.

DEFINITION 6.1 Define f(w) to be the last i s.t Prob(X[;) = wy) | Xpi—1) = wpi—1)) <
(62 — 63) -2

DEFINITION 6.2 Define w to be “bad” if f(w) = ¢ and:
1. Probyex(f(z)=1) < e, or,
2. Probrex(f(z) =1 | api_1) = wp-q) < €, or,
3. Probrex(Xi = w; | 2p 1) = wpi1) < €3

We denote by B the set of all bad w. We denote by B; (i = 1,2,3) the set of all w
saliisfing condition (i).

DEFINITION 6.3 Let Y be the random wvariable, obtained by taking the input a and lelling
Y =Y(a) where Y(w) = 0 if w is bad, and f(w) otherwise.

It holds that Prob(w is bad) < n(e; 4 €3 + €3) < 8n - 27%/3 (the proof is easy and appears
in appendix D.3). We complete the proof by showing that (Z; | Y = i) is (3 + (a—close to
uniform.

Claim 6.1 If Prob(Y = i | Xy ;-1) = wpy,i—1])) > 0 then Hoo(X} | Y = 1 and Xpy;q) =
Wiy i-1)) 2 M1

Therefore, for any such wpy ;_13, (Q; | Y =i and Xy ;_17 = wyy ;1)) is (1—close to random
(since E is an extractor). Hence by lemma 3.3, the distribution (Xp; ;41 [Y =) x(Q; | Y =
i and Xpy ;1) = wpyi—1]) is (1—close to the distribution (Xp;;_q) | Y =) x U. But,

Claim 6.2 H (X[;-1 | Y = 1) > ma.

Therefore, using the extractor Fq we get that (7Z; | Y =) is (1 + (3—close to uniform.

O

The proofs of claims 6.1 and 6.2 appear in appendix D.

6.2 Composing Many Extractors

M M
In this subsection we prove Theorem 5, which claims that Fp © ... ® F; can be efficiently
calculated:

Proof: [of Theorem 5]

Correctness :
By induction on k. For & = 2 this follows from theorem 4. For larger k’s this is a

straight forward combination of the induction hypothesis and Theorem 4.

Running time :

My _q My _o M, . . .
We compute £, ® Fr1 © ...FEy; @ Fp using a dynamic programming procedure:

o Given z € X, we toss y € {0,1}" and y; € {0,1}* for j =1,..., k.

o M1 M;_s M,
o Next, we compute the matrix M where M[i,5] = (E; © E;-1 & ...FE
Ey)(zpn,yoyio...0y;), for 1 <i<nand 1 <5<k
The entries of the first row of M, M[1,i] can be filled by calculating Ei(z[;), y)-
Suppose we know how to fill the j’th row of M. We show how to fill the 7 + 1’th row.

— Denote g = M[j,l] for I =4,...,n, and let 2, = E; 1(2[;, -1, @1)-
— Let M[j+1,i]= M;(z0...24,15).

By the composition definition Mj, i has the correct value, and clearly, the computation
takes polynomial time in n.

7 Acknowledgments

I would like to thank my advisor Noam Nisan for his collaboration on this research. Thanks to
David Zuckerman for his hospitality when I visited him last year. I would like to thank David
Zuckerman, Avi Wigderson, Michael Saks, Arvind Srinivasan and Shiyu Zhou for interesting
discussions. Many special thanks go to Roy Armoni for our many interesting talks on the
subject.

References
[AKSS89] M. Ajtai, J. Komlos, W. Steiger, and E. Szemeredi. Almost sorting in one round.
In Advances in Computer Research, volume 5, pages 117-125, 1989.

ALM'*92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
? ? ? ? g y
and hardness of approximation problems. In Proceedings of the 33rd Annual IEFE
Symposium on the Foundations of Compuler Science, IEEFE, pages 14-23, 1992.

10

[AS92]

[FGL191]

[GW94]

[Mes84]

[NZ93]

[Pip87]

[55295]

[S7.94]

[WZ93]

[Zuc]

[Zuc90]

[Zuc91]

[Zuc93]

S. Arora and S. Safra. Probabilistic checking of proofs; a new characterization of
NP. In Proceedings of the 33rd Annual IEEE Symposium on the Foundations of
Computer Science, pages 2—13, 1992.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
clique is almost NP-complete. In Proceedings of the 32nd Annual IEEE Sympo-
stum on the Foundations of Computer Science, IEEE, pages 2-12, 1991.

O. Goldreich and A. Wigderson. Tiny families of functions with random proper-
ties: A quality-size trade-off for hashing. In Proceedings of the 26th Annual ACM
Symposium on the Theory of Computing, ACM, pages 574-583, 1994.

R. Meshulam. A geometric construction of a superconcentrator of depth 2. The-
oretical Compuler Science, 32:215-219, 1984.

N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In Pro-
ceedings of the 25th Annual ACM Symposium on the Theory of Compuling, ACM,
pages 235-244, 1993.

N. Pippenger. Sorting and selecting in rounds. SIAM Journal on Compuling,
16:1032-1038, 1987.

M. Saks, A. Srinivasan, and S. Zhou. Explicit dispersers with polylog degree. In
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing,
ACM, 1995.

A. Srinivasan and D. Zuckerman. Computing with very weak random sources. In
Proceedings of the 35th Annual IEEFE Symposium on the Foundations of Computer
Science, 1994.

A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound:
Explicit construction and applications. In Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, ACM, pages 245-251, 1993.

D. Zuckerman. Randomness-optimal sampling, extractors, and constructive leader
election. Private Communication.

D. Zuckerman. General weak random sources. In Proceedings of the 31st Annual
IEEFE Symposium on the Foundations of Compuler Science, pages 534-543, 1990.

D. Zuckerman. Simulating BPP using a general weak random source. In Pro-
ceedings of the 32nd Annual IEFEE Symposium on the Foundations of Computer
Science, pages 79-89, 1991.

D. Zuckerman. NP-complete problems have a version that’s hard to approximate.
In Proceedings of the 8th Structures in Complexity Theory, IEEE, pages 305-312,
1993.

11

A Basic definitions and Preliminaries

A.1 Distance between Distributions

DEFINITION A.1 Let Dy, Dy be two distributions over the same space A. We define the “dis-
tance” between the distributions by: d(Dy, Ds) = %|D_1 — Dy = %E$€A|D_1(x) — Dy(z)| =
mazycp|D1(Y) — Do(Y)|. It is easy to check that d is a metrics.

Fact A.1 Let Dy, Dj be two distributions on Ay, and let f : Ay — Ay be any (deterministic or
probabilistic) function, then d(f(Dy), f(D3)) < d(D1, D). Le., distance between distributions
can not be created out of nowhere.

Fact A.2 Let A, B,C and D be any random variables, then d(A, B) < d(AoC,Bo D).

Fact A.3 Let A, B and C be any random variables, then d(Ao B,Ao (') = Y,ep,Pr(A =
a)-d((B | A=a),(C|A=a)).

A.2 Proof of lemma 3.4

Proof: [Of lemma 3.4]

Denote by A; the random variable with the value E(X, R;). Denote by Apy ;= Ajo...A;
the random variable whose value is E(X, Ry)o...o0 E(X, R;), and let [; = |A[;|-

DEFINITION A.2 We say that apy ;) is “s-tiny” if Prob(Ap ;) = ap ;) < 9-li=s

Claim: Forany 1 <i <k, Prob(ap, is s—tiny) < 27°,
Proof: Ap ; can have at most 2!i possible values, and each tiny value has probability at
most 27473,]
Claim: For any prefix ap; ; that is not s—tiny, Hoo(X | Ap g =apq) > M —1; —s

Prob(X=x) =M o Milits
S Prob(A[l}i]:a[J’i]) S o—Ti—s — 2 .
]

Proof: For any z, Prob(X =z | Ay = ap ;)

Claim: 1Ifl;_y <M —m — s, then Ap ;1is i(27° + ¢€) quasi-random.
Proof: By induction on 7. For 2 = 1 this follows from the properties of E. Assume for 1,
and let us prove for ¢ 4 1.

Since I; < M — m — s , then for any prefix ap ;) that is not s—tiny, Hoo(X | Ap ;) =
ap,)) > M —1; — s > m. Therefore, for any non-tiny prefix apy ;), (Aig1 | Api = ap,y) is €

quasi-random. Therefore by lemma 3.3, A ;14718 27° + € close to the distribution Ay ;) x U,
and by induction Ap ;14 is (4 1)(27° + €) quasi-random. L]

Therefore, if we take k s.t. Iy < M — m — s, we invest kt random bits, and we get km’
bits that are k£(27° + €) quasi-random, as required.

O

12

A.83 Proof of lemma 3.5

Proof: [of lemma 3.5]

Define E(z,r10...01;) = FEy (2,71)0...0 E,, (z,r;), where s = t(n), lp = 0,
m; = m—1l;_1 —s,and l; = [;_1 + % Denote by A; the random variable F, (X, R;),
and Ap ;= Ay o...A;. Intuitively, I; = [Ap 4], and m; is how much min-entropy is left in

(X | Ap) = ap,p) with the safety parameter s = #(n).

Claim: If m; > m then Ap j is i(27° 4 ¢) quasi-random.
Proof: By induction on 7. For 2 = 1 this follows from the properties of E. Assume for 7,
and let us prove for ¢ + 1.

For any prefix apy ;) that is not s-tiny, Hoo(X | A = ap) > m—l; — s = mipq > m.
Therefore, for any non-tiny prefix apy ;j, (Aig1 | Apy) = @p,)) is € quasi-random. Therefore

by lemma 3.3, Ay ;4147 is 27° 4 € close to the distribution A ;1 X U, and by induction Ap ;44
is (14 1)(27° 4 ¢) quasi-random. U
How big do we need k to be? Let us denote ¢; = m — [;, i.e., ¢; are the number of bits
still missing. Notice that ¢ = m—-1; = m— (l,_1 + %) = 1 — % = -1 —
%ﬂ. Therefore, if £5% > ¢(n), then ¢; < (1 — #(n))q,-_l. Thus, it must happen that
after O(f(n)log(n)) steps, either ¢, < 2{(n), or else m; < m. In the first case, ¢;_1 < 2¢(n),
and we can stop and fill all the 2¢(n) missing bits with a truly random string. In the second
case, m; < 1m, i.e., ¢gi—1 < m+ s, so if we add s = #(n) truly random bits, there are only m
missing bits as required.
Therefore it is sufficient to take &k = O(f(n)log(n)), and let the final extractor be E(z,r)o
y, where y is of length 2{(n) and is truly random.
U]

13

B Main Theorem

B.1 Proof of lemma 4.1

Proof: [Of lemma 4.1]
e By lemma 3.2 there is an explicit (m, %,O(!ogﬂm . log(%)), %, €)— extractor.

f
e By lemma 3.4 there is an explicit (2m,m, O(f*(m)-log*m-log(1)), m—%,poly(m)-e)f
extractor.

o By Theorem 3 there is an explicit (n, m, O(log(n)-polylog(m)- f*(m)-log(1), m—log(n)-
Fom) log(n)-poly(m)-€)—somewhere random merger. For any m > mg OB

hence log(n) - % < 7

B.2 Proof of lemma 4.3
Proof: The lemma follows easily from lemma B.1 using lemma 3.5. L

Lemma B.1 Suppose for any m < m < m there is an explicit (n,m,t,m — =, €) somewhere
random merger, where € is the constant in lemma 4.3. Then, for any m < m < m there is
an explicit (n,m, O (i - log() + log(n) - t), A(m), poly(n) - €), extractor E.

Proof: Letbh = csz-(l——) Clearly bis a constant, and 1 < b < ¢s,. Define m; = b*-m.- log(%)

and let [be the first integer s.t. Eiz 2m; < 3.

My

M-
Define E=FE;, & FEi_q1... @1 F1, where:
o F;is the (n,2m;, m;,cs, - my, 2‘mi/2)7extractor Ay, from lemma 3.1

o M; is the (n,cg, - miy1,1,b- mipy, €)-somewhere random merger promised in the hy-
pothesis of the lemma.

Now we use theorem 5 with ¢; = m; and s; = (¢s, — b)m;_1, and we also take s = Z+. By
Theorem 5, E is an (n, Bt_ 2m;+(1—=1)s, 11+ 221, 440, Bl 2770/ 24 5l e (1-1)n2 5/3+3
~extractor. Since | = O(log(n)) and ¢ > 27°/3 (0therw1se the result is trivial), £ is an
extractor as required. Since A;, M; are explicit, so is F. L]

B.3 Proof of lemma 4.5

M
Proof: Choose 6§ = 1%7 and g =1- %. Let the extractor ¥ be £ = B,, ® F,, where
o E,. is the (n,n”,0(log?n - log(1)),n**~, €) —extractor of lemma 3.2.
e B,, is the extractor from corollary 4.4.

e M is the merger from corollary 4.2.

M
Since n?0~1 = nf .7 = Q(2VIe9(log(), £ = B, ©® E, is well-defined. By theorem
4, for every m, F is an explicit (n, m-l—nﬁ-l—nW polylog(n)-log(L), Q(m), poly(n)-€)-extractor.
In particular if Hoo(X) = Q(n”) we extract Q(H.,(X)) as required. U

14

B.4 Proof of theorem 4.5
Proof:

e Bylemma 3.5, lemma 4.5 implies an explicit (2n, n, polylog(n) -log(%), n—n?, poly(n)-¢)
extractor.

e There is some constant d (that depends only on) s.t. for every log?n < m < n, log(n)-
mP < . Therefore by theorem 3, for every m there is an explicit (n,m, polylog(n)-
log(L),m — 2, poly(n) - €) somewhere random merger.

o Bylemma 4.3, this implies an explicit (n, m, polylog(n)-log(1), m, poly(n)-e)—extractor,
for any m. Plugging ¢ = m, gives the theorem.

O

15

C Somewhere Random Mergers

C.1 A Somewhere Random source has large min-entropy

Lemma C.1 If X = Xjo...0Xy is an (m,€,n) somewhere random source, then X is n-close
to an (m,¢,0) somewhere random source X'.
Proof: [of lemma C.1]

Let Y be an (m, ¢, n) selector for X. Denote p = Prob(Y = 0) < 5. Define the distribution
D by:

o 0 Tfi =0
D(i,2) =14 Prob((Y.X)=(irz)) .

7 otherwise
—-p

It is easy to see that D is a distribution. Define the random variable Y'o X" as the result of the
picking (i,2) € D, i.e. Yo X' = D. It is clear that d(X, X’) < d(Y o X,Y'0 X') = p < 1.

Now we want to show that Y’ is an (m,¢,0) selector for X’. Tt is clear that Prob(Y' =
0) = 0. For i > 0 we have:

Prob((Y,X) = (i,2)) Prob(Y =1)

Prob(Y' =1i) = N, Prob((Y',X") = (i,2)) = %, =
1-p 1-p

;o) o Prob((Y',X') = (i,x)) _ Prob((Y,X)=(i,z)) 1—p
Prob(X'=z |Y'=1i) = Prob(Y' = 1) - 1—p Prob(Y =3)

Prob((Y,X) = (i,2)) L
Prob(Y =) = Prob(X =z |Y =1)

Therefore, since we know that (X;|Y = i) is e-close to U,,, we also know that (XY’ = i) is
€ close to U,,, thus completing the proof.

O

Lemma C.2 Let X = Xy0...0 X, be an (m,¢€,0)-somewhere random source, then X is €
close to an (m,0,0)-somewhere random source Z.

Proof: [of lemma C.2]

Let Y be an (m,¢,0) selector for X. Fix some ¢ € [1..d]. We know that d((X; | Y =
i), Uy) < €. Define a distribution Z() by:

aProb(X =z | X;=z;and Y =4) if Prob(X; =z; and Y =)>
20(z) = o 1 if Prob(X’ =z;andY =1i)=
and for every j # ¢ : =0"
0 otherwise

It is easy to check that Z() is indeed a distribution, and that Z}i) = U,,. Define Y o Z to
be the random variable obtained by choosing ¢ according to Y, then choosing z according to

ZW e, foralli>0,(Z|Y =i)= Z. Also, denote X)) = (X | Y = 4). Then:
Prob(Z; =z |Y =1) = ZZ.(i)(ZZ-) — 9 m

We soon prove that:

16

Claim C.1 d(X®,Z()) <.
Thus:
d(X,7Z) <dYoX,YoZ) =35 Pr(Y =4) - d(X | Y =4),(Z|Y =1)) =
Niso Pr(Y = i) - d(X®, 20)) <
Hence Z satisfies the requirements of the lemma.

O

Proof: [of claim C.1]

We need to show that for any A C Ay, |X(_i)(A) — Z_(i)(A)| < e. It is sufficient to show
this for the set A containing all z € Ax s.t. X (z) > Z0)(2),

x4y - z04) =

YreaProb(X =z |Y =4) — Prob(Z =2 Y =1i) =

Ya,ea, Prob(X;=a; |Y =) -ZpeaProb(X =z | X; =a; and Y =1) —
Prob(Z;=a; | Y =1)-BzeaProb(Z =z | Z;=a;and Y =1) =

Ya,ea, Prob(X;=a; | Y =) -XzcaProb
Prob(Z;=a; | Y =1)-YzeaProb

Ya,ea,(Prob(X;=a; | Y =t)— Prob(Z;=a; | Y =1)) - BpeaProb(X =z | X;=a; and Y = 1) <

Saien(Prob(Xi = a; | Y = i) = Prob(Z; = a; | V =4))-1 < d(X,29) = a(xD,U,,) < e

Ay

O

Lemma C.3 Let X = Xjo0...0Xy be an (m,0,0) somewhere random source, then H.o(X) >
m.

Proof: Suppose Y is an (m,0,0) selector for X.
Prob(X =) = Yicp.q Prob(Y =1i) - Prob(X =z |Y =1) <
Yien.q Prob(Y =) - Prob(X; =z;|Y =1) <
Yien.q Prob(Y =) - 27™ =27

Combining lemmas C.1, C.2 and lemma C.3 we get lemma 5.1.

C.2 Proof of claim 5.1

Proof:

The proof is by downward induction on j. The basis j = [simply says that for any 7 ,
d((X; |Y =14), Uy,) = 0, which is exactly the hypothesis. Suppose it is true for j, we prove
it for 7 — 1. By the induction hypothesis:

17

o d((Z_y | Y €[2179(2i - 2) +1,27(2i = 1)]) , U,) < (I—j)e(m)

o d((7Y €[22 = 1)+ 1,25920)) , Uy) < (I j)-e(m)
Soon we prove the following lemma:

Lemma C.4 Let A, B and Y be any random variables. Suppose that d((A|Y € S1),U) <€
and d((B Y € 52)_,Um) < € for some disjoint sets S1 and S5. Then (Ao B |Y € 5,U5y)

is e—close to some X with Hoo(X) > m.
Therefore:

o (Z1_ o0Zl | Y € 2541 — 1) + 1,2!=3+]) is (I — j) - e(m) close to some W with

Hoo (W) > m;.

o Since Z!™' = E(Z},_,0Z); , t;), it follows that (Z/ ™' | Y € [273 (i —1)41,2/=7114])
is (I = j)-€e(m) close to E, (z,1) where z € X and H.(X) > mj. Therefore, it is
(I—7)-€e(m) + e(m) close to random, as required.

U]
C.2.1 Proof of lemma C.4
Proof: We define random variables Y', A’ o B’ as follows:
e PickY'=1i¢€ S;US; with: Pr(Y/'=4)=Pr(Y =i |Y € 51U 5,).
e Choose a'ob' € (Ao B |Y =1).
Claim: Pr(A' =d |Y' =4) = Pr(A=4d |Y =4i)and Pr(B' =¥V |Y' =
i) = Pr(B=0V|Y =1).
Proof:
Pr(A'=d |Y'=i) = SpyPr(A'oB =d'ob' | V' =1) =
SpPr(AoB=dob |Y =4i) = Pr(A=d"|Y =)
And similarly for B.]

Define

7 — 1 Y €5
| 2 Otherwise, i.e. Y/ € 5

Claim C.2 (A" | Z/=1)=(A|Y € 8) and (B' | Z' =2)= (B | Y € 53).

Proof: First we observe that for 7 € Sy:

Pr(Y'=i) Pr(Y=i|Y €5 US)
PT‘(Y’ESl) N P’!‘(}7651|Y651U52)

Pr(Y'=i|Y' €Sy = = Pr(Y =i|Y €S8)

18

Therefore,
Pr(A'=d | 7' =1) = Sies, Pr(Y' =i | Z' =1)-Pr(A =d | Y'=1) =
Yie, Pr(iY =i | Y € 51)-Pr(A=d | Y =1i) = Pr(A=d" | Y € 5)

L]
Hence, Z' is an (m,¢,0) selector for A’ o B’.
Therefore by lemma 5.1, A’ o B’ is e—close to some X with H.,(X) > m. However,
Claim: A’o B’ = (Ao B |Y € 51U 5,).
Proof:
Pr(A'oB' =d ob') =
Yiesius, Pr(A’o B ' =d ob' | Y =4)- Pr(Y' =14) =
Yiesius, Pr(AoB=ad'"ob' | Y =4)-Pr(Y =i | Y € S1US5) =
Pr(AoB=dob |Y € 5US8,)
]

Thus, (Ao B | Y € S1US,) = A’ o B is e—close to some X with H,,(X) > m, completing
the proof.

O

19

D Composing Extractors

D.1 Composing Two Extractors

Proof: [of claim 6.1]
For any w s.t. Y(w) =

Prob(X) = wpn) | Xpjic1) = wpyica)y Y(z)=1) < (Since Prob(A | B) < %%%)

Prob(Xp; sj=win] | X[1,i—11=w,i-1])

Prob(Y(z)=¢ [X1 i—1j=w,i—1]) < (Since f(w) = i)
(62—63)-2_m1 .
Prob(Y @)= T X1 =i) < (By Claim D.1)
(ea—ea)-27™1 9—m1
€9 —€3
]
Proof: [of claim 6.2]
Take any wy; ;_q) that can be extended to some w with Y (w) = 1.
Prob(X) = wp)
Prob(Xy ;11 = wp-11) = = =
(Kot = vpic) Prob(Xp;) = wiiyp | Xppjiz1) = wi-1)
P'rob(X[Ln] = w[lﬁn])
Prob(X; = w; | X1y = wpic1y) - Prob(Xjip1 n = i1 | Xpg = wpg)
However,
Prob(X(ip1,0 = Wiig1m) | X[y = wpig) > (2 — €3)27™ (Since f(w)=1)
Prob(X; = w; | Xpq,;-1) = wp,i—1]) > €3 (Since w ¢ Bs)
Prob(Xp) = wp) < 2~ (mitmats) (Since Hoo(X) > mq +mg + 5)
Thus,
P b X 2—m1—m2—s 2—771,2—8
rob(Xy ;11 = wpp4-11) < = 1
(X (1-11) €3 (€2 —€3)27™ €3 - (€2 — €3) 1)
Therefore,
Prob(X(y = wp iy | V() = 1) < (Since Prob(4 | B) < brotd)
Prob(Xpy ;_11=w[1,i—1])
Pro;)(Yl(m):i; - < (By Eq. (1)
53-(52—53)_-P:O_E;(Y(x)=i) < (By Claim D.2)
2" m2—s _ 27278 9s —mgo—s _ 9—m
e3 -(ea—e3)-(e1—ea—e3)] = 2°.27 = 27"
]

20

D.2 Technical Lemmas

In this subsection we prove some technical lemmas used in subsection 6.1.

Claim D.1 For any i and wpy ;_1}, if Probyex(Y(z) = @ | o ;21] = wpi-1)) > 0, Then
Probrex(Y(z) =1 | 2 _1) = wpi—1)) > €2 — €3

Proof:

Since wpy ;1) can be extended to some w with Y (w) = i # 0, by definition 6.2:

Prob(f(z)=1)> ¢ ,and
Prob(f(z) =i | 2p,im1) = wpi1]) 2 €

However, this implies that for any extension w’ of wyy ;_yj, with f(w’) = 4, it holds that
w' ¢ By U By. Hence,

Prob(Y(z) =i | ap = wpi1) =
Prob(f(z)

(i | T1,5-1] = w[l,z’—l]) — Prob(f(z)=1andz € B | Tl,5-1] = w[l,i—l]) =
Prob(f(z) =1

i| @p o1 = wpi—1)) — Prob(f(z) =1iand x € B3| 2y _1) = wpi—1)) 2

€2 — €3

The last inequality uses claim D.3.

0
Claim D.2 For any i, if Probrex(Y(z) =1) > 0, then Prob.ex(Y(z) =1) > ¢ — €3 — €3.
Proof:
Since there is some w’ s.t. Y(w’) =i # 0, by definition 6.2:
Prob(f(z)=1)> ¢
This implies that for any w’ with f(w') = i, we know that w’ ¢ By. Hence,
Prob(Y(z)=1) =
Prob(f(z)=1) — Prob(f(z)=tiand z € B) >
Prob(f(z)=1) — Prob(f(z)=1iand x € By) — Prob(f(z) =1 and x € B3) >
€1 — €2 — €3
The last inequality uses claim D.3.
0

21

Claim D.3

1. Prob(z € By) < ne
2. For any i: Prob(f(z) =i and v € By) < ¢
Prob(z € By) < ney

For any i and wpy ;_y): Prob(f(z) =1 and x € By | oy ;1) = wpy ;_1)) < €3

AR

For any i: Prob(f(z) =1 and z € B3) < €3

6. Prob(z € Bs) < nes

Proof:

1) If there is an = with f(z) =i and = € By, then Prob(f(z) =) < €. Thus, Prob(z €
By and f(z) =1) < ¢, and Prob(z € By) < ¥, Prob(z € By and f(z) =1) < neg.

2) If for some wyy ;_q) Prob(f(z) = i and * € By | oy ;_q) = wp i_q]) > 0 then there
is an extension w of wp ;_q) s.t.: f(w) = i and w € By, and therefore, Prob(f(z) =

i @y, _1] = wpyi-1]) < €2. Thus, for all wyy ;_47, Prob(f(z) =i and z € By | a3 ;4] =
w[lZ 1) < €. Therefore, Prob(f()=1tand x € By) = Y ica] Prob(zpy i—1] =
i—1)) - Prob(f(z) = i and @ € By | ap 1) = wpyi—1)) < By, Problap_q =

wiyi-17) - €2 < €.
3) Prob(z € By) < ¥, Prob(z € By and f(z) = 1) < ne,.

4) If for some wyy ;47 Prob(f(z) = i and © € Bz | x5,_4] = wp ;1)) > 0 then there
is an extension w of wp ;_yj s.t.: f(w) = i and w € Bz, and therefore, Prob(z; =
w; | Tp1] = wp—q)) < e3. In particular, Prob(z € Bz | apy,1] = wp 1)) <
Prob(z; = w; | @p ;_1) = wp ;1)) < €3. Thus, for all wy ;_q), Prob(f(z) = i and = €
B3 | 2p1,i-1) = wpi-1)) < €3.

5) Prob(f(z)=tandz € B3) < Xy, ., Prob(zp ;1) = wpy 1)) -Prob(f(z)=iandz €
Bs | Ll15-1] = w[l,i—l]) < By P”")b(l’[l,i—u = w[l,i—l]) €3 < €3,

6) Prob(z € B3) < X7, Prob(z € B3 and f(z) = 1) < nes.

D.3 Composing Many Extractors

My, My _o
Given the extractors F; and mergers M;, we want to define the composition £, & Fr_1 ©

M
. Fs @l F as a series of compositions of two extractors. Clearly, when defining this compo-
sition we can choose between left or right associativity, which turns out to be very different.

We compare these two alternatives by the number of truly random bits needed to compose

the extractors, and the running time of the composed extractor.

Number of truly random bits :

22

M _o

Mk—l M1
o left associativity- E=(Fy © FEx1 © ...FEy) © Ey

My, _q
This way the extractor F; extracts enough randomness for the extractor (Fr ©
My,_o
Er_1 © ...E;), including its inner merges. Thus, this composition is very

efficient, and we pay only for one merge.

k-2

My _q M,
e right associativity- £ =FE;, © (Fx-1 © ...E;)

This way we have to invest truly random bits for all the merges.

Thus, left associativity is more efficient.

Running Time :
For both alternatives the trivial running time is n*. However, as can be seen from the
proof of Theorem 5 , when using right associativity, we know how to compose extractors
in polynomial time using a dynamic programming algorithm. This does not seem to
work in the left associativity case.

Thus, we choose to use right associativity. However, we still feel unsure about the right
way extractors should be composed.

23

E Applications

E.1 Review of Results
E.1.1 «-expanding Graphs

DEerINITION E.1 [Pip87] An undirected graph is a—expanding if any two disjoint sets of ver-
tices of size at least a are joined by an edge.

Using our extractor we get:

Corollary E.1 (following [WZ93]) For every N and 1 < a < N, there is an efficiently
constructible a—expanding graph with N vertices, and mazimum degree O(%onlyloglog(N)) .

Corollary E.2 (following [Pip87], see [WZ93] lemma 5) There are explicit algorithms for
sorting in k rounds using O(nl"'% . 2p°lylogl°g(”)) comparisons, and for selecling in k rounds

: 1+ 4— .
using O(n ' 2F=1 . 2potuloglog(n)y comparisons.

Corollary E.3 (following [AKSS89], see [WZ93] lemma 6) There are explicit algorithms to
find all relations except O(a - nlog(n)) among n elements, in one round and using O(%2 .
grolyloglog(n)) comparisons.

E.1.2 Superconcentrators of small depth

DeriniTION E2 G = ((A,C, B), F) is a superconcentrator if G is a layered graph with input
vertices A, output vertices B, and for any sets X C A)Y C B of size k, there are at least k
vertez-disjoint paths from X toY .

Much research was done on finding small explicit superconcentrators of small depth (see
[WZ93] for references). We achieve:

Corollary E.4 (following [WZ93]) For every N there is an efficiently constructible depth 2
superconcentrator over N vertices with size O(N - grolyloglog(N)y

Corollary E.5 (Following [WZ93],lemma 10) For every N there is an explicitly constructible
superconcentrator over N vertices, with linear size and polyloglog(N) depth .

E.1.3 Hardness of Approximating The Iterated Log of Max Clique.

DEerFINITION E.3 We denote loglog . ..logn by log(k)(n). We define P, (n) by:
—_——
k

Aelog(k)n
P.y(n) = 2% k2's

We denote the size of the biggest clique in G by w = w(G).

Corollary E.6 (following [Zuc93] ©) If for any constant b, approzimating log®)w to within
a factor of b is in|J, DTime(P. x(n)), then |J, NTime(P. x(n)) =, DTime(P, x(n)) .

5This lemma is a deterministic version of the lemma appearing in [Zuc93]. The only difference is that we
are able to replace the randomly chosen extractor in [Zuc93] with our new constructible extractor. A proof of
this corollary appears in subsection E.4.

24

E.1.4 Simulating BPP Using a Weak Random Source
A direct corollary of Theorem 2:

Corollary E.7 For any 6 > 0 and k > 0, BPP can be simulated in time nO(tog™n) using a
weak random source X with min entropy at least n® .

E.2 a—expanders

Here we prove corollary E.1 which easily follows from the following lemma:

Lemma E.8 If for every m there is an (n,m,t = t(n), m,e = §)-extractor, then for every

1 <a< N =2" there is an efficiently constructible a—expanding graph with N vertices, and
mazimum degree O(L2%) .
Proof: (following [WZ93] 7)

Let V' be a set with N = 2" vertices, and W a set with a = 2™ vertices.

e Define a bipartite graph G = (V, W, E),s.t. (z,y) € E < 3r € {0,1} s.t. y = E(z,r).

n o9t

o Denote BAD = {w € W | deg(w) > 2dyy} where dy,y = 22 is the average degree of
vertices in W.
e Let H be the induced graph of G over V U (W \ BAD), and let the output be HZ.
Claim: |BAD|<e-2™.
Proof: Consider the uniform distribution D over V = {0,1}". Then:

Prob, 5 ,.cp,(y € BAD) < |B2’31D| + € (Since E is an extractor)

2day BAD|-2.dgy 2:|BAD . 2day
PTObxeﬁreUt(y € BAD) > YyeBaD e = | 271+t g = |2m | (Since Pr(y=1b) > 2n—+f)
Hence, |BQ/;1,LD| <.]

Claim: Forany X CV s.t. | X|>2™, [T(X)| > (1—¢)2™

Proof: Suppose not. Take the uniform distribution D over X. Clearly, H.,(D) > m. How-
ever, since |T(X)| < (1 —€)2™, it follows that d(FE(D, U;), Uy) > €, which is a contradiction.

0
Claim: For every X1, X CV s.t. | Xy, | X2 > 2™, (T(X1)NT(X2))\ BAD| > 0.
Proof:
(D(X)) N T(X2))\ BAD| > [I(X,) A T(Xy)| ~ |BAD| >
(1- 262" — 2™ = (1—-3¢)2™ > Tm >0
0

Hence in H?:

"The proof follows a simple idea from [WZ93]. [WZ93] used also a complicated recursive construction that
we can avoid completely because we use our stronger extractor.

25

o For every X1, X5 C V,s.t. |Xy],|X2| > 2™ = a, there is an edge going from X; to X5.

e For every vertex in V the degree is bounded by 2°-2d,,, = 2°- 22;;3t = 2.2t. N .9t
a

U]
Corollaries E.2 and E.3 follow corollary E.1 by [WZ93] lemmas 5 and 6 respectively.

E.3 Superconcentrators

First we prove corollary E.4:

Lemma E.9 [Mes84] G = ((A,C, B), F) is a superconcentrator of depth 2, iff for any 1 <
kE<n and any sets X C AY C B of size k, [I(X)NIT'(Y)| > k.

Following [WZ93], good extractors yield small superconcentrators of depth 2.

Lemma E.10 (following [WZ93]) If for every m there is an (n,m,t,m + 3,%) extractor
FE,., then we can efficiently build a superconcentrator over N wvertices of depth 2 and size
N -log(N)-2!

Proof:

We describe the superconcentrator we build:
Input and output layers. The input and output layers A and C' are of sizes N = 2". Thus
we can identify each input/output vertex with a string in {0, 1}".

The middle layer. We let the middle layer B be the union of n disjoint sets By,..., By,
|B,,| = 4-2™F1. Again, we describe each vertex in B, as a string in {0, 1}™*.

Edges going from A to B. Forevery z € A = {0,1}", 1 < m < n and r € {0,1}" we add
an edge going from = to E,,(z,r) € {0,1}"*3 = B,,.

Edges going from ' to B. are the mirror image of the edges going from A to B.
Claim E.1 For any X C A of size 2™ < k < 2™ |I(X)N B,,| > %|Bm|

Proof: Consider the uniform distribution D over X. Clearly, Ho(D) > m.
d(E(D,U;),Upys) < 5. However, |[I(X)N By, | < 2|B,,| implies that d(E(D,U;), Upts) >
- a contradiction.

Therefore, for any X C A and Y C C of size 2™ < k < 2™TL |T(X)NT(Y)N B,,
%|Bm| > k. Hence by lemma E.9, our graph is a superconcentrator.

Now we turn to the proof of corollary E.5:
Proof: [Of corollary E.5]

[WZ93] show that an explicit depth 2 superconcentrator of size O(N - f(N)) implies an
explicit linear-size superconcentrator of depth O(log(f(N)). Hence, the corollary follows
corollary E.4. L]

26

E.4 Approximating the iterated log of clique size

Fact E.1 [ALM*92, AS92] NP C PCP(O(log(n),0(1),0(log(n)),0(1),

(I

).

Lemma E.11 (following [Zuc91]) If there is an (r+k,r,t,r, %)fextmctor, then PC P(r,m,q,a, %) C
PCP(r+ k,2'm,q,a,27%).

Proof: Define the bipartite graph G = (4, B, E) where A = {0,1}**.B = {0,1}", and
(a,b) € Eiff 3r € {0,1} s.t. E(a,r) = b. Now define the following protocol: the verifier V'
chooses @ € A randomly, and runs the original protocol 2! times, with the strings E(a,r) for
all possible values of r € {0,1}". Using the extractor’s properties, it is easy to see that the
error rate (those a € A that do not have “bad” neighbors) is less than 23; =27k, 0

Corollary E.12 For anyk > log(n), NP C PCP(O(log(n))+k,2r°1°9(%) O(log(n)),0(1),27%)
8

We now turn to proving corollary E.6. Instead of proving this corollary in its generality,
we prefer to prove a special case that demonstrates the idea and has somewhat “nicer”
parameters. The proof of the general case is almost the same.

Lemma E.13 (following [FGLt91, Zuc91, SZ94]) If for any constant b, approzimating
log®)(w(@)) to within b is in P, then NP C |J, DTime(P.3(n)).

Proof: [FGL191]

Let L € NP, z € {0,1}". By corollary E.12, for any k > log(n): L € PCP(r =
O(log(n)) + k,m = 02098 g = O(log(n)),a = O(1),e = 27F).

Build the transcript graph G ° of L. G has 277™% vertices. If z € L then w(G) = 27,
otherwise w(G) < 27e = 200090") | Thus, if we take k = 9(toglog(n))* log®)(w(@G)) is either
bigger than 2l0g(®)(n) or less than log(®)(n) + O(1).

Since we assume we know how to approximate log(S)(w(G)) to within any constant factor,
we can check whether 2 € L or not. Thus L € DTime(poly(2™)). Now, 2™ = garevtedh)

O(logloglog(n))

22 s 1 e U, DTime(P.5(n)). O

22polyloglog(n) _

81t is well known that using expanders it is possible to achieve a similar result, however the randomness
then is O(log(n) + k)
°See [FGL191]

27

F Sketch of proof of Theorem 2

The results in this subsection are based on the work done in [NZ93, SZ94]. In subsection
F.1 we present a short sketch of the [SZ94] extractor, which was given in lemma 3.2, and
works for sources having n'/2*7 min-entropy using O(log®n) truly random bits. In subsec-
tion F.2 we show how our new extractor can reduce the number of truly random bits to
O(log(n)loglog(n)). In subsection F.3 we show how to build such extractors for sources hav-
ing n® min-entropy for any constant § > 0. In subsection F.4 we put everything together to
get the extractor of theorem 2. We only give short sketches of the proofs here, the full proofs
will appear in the full version of the paper.

F.1 The Srinivasan and Zuckerman Extractor

Proof: [An informal sketch of the [SZ94] proof of lemma 3.2]
First we need the following lemma from [NZ93]:

Lemma F.1 [NZ93, S794] Let X be a random variable over {0,1}", and suppose H . (X) >
én. Choose | indices i1, . .., 1 pairwise independently from [1,n] '° and let b = z;, 0...0a;,.
Let B be the random variable (depending on x and the choice of indices) whose value is
b. Then the distribution B is € close to some distribution W with H.o(W) > é'n, where
§' = ¢ 6/log(87") for some constant ¢' and ¢ = O(1/+/8'1).

Now we build the extractor:

Algorithm :

1. Get z € X, where H,(X) > n'/?t7,
2. Choose k = O(log(n)) blocks by, ..., by of length [= n'/2. The bits of each block

are chosen pairwise independently, and the indices of each block are independent
of the indices of the other blocks.

3. Take t = O(log(n)) truly random bits, and extract ¢t bits from By using the
extractor of lemma 3.1. Then use these ct bits to extract ¢2¢ bits from By_1, and
continue this "doubling” procedure until we have some n® bits.

Correctness (sketch) : Denote by B; the distribution of the i’th block. By lemma F.1 By

has at least [- 22770 — 5y min-entropy, with high probability. Since |By| =1 = n1/2,
for most prefixes by, Hoo (X | By = by) is at least nl/2+7 — p1/2 which is almost n!/247.
Repeating this process we see that for most prefixes each block B; conditioned on the

nl/2+y

prefix by ;17 has at least [- = n” min-entropy.

Thus, by lemma 3.3 the doubling procedure in step (3) gives us a quasi-random string.

Number of truly random bits : To choose a block pairwise independently we need O(log(n))
random bits. Thus, to choose the k blocks we need O(k -log(n)) truly random bits.

O

10This is almost accurate. For the precise way of choosing the indices see [SZ94].

28

F.2 O(log(n)loglog(n)) truly random bits suffice

Using our new extractor, we can easily reduce the number of truly random bits needed in
the above algorithm. Notice that it is sufficient to take only & = O(loglog(n))+ 1 blocks, use
the doubling technique to get polylog(n) quasi-random bits, and then use them in our new
extractor to extract all the n” min-entropy present in B;. Thus we see that:

Lemma F.2 For every constant1/2 > v > 0 there is an (n,n'/**7,0(log(n)loglog(n)), Un"), 1)
—extractor.

In fact this actually shows that:

Lemma F.3 If for every § > 0 there is 61 > 0 and an (n,n5,0(log(n)log(k)n),n61, %)f ex-
tractor, then for every 1/2 > v > 0 there is § > 0 and an (n, n'/**7,0(log(n)log®*+Vn), Q(n?),)
—extractor.

F.3 Extracting Randomness from Weaker Sources

Now we consider what happens when the source X has less min-entropy. First let us see why
we required that H.(X) > n'/2*7, in the above algorithms. Suppose Hoo(X) = n'/2. Then,
even if we randomly choose the [indices of By from [1, n], we still need to be at least n1/2 to
ensure that H.,(By) > 1. Thus, it might happen that for most prefixes by, Hoo(X | By = by)
is very small, and we have no chance of getting a good second block.

However, if this happens and H.(X | By) is frequently small, then intuitively this means
that with high probability B; takes most of the randomness present in X. Thus H.(B)
should be large, and therefore By is much more "condensed” than X. This suggests the
following algorithm, to extract randomness from a source X with H,(X) = n /347 using
O(log(n)loglog(n)) truly random bits.

Algorithm :

e Choose z € X, and truly random (short) strings ¢, ;.

Extract k (k = O(loglog(n))) blocks by,..., by of length I = n?/3, pairwise
independently as before.

Compute z; = E(b;,1), where E is the extractor of lemma 3.2.

Let zx41 be the result of running the extractor of lemma F.3 over these k blocks.

e Define z = 2y 0...0 2541, and let the output be E(z,1).

Correctness, a very informal sketch : Roughly speaking, if ¢ is the first index s.t.

/34
HOO(X | b[l,z]) < 2 ’Y7

entropy, while B; has only I = n2/3 bits. Therefore B; is condensed enough for the
[SZ94] extractor, and z; (with the appropriate preconditioning) is quasi-random. On

the other hand, if for no i Hoo(X | by) < 721/%
and zx41 (under the appropriate preconditioning) is quasi-random.

then B; (conditioned on by ;_41) has at least n/3+7/2 min

, then the doubling procedure works,

Thus, for any b = byy 3 we can assign Y = Y(b) = 7 € [1,k 4 1] according to the first

(if at all) s.t. Hoo(X | b q) < ””.%, and we can show that Y is an (n®, 1, L) selector
for 7 = Z1 o] ---Zk+1-

29

By lemma 5.1, Hoo(Z) > n°, while Z contains only kn® = O(log(n))n® bits. Therefore,
Z is very condensed, and in particular after applying the [SZ94] extractor of lemma 3.2
we get a quasi-random string.

This shows that:

Lemma F.4 For everyy > 0 there is some constant § > 0 and an (n, n'/3+7, O(log(n)loglog(n)), Q(n),
extractor.

Using the same algorithm but with the extractor of lemma F.4, we can get an extractor
for n'/4+7. Repeating this any constant number of times we get:

Lemma F.5 For everyy > 0 there is some constant § > 0 and an (n,n", O(log(n)loglog(n)), (n’), L)
extractor.

F.4 Doing it with O(log(n)log®)n) random bits

Lemma F.3 together with lemma F.5 show that there is an (n, n'/2t7, O(log(n)log®n), n®, 1)~

‘n
extractor Fs.

However, now we can repeat algorithm F.3, for this smaller k& = O(log(B)n), and with the
new n'/?t7 extractor Ey. This gives us an (n,n’t, O(log(n)log®n), n’, %)f extractor.

Repeating this process any constant number of times we get Theorem 2.

30

