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Abstract

We present a 20/M) time exact learning algorithm for polynomial size
DNF using equivalence queries only. In particular, DNF is PAC-learnable in
subexponential time under any distribution. This is the first subexponential
time PAC-learning algorithm for DNF under any distribution.

*This research was supported in part by the NSERC of Canada.



1 Introduction

One of the outstanding open problems in computational learning theory is whether
polynomial size DNF formulas are learnable in polynomial time. In [BCKT94]
Bshouty et al. showed that by using an NP-oracle, DNF is exactly learnable
from equivalence queries. So, if P=NP, exact learning of DNF from equivalence
queries is possible. This raises the question of whether learning DNF in polynomial
time implies P=NP, or whether learning DNF in time ¢ implies NP=TIME(¢). So
researchers started to seek a subexponential time exact learning algorithm for
DNF to show that the learnability of DNF is most likely not as hard as solving
NP-Complete problems (unless NPCTIME(2™)).

This paper gives the first subexponential time exact learning algorithm for
DNF. We show that any circuit that has a subexponential DNF or CNF size also
has a subexponential learning algorithm from equivalence queries. For polynomial
size DNF our algorithm runs in time 200/%),

Our algorithm is based on learning k-decision list from equivalence queries
[HSW90]. We show that every n-decision list of length s is an O(y/nlogn log s)-
decision list. Therefore running the O(y/nlogn)-decision list learning algorithm
will learn any polynomial size DNF.

In Section 2 we give the learning model and some definitions. In Section 3 we

show that any n-decision list of length s is an O(y/nlog slogn)-decision list.

2 Preliminaries

In this section we define the learning model and classes of DNF, decision trees and
decision lists. Then we give some results from the literature that will be used for
our proof.

2.1 The Learning Model

In the exact learning model, using equivalence queries only, the learning algorithm
tries to learn a function f, from a class of boolean functions ', that the teacher
(or the equivalence oracle) has. The learning algorithm can ask the teacher equiv-
alence queries. In an equivalence query the learning algorithm sends the teacher a

hypothesis kA and the teacher sends back the answer YES if A = f and NO with a
counterexample a if h Z f. The counterexample a satisfies f(a) # h(a).

We say that C' is ezactly learnable in time t from equivalence queries if the
learning algorithm can identify the target exactly in computational time complexity



t with t equivalence queries and with a hypotheses h that can be represented
in ¢ bits that are computable in computational time ¢. Notice that if we allow
the hypothesis to be computable in exponential time then DNF' is learnable in
polynomial time. All we would need is the halving algorithm [A88,L.88] where
each step defines the hypothesis to be the majority of all functions in ' that are
consistent with the answers of the equivalence queries seen so far.

2.2 Classes of Boolean Functions

Our boolean functions will be defined over the variables X = {x1,xq,...}. A literal
is x; or —x;, a term is a conjunction of literals and a Disjunction Normal Form
formula (DNF) is a disjunction of terms. Swapping disjunctions with conjunctions
in a DNF we will result in a Conjunction Normal Form (CNF) that is a conjunction
of clauses. 1t is known that any boolean function can be represented as DNF and
CNF. For a term T the size of T, |T|, is the number of literals in T'. The size of a
DNF is the number of terms it contains and the DNF size of a boolean function f
is the minimum size of all equivalent DNF’s that represent f. A k-DNF is a DNF
with terms of size at most k.

A k-decision list is a list f = ((T1,b1), (T2, b2), -+, (T}, b)) where each T; is a
term of size at most k, b; € {0,1} and the disjunction of all T; is 1. The list f is
a representation of a boolean function. For any assignment a at least one of the
Ti(a) is 1 and if T1(a) = -+ = Tj_1(a) = 0 and Tj(a) = 1 then f(a) = b;. Any
k-DNF (or k-CNF) is a k-decision list. Notice that since the number of terms of
size k is at most (2n)* the length of any k-decision list is at most (2n)".

A decision tree is a rooted binary tree with internal nodes labeled with variables
and with leaves labeled from {0,1}. Every decision tree ¢ represents a boolean
function. For an internal node v in a decision tree ¢ let r(v) (resp. [(v)) be the
right (resp. left) subtree of v. To compute ¢(a) we start from the root and if the
root v is labeled with x; then ¢(a) = {(v)(a) if a; = 1 and f(a) = r(f)(a) if a; = 0.
If the root is a leaf then ¢(a) is equal to the label in this leaf. The size of a decision
tree is the number of leaves in the tree. A k-decision list is a decision list with
internal nodes labeled with terms of size k.

A (k,s,j,l)—decision tree is a k-decision tree of size s with leaves that are j-
decision lists of length [. To compute ¢(a), where ¢ is a (k, s, j,[)-decision tree, we
start from the root and do the following at each node. If the node is a leaf then
we compute the decision list in that leaf and if it is an internal node v we proceed
to the left tree if the value of the term in v is 1 and to the right tree if it is 0.



2.3 Previous Results

Helmbold et al. in [HSW90] showed that k-decision lists are learnable from equiv-

alence queries in time
O(k)

In [B192] Blum proved that any decision tree of size s is a log s-decision list.
Therefore, there is a learning algorithm for decision trees of size s that runs in

time
nO(log s) ]

3 Decision List for DNF

In this section we prove the following lemma

Lemma 1: An n-decision list of length s is an

O <\/n log slog n) — decision list.

Since a DNF of size s has an n-decision list of length s it follows that any DNF

of size s is an O(y/nlog slogn) — decision list.

This implies the following theorem.

Theorem 1: There is a learning algorithm for DNF from equivalence queries

1
20 (\ /nlogslogl 2 n)

that runs in time

Notice that this complexity is subexponential for any subexponential size DNF

(or CNF).

Proof of Lemma 1: We will first show that an n-decision list of length s
is a (1,2" h,2")-decision tree for h = O(y/nlogslogn) and then show that a
(1,2", h,2")-decision tree is a 2h-decision list.

Let f = ((Th1,b1),...,(Ts,bs)) be an n-decision list of length s. Let h =
O(yv/nlogslogn). Let T;,...,T; be all the terms that have size greater than
or equal to h. Since the size of each T;; is more than &, there is a variable z; that
occurs in more than (rh)/n terms. We put this variable in the root of the tree.
The children of the root will be trees for the projections f|;, o and f|;;1. We do
this recursively for the projections f|.. .o and f
greater than h occur in the list. This way we are building a (1,7, k, 2")-decision
tree where 7 is the size of the tree. We now show that < 2"

=<1 until no more terms of size



Since z; appears in at least rh/n terms of f, for some of the values ¢ € {0,1}
the projection f|;, ¢ will be a decision list that has at most » — (rh)/(2n) terms
of size more than h. Therefore the size of the tree n is at most ¢(n,r) with ¢ is
the solution of the recurrence

¢<n,r>=¢<n_1,r)+¢(n_1,r(_;))

n

where

é(1,x) =1 and ¢(*,0) = 1.
It is easy to see that such a recurrence gives

2n1

¢>(n,7°) § nh n(r+1) § nZT"ln(s—I—l) — 20(h).

We now show that a (1,2", h,2")-decision tree is a 2h-decision list. The proof
is similar to Blum’s proof in [B192]. Since the decision tree has size 2" there is a
leaf v in the tree of depth h. Let z;, = {,..., 2, = &, ¢ < h, be the variables and
the values that lead to this leaf and let ((77,6}),...,(T.,b.,)) be the decision list
in that leaf. The 2h-decision list will be constructed as follows. The prefix of the
2h-decision list will be Ly = ((T'T],b)),...,(TT!,b)) where T = :Ufll NEEEWA :Uf;l
O = =z and 2! = z. The prefix of the 2h-decision tree is constructed
recursively for the decision tree that resultes from the removal of leaf v and its
parent vertex in the tree (the node that contained z;,). The proof of correctness

of this construction is identical to the proof by Blum in [B192].0
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