Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

P FTP: ftp.eccc.uni-trier.de:/pub/eccc/
Revision 01 of
S0 O 0 WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR95-061 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Hitting sets derandomize BPP*

Alexander E. Andreev Andrea E. F. Clementi
Department of Mathematics Dipartimento di Scienze dell’Informazione
University of Moscow University of Rome
RU I

José D. P. Rolim!
Centre Universitaire d’Informatique
University of Geneva

CH

Abstract

We show that hitting sets can derandomize any BPP-algorithm. This gives a positive answer to
a fundamental open question in probabilistic algorithms. More precisely, we present a polynomial
time deterministic algorithm which uses any given hitting set to approximate the fractions of 1’s
in the output of any boolean circuit of polynomial size. This new algorithm implies that if a quick
hitting set generator with logarithmic price exists then BPP = P. Furthermore, the algorithm can
be applied in order to show that the existence of a quick hitting set generator with price £ implies

BPTIME(t) C DTLME(?O(’“@O(I)))). The existence of quick hitting set generators is thus a new
weaker sufficient condition to obtain BPP = P.

*The results of this paper have been presented in the 238rd ICALP’96
TContact author: Centre Universitaire d’Informatique, University of Geneva, 24 rue General Dufour, CH 1204 Geneva.
E-mail: rolim@cui.unige.ch

1 Introduction

- Motivations and previous results. This paper addresses the issue of the derandomization of proba-
bilistic algorithms, i.e., the design of general methods that permit an efficient deterministic simulation
of algorithms which make use of random bits. Pseudo-Random Generators (PSRG’s) ([3, 11]) consti-
tute the best general method to this aim. A PSRG is a function G = {&, : {0, 1}*(") = {0,1}",n > 0},
denoted by G : k(n) — n that “stretches” k(n) truly random bits into n pseudo-random bits; more
formally GG is a PSRG if for any sufficiently large n and for any boolean circuit C' : {0,1}" — {0, 1}
whose size is at most n we have: |Pr(C(y)=1) - Pr(C(G,(Z)) =1)] < 1/n (where § is chosen
uniformly at random in {0,1}", and # in {0, 1}k(n)). The intuition behind this is that the output of a
PSRG looks “random” to any small circuit. Nisan and Wigderson [8] showed a method to construct
quick PSRG’s (i.e. PSRG’s that are computable in polynomial-time in the length of their output!)
which is based on a particular hardness assumption (i.e. the existence of boolean functions in EXP
having exponential hardness [2, 7, 8]). In particular, they proved that, using k(n) = O(logn) truly
random bits, these quick PSRG’s can efficiently derandomize any two-sided error, polynomial-time
algorithm (i.e. any BPP-algorithm).

In this paper we show a different approach to derandomize algorithms: we give a positive answer
to the question whether Hitting Set Generators (]9, 6, 1]) can achieve equivalent general performances
to those obtained by PSRG’s. A Hitting Set Generator (HSG) is a function H = {H,, : {0, 1)
{0,1}",n > 0} (H : k(n) — n) such that, for any sufficiently large n, and for any n-input boolean
circuit C' with size at most n and such that Pr(C(9) = 1) > 1/n, it is required to provide just one
“example” ¢ for which C'(§) = 1, i.e., there exists at least one & € {0, 1}¥") such that C(H, (%)) = 1.

Observe first that any PSRG is also a HSG but the converse is not necessarily true [1, 6]. Informally
speaking, a PSRG provides a precise approximation of the value Pr(C(y) = 1), i.e., the fraction of
1’s in the output of C', for any “small” circuit C'. Thus, if C' has a large fraction of 1’s in its output
then the PSRG must generate an input space for which this fraction has about the same large size.
On the other hand, HSG’s are not required to have this property: a HSG provides, for any “small”
circuit C' having a “sufficiently large” number of 1’s in its output, only a witness of the fact that C' is
not a null function. Another point of view to distinguish between PSRG’s and HSG’s is that Hitting
Sets (i.e. the output of HSG’s) have a monotone property not verified by the output of PSGR’s: if
Im(H)={Im(H,),n > 0} is a Hitting Set then any other set collection Im (H') = {Im (H),),n > 0},
such that for any n > 0 Im (H,,) C Im (H),), is still a Hitting Set. In general, this monotone property
makes the construction of efficient HSG’s easier than the construction of PSRG’s [1, 6].

The design of HSG’s which use “few” random bits has been a central topic in complexity theory
over the last ten years, since these generators are often used to reduce the required number of random
bits in many known randomized algorithms [5, 9, 4]. Moreover, in [6] and afterwards in [1], some
interesting deterministic algorithms have been introduced to construct a Hitting Set for a restricted
class of boolean functions. However, the main question left open by these previous works is whether
quick HSG’s (i.e. HSG’s computable in polynomial time in the length of their output, as required for
PSRG’s) can replace quick PSRG’s in order to efficiently derandomize any BPP-algorithm. In this
paper, we give a positive answer to this question.

Our Results. The main technical result of this paper can be stated in the following way:

"note that if k(n) = O(log ») then this condition implies that the PSRG belongs to EXP

Theorem 1.1 Let ¢(n) be any positive polynomial function. If a quick HSG H : k(n) — n (with
k(n) = Q(logn)) exists then it is possible to construct a deterministic algorithm A that, for any n and
for any circuit C(z1,...,2,) of size at most ¢(n), computes in polynomial time in n a value A(C)

such that
1

q(n)
Since approximating the fraction of 1’s in the output of a linear-size boolean circuit is B P P-hard
(a proof of this can be found in [8]), Theorem 1.1 directly implies the following

[Pr(C'=1)-A(C)] <

Corollary 1.1 Let k(n) = O(logn). If there exists a quick HSG H : k(n) — n then BPP = P.

Actually, Theorem 1.1 gives a more general consequence: by considering the “price” k(n) (with
k(n) = Q(logn)) of the HSG as a parameter, we will prove the following

Corollary 1.2 If a quick HSG H : k(n) — n exists, then for any time-bound t(n), we have
BPTIME(t) C DTTM E(20H7)),

where BPTIM E(t) is the class of languages accepted by probabilistic, two-sided error Turing Machines
running in time t.

Notice that this result is comparable to the one in [7, 8] stating that the existence of a quick PSRG
G : k(n) — n implies BPTIME(t) C DTIM E(20(*-()),

Such results globally states that quick HSG’s can be used as a new general method to derandomize
probabilistic algorithm. Moreover, from the previous discussion on the differences between PSRG’s and
HSG’s, our results can be considered as a new, stronger indication on the fact that the computational
power of probabilistic machines is not much larger than that of deterministic machines. This conjecture
was first observed in [7, 8], and furtherly supported in [2].

The paper is organized as follows. In Section 2 we describe the approximation algorithm of Theorem
1.1 and we analyze its complexity and its correctness; then, in Section 3, we state the consequences
of this algorithm in the theory of computational complexity (i.e. Corollaries 1.1 and 1.2).

2 The approximation algorithm

2.1 Overall description of the algorithm

The main technical contribution of this paper is an efficient deterministic algorithm that uses a quick
HSG H : k(n) =— n in order to approximate the value Pr(C' = 1) for any boolean circuit C :
{0,1}"* — {0,1} (n > 0) having polynomial size. The approximation algorithm considers a sufficiently
large Table T' (but still polynomial in n, i.e., |T| = h(n) for some polynomial h(n)) of inputs for C,
and computes two parameters d,,,;, and dy,q; Where dy,;p, (diqz) is the minimum (maximum) fraction
of 1’s that C' generates on the set of inputs of the form §@® @ where ¥ € T and @ € Im (H,) (more
precisely, the minimum (maximum) is computed with respect to @). We then prove the following
inequalities

dupin = (1) < Pr(C=1) < dyos+e(n) ,

where €(n) is a “small” positive function which depends on H, and that we will prove to be smaller
than the inverse of any polynomial function in n. From the above inequalities, it should be clear that
the algorithm provides a “good” approximation if and only if the difference D = d,, 45 — dpnin is “small”
(more precisely, we require this value not to be greater than €(n)). However, this condition is not
generally satisfied and consequently a further iterative procedure must be performed. This procedure
consider a polynomially bounded sequence of Tables Y = {T} : k = 1,...,¢(n)}, each of them having
size h(n). For each T}, it computes the parameters dk . and d ., and checks whether the following
condition is true

“there is at least one k for which D¥ = dk __—df. <e(n)” (1).

max min

If this Condition is verified for some k then the procedure terminates and returns the value (d%, . +

d® .)/2 which is a “good” approximation of Pr(C = 1). If Condition (1) is false then the procedure
performs a compression phase on Y whose goal is to reduce the values D*’s. Indeed, when Condition
(1) is false, the non-negligible values D*’s provide a key-information about the “behavior” of C' on
Y that the procedure uses to codify Y (using a convenient binary coding system) into a new binary
sequence having a “large” expected number of 0’s. The procedure can then efficiently compress this
new binary sequence in polynomial time. The obtained string will be the new sequence of Tables on
which the procedure will re-check Condition (1). The algorithm applies the compression phase until
either Condition (1) is satisfied or the total length of the compressed sequence of Tables is smaller
than h(n). In the latter case, a “failure” answer will be returned.

A suitable construction of the input Tables, based on the HSG, will guarantee the efficiency
(i.e. a polynomial bound on the maximum number of compression phases of the algorithin) and the
correctness (i.e. the fact that the values D*’s actually decreases and thus the procedure will never
return the “failure” answer) of the algorithm.

From the above discussion, we observe that the existence of a quick HSG’s is crucial for three
aspects of the approximation algorithm: i) to compute the parameters dp, i, and dy,q;) to guarantee
the efficiency of the algorithm; iii) to guarantee the correctness of the algorithm. While the first two
aspects are based on some combinatorial properties of HSG’s, the third aspect is instead based on
an interesting connection between the existence of quick HSG’s and the existence of “hard” boolean
functions in EXP: given any quick HSG H : k(n) = O(logn) — n, it is possible to construct a boolean
function F = {F, : {0,1}" — {0,1},n > 0} which belongs to EXP and which has, for almost all n,
exponential circuit size complexity. Notice that this concept of “hard” boolean function is weaker than
that introduced and adopted in [8]: informally speaking, a boolean function has exponential hardness,
according to [8], if, besides having exponential circuit size complexity, it cannot be approzimated by
circuits of subexponential size?. The “hard” function F is used by the algorithm to construct the
input boolean sequence of Tables Y. The correctness of the algorithm is then a consequence of the
fact that if Y could be “reduced” (i.e. compressed) to a boolean string having length smaller than
h(n) then F' would have subexponential circuit size complexity.

2.2 Preliminaries

The length of a string 2 € {0,1}" is denoted as /(z). Given any boolean circuit C' : {0,1}" — {0,1},
we denote its size as L(C') (note that any 2-input boolean function is here considered as one gate).

2for “approximating a boolean function” we mean to agree on a large fraction of its inputs of size n, for almost every
n - a formal definition can be found in [8]

The same notation is used for the circuit size complexity of any finite boolean function.

Definition 2.1 Let €(n) be a polynomial-time computable function such that, for any n > 1, 0 <
€(n) < 1. Then the operator

H={H, : {0,1Y*" = {0,1}",n > 0}

is a quick €(n)-Hitting Set Generator (in short, e(n)-HSG) if H is computable in polynomial time in n
(note that, if k(n) = O(logn) then H is computable in exponential time with respect to the length of ils
input), and for any boolean circuit C' : {0,1}" — {0,1}, such that L(C') < n and Pr(C = 1) > €(n),
there exists (at least one) @ € {0,1}*") such that C(H,(@)) = 1.

In which follows, we consider only quick HSG’s, and thus we will omit the term quick. The following
properties of HSG’s will be strongly used throughout the paper.

Lemma 2.1 1) If H : k(n) — n is an €1(n)-HSG and, for any n > 0 the function e3(n)) is such that
€1(n) < €x(n), then H : k(n) — n is also an e3(n)-HSG. 2) If for some constant €, 0 < € < 1, there
exists an e-HSG H : k(n) — n then, for any positive polynomial p(n), we can construct (using H) a
p(n)"'-HSG H' : (k(n) + O(logn)) — n, in polynomial time in n.

Proof. 1) Immediate consequence of the definition of e-HSG’s.

2) Let H : k(n) — n be an e-HSG, and p(n) be a positive polynomial. Define r(n) = np(n). We can
construct a p(n) ' -HSG H' : k'(n) — n where k'(n) = k(2nr(n)) + [logr(n)] as follows. For any i > 0
and for any t > [logi] we denote as biny(i) the standard binary representation of i of length ¢ (note
that we can always obtain a string of length exactly ¢ by adding some dummy 0’s on the left). Then,
for any positive integers M, n, N such that 1 < N < N +n < M, we consider the function

HN,n(mly .. '7:EM) = (ajNy .. '7$N+n—1)-

For any a € {0, 1Y*@ () and for any i € {0, ..., 2°8" (M)} we define the following operator

H'(@,bin10g1 (2] (1)) = Wionn(Happor () (@)).
We now show that H' is a p(n)”'-HSG. Let C' : {0,1}" — {0,1} be a circuit with L(C) < n, and
such that Pr(C = 1) > p(n)~"'. Then we construct the following circuit
C'(zq,.. S Thapr(n)) = C(@1500 0 20) V C(@pg1, ooy Tngn) VooV C(@ ()= 1)ng1s - - > Tr(n)n)-
By definition of C' we have
Pr(C'=1)=1-(1-Pr(C=1)™ >

>1—(1—pn) YW >1—¢.
Since the term 1 — e™" tends to 1 (for n — oo, without loss of generality, we can assume that
Pr(C'=1)>e
Observe also that

L(C") < n-r(n) +r(n) < 2n-r(n).

It follows that an input @ € {0, 1}¥" (") exists such that
C'(Happmy(a)) = 1.

Notice that C' is here considered as a 2n-r(n)-input circuit whose last n-r(n) variables are “dummy”.
Clearly, the probability Pr(C’ = 1) is unchanged.

By definition of H' and C’, we have that

" r(n)—1 =
C/(HQnr(n)(a)) = vi:O C(Hzn,n(H2nr(n)(a)) .
Then, by definition of II, we obtain

- r(n)-1 o7 .
CI(H2n7‘(n)(a)) = \/2-:0 C(H;z(aa bln[log'r(n)] (7’)) =1.

Thus an i € {0,...,2°8(")} exists such that

C(H7/’L(&7 b;nflogr(nﬂ(l)) =1.

2.3 A first approximation of probability

As described in Section 2.1, our goal is to derive a deterministic, polynomial-time algorithm that, given
a circuit C': {0,1}" — {0, 1} of polynomial size, uses an e HSG H : k(n) — n (with k(n) = O(logn))
and a polynomially bounded Table of inputs for C' to approximate Pr(C = 1).

In which follows we show how to derive a first estimation of Pr(C = 1) using a boolean sequence.
Let T = ajaz...qyr) be a boolean sequence. Observe that the results shown in this section hold
for any sequence T: the correct choice of T as the collection of input Tables for the approximation

algorithm will be shown in Section 2.5.
We can define the string T'(n,7) € {0,1}" (i.e. the input for C' : {0,1}" — {0,1}) as follows

N) GG)1 OG-ty 2eO(imt)ngn O 1 n < IU(T)

where i = 1,2,...,m= [I(T)/n]. T represents our input Table for C.
Given @ € {0,1}", consider the function

1
Med(C,T,a) = — (T(n,z) .
(C,T,6) = 1T,)0)
and its “complexity” I(C,m) = L(C)-m+ sy - m where gy, is a positive constant which will be

defined in the proof of Lemma 2.2. Let H : k(n) — n be an e-HSG, we denote the prefix of length j
of H, as H, jie H,;=(H) HZ .., H?). We can now define the following two parameters

dmm(cv T7 H) = ,ye{o,;r}lg(Ill(C,M)) Med(cv T7 Hl(C,m),n(’Y)) s
dmax(cy T7 H) = max AMGd(C, T7 Hl(C’,m),n(’Y))'

,ye{o,l}k(l(fym))

The importance of these two parameters is given by the following inequalities.

Lemma 2.2 If H : k(n) — n is an e-HSG then
dpin(C,T,H)— ¢ < Pr(C(ey,22,..,2n) =1) < dipe(C, T, H)+€ .
Proof. Consider the boolean function

1 if Med(C,T,0) < dpin(C,T,H)
g(a@) = or Med(C,T,d) > dpae(C,T,H) , d€{0,1}".

0 otherwise

For symmetrical functions we mean boolean functions that depend only on the number of 1’s in
their input, ie., f(z1,...,2,) = f(3_ ;). The function g can be represented as a composition of
symmetrical functions. Indeed, consider the symmetrical function

1 af Yuyi<k
hkhb(@/h“'aym): or Eyi>k2
0 otherwise

Then, it is easy to show that

9(@) = hi, 1, (C(T(n, 1) B @),...,C(T(n,m) & d))

where

ky =m - dpi(C,T,H) and ky = m - dpq..(C,T, H).

Since symmetrical functions have linear circuit complexity [10], we can consider a constant ¢gy,,
such that L(fsym((z1,...,2,)) < €symn, for any symmetrical function f,,,. Notice that from [10],
it is easy to derive a possible value for ¢y, (we have computed this value and it is approximately
Csym = 30): this is also the value that we can use in the definition of I(C', m). Thus the complexity of
g has the following upper bound

L(g) = O(csym - m + m - L(C)) = O(I(C, m)).

If Pr(g(@)=1) > e then by definition of HSG’s, there exists v € {0,1}*!(©™) sych that
9(Hycmyn(7)) = 1. But this is a contradiction with the definitions of dyin, dpmqe and function
g. Consequently, we have Pr(g(@) = 1) < e. It is then easy to prove that the expected value of
Med(C,T,a) (here we consider Med as a random function of @) satisfies the following inequalities

E(Med(C,T,0)) < (1 =€) dpae(C,T,G)+ €1 < dpooe(C,T,G) + €,

E(Med(C,T,a)) > (1 =€) - dpin(C,T,G)+€-0 > dpin(C,T,G)— €.
It follows that
dpin(C,T,H)—€¢ < E(Med(C,T,d)) < dpae(C,T,H)+ €.

Moreover, by definition of Med(C,T, &) we can prove that

E(Med(C,T, &) = E (% zin:C(T(n,i) & &)) - %iE(C(T(n,i) o @) =

- %iPr(C(o’Z) 1) =Pr(C(a@)=1).

Consequently, we have that

Qi (C, T, H) — ¢ < Pr(C(@) = 1) < dman(C,T, H) + .

2.4 Compression

The quality of the approximation of Pr(C = 1) given by Lemma 2.2 depends on the value D =
pae(C, T, H) — dppin(C, T, H). However, D can be arbitrarily large and thus a further procedure
must be applied in order to reduce this value when it is not sufficiently small. The procedure is based
on a suitable compression of a set of input Tables. In this section, we first describe the coding technique
which permits to efficiently compress a single input Table. Then we generalize this technique in order
to compress a polynomial sequence of input Tables.

2.4.1 Coding and decoding the Table

For the sake of simplicity we will use the following definitions

dy = dpin(C,T, H) = Med(C,T,é1) and dy = dpap(C, T, H) = Med(C,T, &)

where a1 = Hycpm)n(71) and @2 = Hyc m)n(y2) for some 71,72 € {0, l}k(n) .
The j-th component of vector @ will be denoted as [@)’. Since we are considering the case in which
D > 0, without loss of generality, we can assume that for index s we have [@1]® # [@2]®. Our next
goal consists to show that we can codify the input Table as a boolean sequence in which the s-th
component of each input string for C' is always 0. Consider the operator T# : {1,...,m} — {0,1}"
defined as follows

T#(i) = T(n,i) @ ([T(n,1)]° - (61 B G2))

where the operation “@” between two boolean vectors is performed component by component and
the operation “-” is the standard scalar product. The s-th component of T#(i) satisfies the following

equations:

[T#(0))° = [T(n,)] & ([T(n,))° - (161)° @ [@2]*)) = [T(n,)] & [T(n,)] 1 = 0. (1)

Observe also that the set {T# (i) ® a@y, T#(i) @ da} is equal to the set {T(n,i)®da; , T(n,i)®ds}.
Let

-~

N(o,é1,62) = I{i ¢ [T(n,i))" =0, C(T(n,)& @) = dy and C(T(n, i) &) = ¢} . (2)

We can now introduce the function which approximates the s-th component of T'(n,4). Consider
the function ¢) defined as follows:

z if T#y

1 if 2=y=0 and N(1,0,0)> N(0,0,0)
ON(o61,60)(T,Y) = 0 if 2=y=0 and N(1,0,0)< N(0,0,0)

1 if 2=y=1 and N(1,1,1)> N(0,1,1)

0 if z2=y=1 and N(1,1,1)> N(0,1,1)

In which follows we will consider the function N as a fixed parameter, and thus we will omit the
index N(k,*,%)in the definition of). Then the approximation function is

Z(i) = QIC(T#*())® d,),C(T*() & dy)), i=1,...,m.

Our next goal is to estimate the number of errors generated by Z(i). Let ND(o,¢1,¢2) be the
number of indexes ¢ such that the following conditions are satisfied:

i) [T(n,?)]*® Z(¢) = 1 (i.e. there is an error);
i) [T(n,i)]° = o
iii) C(T(n,i)® dy) = ¢n;
iv) C(T(n,i) @ dz) = ¢a.
The following Lemma gives an upper bound on the number of approximation errors.

Lemma 2.3 1 g p
Z ND(o,¢1,03) <m <§ - %) .

(0,61,¢2)€{0,1}
Proof. Let N (o, ¢1,¢2) be the function in Eq. 2. Observe first that
Pr(C(T+a)=1)=dym= ZN(&;, 1,y) and Pr(C(T+ az)=1)=dym = EN(x,y, 1)

where 2 and y vary on the set {0,1}. Consequently, we can write the difference between the above
probabilities as

dym —dym = N(0,0,1)+ N(1,0,1)— N(0,1,0)— N(1,1,0).
- If ¢1 = ¢9 we have

(N(0,¢1,02) + N(1,01,¢2)) . (3)

N | —

ND(1,61,¢2) + ND(0,¢1,02) = N(=Q(¢1,02),01,¢2) <
-If ¢1 = ¢ and o = 0 then we have T#(i) = T(n,i); consequently

Z(i) = Q(C(T(n,1)® d1), C(T(n,4) & da)) = Q(¢1,62) = ¢n,

and thus we obtain ND(0,0,1) = 0, and ND(0,1,0)= N(0,1,0).
-If ¢y = ~¢y and 0 = 1 then T#(i) = T(n,i) ® ay ® ay, and consequently

Z2(1) = QC(T(n, i) ® @), C(T(n, 1) a1)) = Qda,¢1) = ¢2 -

From the above equation, we have: ND(1,0,1)=0 and ND(1,1,0)= N(1,1,0). By adding each
component, we obtain:

> ND(o,¢,m¢) = ND(0,0,1)+ ND(0,1,0)+ ND(1,0,1)+ ND(1,1,0) =
(0,0)€{0,1}?

N(0,1,0)+ N(1,1,0)+ N(0,0,1)+ N(1,0,1) dy —dy
—m =

= N(0,1,0)+ N(1,1,0) = . =

1 dy—d
=5 X Nodmd)-mTo (4)
(0,0)€{0,1}°

From Eq.s 3 and 4, we have that

> ND(o,¢1,02)= Y. ND(o,0,6)+ Y. ND(o,¢,7¢) <

(o:61,62)€{0.1)° (0.4)€{0,1)° (0.6)€{0,1 2
1 1 dy — d
< Z (§(AT(07¢7¢)+*N(17¢7¢))+ 5 *N(Ua¢7ﬁ¢)_m 2 5 L
$e{0,1} (0,¢)€{0,1)
1 ; dy — dy 1 dy—dy
= 5 Z A(U,¢1,¢2)—m 2 = m<§— 5) .

(0,61,62)€{0,1}°
O

In which follows, we show how to represent (i.e. codify) the input Table 7" using the approximation
function Z(¢). From Lemma 2.3, we will prove that this representation will have a “large” number of
0’s in its last component when D = dy — dy is not “small”. The function U(i) = [T(n,?)]* & Z(¢),
(i =1,2,...,m) singles out the positions in the input table in which there is an error. We thus have
that

([T(n, D] = U(i) & Z(0) = U(i) & Q(C(T#(i) & a1), C(TH(i) & a2)).

The new representation of the input Table is then the following string:

(s, 01,00, Q, [TH]', o, [TH]1 [TH#)7H, L [T#)7, 1) (5)
where the term [T#]’ denotes the boolean sequence consisting of all j-th components of the operator
[T#].

From the string in Eq. 5, we can efficiently (i.e. in polynomial time) reconstruct the s-th bit by
computing the following sequence of values.

Procedure 1
Lo T#(i) = ([T#()]', ..., [T#OP10,[T#OPH, . [T#(0)]");
2. [T(n,) = U(i) & Q(C(T#(i) & 1), C(T#(i) & @2));
3. T(n,i) = T#() @ ([T(n,9)]*- (a1 @ d2)).
Observe that if we adopt the representation of T' shown in Eq. 5, the string size does not decrease.
However, the crucial fact for the compression phase is that, if D = dy — dy is not small, U contains

a large number of 0’s. This is an immediate consequences of Lemma 2.3: indeed, if we denote the
number of 1’s in a boolean string U as |U|, Lemma 2.3 implies that:

ol < m(5- 220 (6)

2.4.2 Compression of strings with a large number of 0’s

Given any boolean string V' = V*w, let [(V') = ¢ be its length, |V| = k be the number of 1’s, and w
be its last bit. We also define the following “counting” function:

0 if 1=k
NUM(V*) if w=0

NUM(V) = L
(f)+NUM(V*) if w=1

The “compressed” version of V is then the string ({(V),|V|, NUM(V)). Notice that we can
efficiently reconstruct V from this string. The simple procedure is the following.

Procedure 2
1. Consider V = V*w, if NUM(V) =0, then V = 1Z(V);

(y-1
N4
V¥ =|V|-1,and [(V*)=1(V) - 1;

/) —
2. If < NUM(V), then w = 1 and we set: NUM(V*) = NUM(V) — ()=t),

V]

) —
3. If ()=t) > NUM(V), then w = 0 and we set: NUM(V*) = NUM(V), |V*| = |V], and
(w*)=1v)-1.

Clearly, the procedure will halt when I(V*) = 0. It is not hard to see that the number of steps of
the above procedure is a linear function in the length of the input string V. This binary representation
is very useful when the input string contains a large number of 0’s. We will show this fact in the case
of the input Table T considered in the previous section. We modify the binary representation of T’
defined in Eq. 5 in the following way:

(5,00, a9,Q, [T#]}, .. [T#]*~L [T#]*HL, .. [T#]", 1(U),|U|, NUM(U)) , (7)

10

where s, a1, and ay have been defined at the beginning of Section 2.4.1; the function) is represented
as a string of length 4. In order to efficiently code and decode the above sequence, we make use of the
following coding operators

Mayaz . ..a,) = 00ay(—ay)az(—ay). .. .a,(—a,)11,

and A(V) = MI(V))V, where V € {0,1}" (note that for A(n), with n > 0, we mean the output of A on
the standard binary representation of n). We also assume that aq # 0 if n # 0. Given an input Table
T, we construct the functions T#, @ and U (more precisely the output of these functions). Then,
using the representation (7), we define

comp(T) = A((T))A(s)A(ar)A(a) A(QA(TH) ...

CCA(TEFPETDHA(TFEY L A(THFAQU)A(UDA(NU M(U)). (8)

Observe that if we have sequence S = A(S1)52, then we can compute in polynomial time (in the
length of) its "components” 57 and S3. Indeed, by definition we have

A(S1)Sy = A(I(51))5155 .

If S =s189...5;; then we find the first index k such that

It is easy to verify that
8189 ...8, = /\(Z(Sl)))

since for any non-empty prefix of A(I(57)) the equation 9 is not true. Then, from A(I(S)) we derive
[(S51) and, consequently, we can correctly split the remaining part of S (i.e. Sg41...5¢) into 57 and Ss.

We can repeatedly apply the above decoding procedure to comp(T) and find its components.
Observe that the number of components is at most the length of sequence and we can thus reconstruct
in polynomial time all the components of the string in Eq. 7.

We then apply the linear-time Procedure 2 on every every input of the form (I(U), |U|, NUM(U))
in order to obtain U.

Finally, we apply Procedure 1 to reconstruct T from the boolean sequence in Eq. 5.

It follows that we can apply the coding and decoding operators in order to efficiently reconstruct the
binary representation in (5) and thus the table 7 (we denote the global decoding operator as comp™").
this fact will be used in proving the correctness of the approximation algorithm (see Lemma 2.6. Using
Lemma 2.3, it is possible to give the degree of compression achieved by the operator comp.

Lemma 2.4 There exists a positive constant ¢ such that

[(comp(T)) < O(n+1logl(T))+ U(T) (1 - clw) :

n

Proof. By definition, we can easily prove the following bounds:

11

o /(A
OZA

o /(A

(A(
(A(
(A(
o IA(T#])) < ((T)/n)+1fori=1,...,s=1,5+1,....n,
o [(AU(D))) = O(log(T)) ,
o I(A(IU])) = O(logl(T)).
Concerning the function NUM, we have that

HANUM(U))) = O(log(T)) + log(NUM(U)+1) + 1

Consequently we have

r
l(comp(T)) < O(n+logl(T))+ (n — 1)% +log(1+ NUM(U)) .
Furthermore, from the definition of U and Lemma 2.3, we have respectively

(U) < ((T)/n)+1, and U] < KU) (%-@) .

It follows that
NUM(U)

IN
N
S
—
J
S—
~—
AN
[\?\4
=S
[\-]
°
=
[V)
=
e
=S

and, finally,

l(comp(T)) = O(n+1logl(T))+I(T) (1 - CIM) :

Notice that the degree of compression is an increasing function of D = dy — d;.

2.4.3 Compressing more input Tables

As previously mentioned, our goal is to reduce the value D = dy — di. The key idea is to consider a
sufficiently large sequence of input Tables and apply to them the compression operator shown in the
previous section. Let Y be the boolean sequence which represents the input Tables (Y corresponds to
the concatenation of the input Tables). We consider the partition Y = Y1Y5..Y, such that I(Y;) = h(n)
(fori=1,..,r—1)and I(Y;) < h(n), where h(n) is a suitable polynomial which will be defined later.
We will repeatedly transform Y using two different operators; but the obtained sequence, at each step,
can always be represented as a string W = W W,...W, () where

12

Wi = AN(W)AGLWDA(G(W)YWS, i=1...1(W);

here N; and [; are respectively the starting point and the length of the part of Y for which W; is
the coding version, and ¢; denotes the type of transformation which has generated W;. This coding
structure will be strongly used to recover the bit in a generic position in Y (see the proof of Lemma
2.6). We will consider a suitable starting sequence and two different transformations of sequences.
Thus ¢; will assume three different values.

1) We start the transformation process with the following sequence W' = W} .. 'WTl(Wl)zr where
WE = A((i- Dh(e)+ DAUYAGG = OAYD . i=12...r. (10)
2) A compression action V.= COM P(W), where the output sequence V is obtained as follows:
V=Vi...Viyy, Vi = MN(W)ALW))A(g; = D)A(comp(Wy)), i=1,...,7(W).

Notice that in this case we have r(V) = r(W).

3) A concatenation action V.= CONCAT(W), where V. = ViV...V,(y) is obtained as follows:

2

Vi = AMNoima(W))A(li 1 (W) + l2s(W))A(g: = 2)A(Waim1)A(Wa,), 1=1,...,

Notice that in this case r(V) < (r(W)/2) + 1, and if r(W) is not even then V, vy = Wy (v).

The algorithm works as follows (an overall scheme of the algorithm is shown in Figure 1). Consider
the e-HSG H given in input and assume that W' has been already generated from the input Tables.
Then the algorithm checks the following condition:

Vi ¢ dypare(C, W H) = dppin(C, W H) < €. (11)

If Condition (11) is verified for some index i then the algorithm returns the value

dmaz‘(cy Wit7 H) —I_ d’mln(C7 W;? H)
5 .

which is a good approximation of Pr(C = 1) (see Lemma 2.2). If Condition (11) is false, the algorithm
checks Condition

r(W') < h(n) . (12)
If Condition (12) is true the algorithm returns a “failure” answer (note that in this case the total
length of W ie. {(W?), is bounded by O(h?*(n))). When Condition (12) is false we apply the above

described transformations to generate the coding sequence Wit1l. The type of the transformation to
be applied is defined according to the following rule.

If 3i : {(W}) > h(n), then Witl = COM P(W?), otherwise Witl = CONCAT(W?).

13

2.5 Complexity and correctness of the algorithm

The following lemma is a (nontrivial) consequence of Lemma 2.4 and the transformation procedure
described in the previous section.

Lemma 2.5 Let H : k(n) — n be an ¢(n)-HSG where k(n) = O(logn) and ¢(n)™! is a positive poly-
nomial function. Choose h(n) (i.e. the function of the algorithm in Condition (12)) as a polynomial
function such that h(n) > n®e(n)=2. Furthermore, let hy(n) be an arbitrary positive polynomial func-
tion. Then, for any n and for any circuit C' : {0,1}" — {0,1} such that L(C) < h(n), and for any
boolean sequence Y such that [(Y') < hy(n), every transformation step can be performed in polynomial
time in n, and the mazimum number t(n) of transformations performed by the algorithm satisfies the
following property:

t(n)=0 <#n10g n) .

Proof. We have already observed that the compression and the concatenation actions can be performed
in polynomial time. Moreover, since L(C') < h(n) and L(Y) < hy(n), then from Lemma 2.2 we can
compute the values dy and dy in polynomial time.

We now show a polynomial upper bound on the number of transformations. Consider the following
function

M) = (rwh)’ (hg”)

where ¢ is an arbitrary step of algorithm. Two possible cases may arise: 1) Wit = COM P(W?) or
2) Witl = CONCAT(W?Y).

max Z(W/'Z-t)) ,
1<i<r(W?)

1) In this case we have that

r(WH) = (W), (13)
and for any ¢ = 1,2,...,7(W") we have

W = AN(WO)AL))AL)A(comp(W)) .

It follows that
(W) = O(log hi(n)) + O(1) + I(comp(W})) .

From Lemma 2.4, we obtain

(W) = O(log n) + U(comp(WE)) <

< O(log n) + O(n +log Z(Wlt)) + I(W/Zt) (1 _ Cl@) < O(n) + Z(Wzt) (1 — 5(2)2) .

Since a COM P action has been performed, the following condition hold:

(W) > h(n).
lsgg%m(i) > h(n)

14

Consequently, for some positive constant ¢y, we have

hn) s)Z(W;“)g (1—@#) (MJr max l(Wf))- (14)

2 1<i<r(Wttt 2 1<i<r(W?)

Eq. (13) and Eq. (14) imply

M(t+1) < M(1) (1—@ﬂ) .

n

2) When Wit = CONCAT(W?), we have that

sty = (1) (15)

. w
Moreover, for i = 1,..., {ﬁQ—lJ, we have

Wiﬁ-l — A(J\TQZ'_l(Wt))A(ZQi—l(Wt) + 122(Wt))A(2)A(W52_1)A(W52) s

and
(W) < Oflogn) + O(1) +1(Waiq) + U(W3) -
Consequently
(Wit < ol 2 (W}
L (W) < O(logn) + AL (Wi)
" h)
n n
(Wit < 1 2 (wh <
5 T LA (W) < =5~ + O(logn) + S (W) <
h(n) t
< — ' /i)
< (), Kg%t)zmz)) (16)
From Eq.s (15) and (16) it is easy to prove that (for sufficiently large n)
32
M(41) < M{)(1 -
n
In both cases we thus have
e(n)?
M(t+1) < M()[1-c . (17)
n

Let to be the last step of the algorithm, then M(ty — 1) > h(n)* and observe also that for Step
1 we have

M(1) < <i;;((:))_|_1)2<gh(n)+0(1)> .

From Eq. (17), we finally have { < O (5(2)2 log n)

15

|

The following two lemmas are used to prove the correctness of the algorithm, that is, by appropri-
ately choosing the input sequence of Tables Y, the output will never be the “failure” answer. To this
aim, beside being a simple boolean string, the sequence Y will also be considered as a finite boolean
function Y : {0,1}°8/0)1 . 0,1}, We can thus consider its circuit complexity L(Y (7)).

Lemma 2.6 With the same hypothesis and definitions of Lemma 2.5, if the algorithm returns a “fail-
ure” answer then there exists a polynomial p(n) such that

vy < (%) -

Proof. If the algorithm returns the “failure” answer then, from Lemma 2.5, for some step {y we have
r(Wh) < h(n), and o = O((n/e?)logn). Suppose we want to compute the value Y (). We first find
the sequence W/ which contains the information about Y (j); since sequence W has prefixes of the
form A(N)A(l) we need only to check N < 7 < N 41— 1. This step is polynomial in h(n). Suppose
we are in step ¢ and let w be the coding sequence from W* such that N(w) < j < N(w)+{(w)—1.
We have three possible cases

1) w = A(N(w))A(l(w))A0)A(v),
2) w = A(N(w))A(l(w))A(1)A(comp(v)),
3) w = A(N(w))A(l(w))A(2)A(v1)A(v2).

1) The sequence w belongs to W' (i.e. the starting configuration) and by definition the value Y ()
is the (j — N(w))-th bit of sequence v.

2) We consider the sequence w* from Wi=!. We can construct it by applying

w* = comp~(comp(v)) .

3) We check whether j < N(vy) + I(vy) — 1. If this is true we choose w* = vy, otherwise we choose
w* = vy.

In all cases, the time complexity is polynomial in h(n). Furthermore, by Lemma 2.5, the number
to of total steps (i.e. transformations) is bounded by

n

Oy

logn) .

Consequently we can construct Y (j) in polynomial time. This fact easily implies that the circuit

complexity L(Y(4)) is also polynomial in %

|

Lemma 2.7 If there exists an $-HSG H : k(n) — n with k(n) = O(logn), then we can construct (in
polynomial time in n) a function F = {F, : {0,1}" — {0,1},r > 0}, which belongs to EX P, and for

almost all r > 0 L(F,) > 2, for some positive constant c.

16

Proof. Without loss of generality, we can assume that k(n) < % log n for some positive constant ¢ and
n > 2. consider n = [2°] and consider the HSG H at n:

Hn(yl, SRS yk(n)) = (H;n K Hg)(yla s '7yk(n))7
where Hfz(yl,...,yk(n)) is a boolean function. Define H,, = (H},...,H!) with r < n. For any
a € {0,1}", consider

0 otherwise

F(@) = { VB e {0,130 : a# H,,(5)

Since H is computable in polynomial time in n, F is computable in EXP-time with respect to the
length of its input. Furthermore we have

—_

Pr(F,=1) > 277(27 =280y > 977(2r —97/%) > 1 -977/2 > |

[\

If L(F,) < n (for r > 2) then, by definition of HSG, there exists b e {0,1}*" such that
F,(H,,(b)) = 1; but this is a contradiction with the definition of F;. Consequently

L(F,) >n = [27].

We can now prove the final Theorem.

Theorem 2.1 Let g(n) be any positive polynomial function. If for some constant 0 < § < 1 there
exists a 6-HSG H : k(n) — n with k(n) = O(logn), then there exists a deterministic polynomial-time
algorithm A which, for any n and for any circuit C(z1,x2,...,2,) of size at most ¢(n), computes a

value A(C') such that
|Pr(C(z1,22,....2,) = 1) — A(C)] < — .

Proof. Let €(n) = q(n)~'. By Lemma 2.1 there exists an e(n)-HSG H : k(n) — n k(n) = O(logn)
(still denoted as H). Let C' : {0,1}" — {0,1} be some circuit of size at most ¢(n). We apply the
approximation algorithm to C'. In order to avoid the “failure” answer, we have to appropriately choose
the input sequence Y which represents the input Tables the algorithm will work on.

Let A(n) = n®¢(n)~? 4+ ¢(n). From Lemma 2.6, if the algorithm returns the “failure” answer then
the circuit complexity of the boolean sequence Y (here Y is considered as a finite boolean function,
see the previous section) satisfies the following inequality L(Y) < p(h(n)), where p is some fixed
polynomial.

However, from Lemma 2.7 we can construct a boolean function F' = {F, : {0,1}" — {0,1},» > 0},
which belongs to EX P, and for almost all » > 0 L(F,) > 2", for some positive constant c. It follows
that, for any n > 0, we can choose (in polynomial-time in n) an integer k such that

2°6=1 < p(h(n)) < 2°F.

Since k = O(logn) we can thus construct the sequence of all values of function Fj in the standard
order (i.e. F(0,...,0) F(0,...,1)...F(1,...,1)) in polynomial-time in n. We use this sequence as the

17

sequence of input Tables Y in the approximation algorithm. Then, from Lemma 2.6, the algorithm
cannot generate the “failure” answer since L(Y) > 2% > p(h(n)). It follows that the algorithm
halts only when Condition (11) is satisfied and thus returns the value A(C') = (dy 4 d3)/2 where
dy < dy < dy + €(n). Thus from Lemma 2.2 we have that

AC) = Pr(C= 1) < Se(n) < g(w)" .

From Lemma 2.5 and the above discussion, it is easy to see that the approximation algorithm runs
in polynomial time in n.
a

begin
input: a positive polynomial ¢(n), n > 0, and a boolean circuit C': {0,1}" — {0, 1} such that L(C) < g(n).
output: a value A(C) such that
1
Pr(C(z1,20,...,2,) = 1) — AC)] < — .
|Pr (C(21, 22)=1—A(C)])
Using the €(n)-HSG H : k(n) — n k(n) = O(logn) construct the boolean function
F={F,:{0,1}" — {0,1}}, (r > 0) defined in Lemma 2.7;
Choose k such that 2°¥=1 < p(h(n)) < 2°*.

Choose the boolean sequence Y (i.e. the Input Tables) as the concatenation of all the output values of Fj in
the standard order;

Consider the partition Y = 1Y ...V, such that I[(Y;) = h(n) (fori=1,...,7 — 1) and I(Y;) < h(n), where
h(n) = n®¢(n)=2 + q(n);
Construct the starting configuration W' = W} .. 'er(Wl):r as described in Eq. (10);
flag := false; t := 1;
Repeat
for any i = 1,...,r do compute dpa(C, W}, H) and dpin(C, W}, H);
If 3i @ dimae(C,WE H) — dimin(C,W}E H) < €(n)
then flag := true and return
dmaz‘(ca Wz’t: H) + dmm(C: VV;: H) .
2 bl

else
if (W) < h(n)
then flag := true and return the failure answer;
else
if 3¢ such that I(W}) > h(n)
then Witl .= COMP(W?);
else Witl . = CONCAT(W?);

t:=t+1,;
Until flag

end.

Figure 1. The approximation algorithm

18

3 Complexity results

The deterministic, polynomial time algorithm shown in the previous section is able to use a HSG to
solve the problem of approximating the fraction of 1’s in the output of a linear-size boolean circuit.
It is not hard to see that this problem is B P P-hard since, informally speaking, the algorithm can be
slightly modified in order to estimate the acceptance probability of a generic BPP Turing machine on
any input (a proof of this fact is implicitly given in the construction of PSRG’s introduced in [8]).
Thus Theorem 1.1 directly implies the following;:

Corollary 3.1 Let k(n) = O(logn). If there exists a quick HSG H : k(n) — n then BPP = P.

Until now, we have always used the condition k(n) = O(logn) in order to simplify the description
and the analysis of the approximation algorithm. However, it is easy to generalize the above result by
considering the “price” k(n) of the HSG as a parameter:

Corollary 3.2 Let k(n) = Qlogn). If a quick HSG H : k(n) — n exists, then for any time-bound
t(n), we have
BPTIME(t) C DTIM E(20¢¢7"),

where BPTIME(t) is the class of languages accepted by probabilistic Turing Machines running in
time t and with two-sided error.

Sketch of the proof. This fact can be derived by the same algorithmic method used in Section 2. The
only relevant differences are the parts in which the hypothesis k(n) = O(logn) is used. There are
two issues in which this hypothesis is required and thus they must be changed according to the fact
that k(n) now is any computable function belonging Q(logn). The first issue is the time required to
compute the parameters dy;; and dpae which is now bounded by O(27(") p(n)), for some polynomial
p. The second issue is the “hardness” result of Lemma 2.7 that must be modified as follows. If there
exists an eHSG H : {0,1}*(" = p (with k(n) = Q(logn)) then there exists a sequence of boolean
functions Fiy,..., F},... with L(F}) = ©(%), and such that, for any ¢ > 0, it is possible to construct F}
in time O(1(t°™1)). The constant hidden in the O notation is 4.

Acknowledgemnts. We would like to thank Michael Saks, Michael Sipser, and Alexander Razborov
for their patience, helpful pointers, and very interesting discussions.

References

[1] Andreev A. (1995), “The complexity of nondeterministic functions”, Information and Computation, to
appear.

[2] Andreev A., Clementi A., and Rolim J. (1996), “Optimal Bounds on the Approximation of Boolean Func-
tions, with Consequences on the Concept of Hardness”, XIII Annual Symposium on Theoretical Aspects
of Computer Science (STACS’96), LNCS, to appear. Also available via WWW in the electronic journal
ECCC (TR95-041).

[3] Blum M., and Micali S. (1984), “How to generate cryptographically strong sequences of pseudorandom
bits”, STAM J. of Computing, 13(4), 850-864.

[4] Chor B., and O. Goldreich (1989), “On the Power of Two-Point Based Sampling”, J. of Complezity, 5,
96-106.

19

Karp R., Pippenger N., and Sipser M. (1982) “Time-Randomness, Tradeoff”, presented at AMS Conference
on Probabilistic Computational Complezxity.

Linial N., Luby M., Saks M., and Zuckerman D. (1993). “Efficient construction of a small hitting set for
combinatorial rectangles in high dimension”, in Proc. 25th ACM STOC, 258-267.

Nisan N. (1990), Using Hard Problems to Create Pseudorandom Generators, ACM Distinguished Disserta-
tion, MIT Press.

Nisan N., and Wigderson A. (1994), “Hardness vs Randomness”, J. Comput. System Sci. 49, 149-167 (also
presented at the 29th IEEE FOCS, 1988).

Sipser M. (1986), “Expanders, Randomness or Time vs Space”, in Proc. of 1st Conference on Structures

. Complexity Theory, LNCS 223, 325-329.
Wegener, 1. (1987), The complezity of finite boolean functions, Wiley- Teubner Series in Computer Science.
Yao A. (1982), “Theory and applications of trapdoor functions”, in Proc. 23th IEEE FOCS, 80-91.

20

