Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R95- 062 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Tel-Aviv University
The Raymond and Beverly Sackler
Faculty of Exact Sciences
School of Mathematics

On Data Structure Tradeoffs and an Application to Union-Find

Amir M. Ben-Amram*

and

Zvi Galil**

ABSTRACT

Consider a problem involving updates and queries of a data structure. As-
sume that there exists a family of algorithms which exhibit a tradeoff between
query and update time. We demounstrate a general technique of constructing from
such a family a single algorithm with best amortized time. We indicate some ap-
plications of this technique. On the other hand, when a given algorithm achieves
similar amortized performance, we may be able to obtain from it a family of
algorithms that exhibit the underlying tradeoff. We exemplify this by a family
of union-find algorithms trading union time for find time. The algorithms are

obtained in a simple way from the well known path compression algorithm.

* Work supported in part by a Charles Clore fellowship.
* Partially supported by NSF grant COR-93-16209 and CISE Institutional Infrastructure Grant CDA-
90-24735.

1. Introduction

A well known feature of data structure problems is the existence of tradeoffs between the
update and query time. Actually, a common form of solutions to data structure problems
is that of a family of algorithms (A), such that A performs a query in O(k) time, while
requiring O(tx(n)) time per update. Here n is the number of elements inserted or updates
performed, and tx(n) is a function which increases slower as k gets larger. Some examples
appear in a later section. On the other hand, for certain problems we have solutions
which optimize the overall time of processing a sequence of requests; such algorithms
avold investing too much in an update, but when queries recur, the data structure is
gradually conditioned for faster processing of forthcoming ones. A well known example is
the union-find algorithm [12].

In this paper we try to relate the two types of solutions. We show that given a solution
of the first kind (a tradeoff family), we can (under plausible restrictions) derive a solution
of the second kind. As for the other direction, we cannot give a general transformation,
but it seems that in the “typical” case this should be possible. We give such derivation for
the union-find algorithm. For a somewhat broader support for this thesis, we point out
that several lower bounds on the performance of on-line algorithms suggest a tradeoff in
the possible solutions [6,7,3].

2. Terms of the Game

A data structure problem involves processing two types of requests: update, which adds
information to the structure, and query, which retrieves information. We assume that
the data structure starts its life in a specified initial state; its life further spans n update
operations and m queries. In an on-line solution, updates and queries are intermixed; the
sequence in which they appear is not known in advance. If the total time spent in query
operations throughout a sequence 1s mt we say that the amortized query time for this
sequence is t. We say that an algorithm has an amortized query time of ¢(rm,n) if this is
the worst-case time for all sequences of n updates and m queries. Amortized update time
is similarly defined with respect to update operations. Amortized operation time refers
to both types of operations, thus it will be ¢(m,n) if the time spent in processing all the
m + n operations is bounded by (m + n)t(m,n).

A preprocessing algorithm is one that receives a list of all the updates, and after
processing them starts receiving queries on line. Our analysis applies to preprocessing
algorithms as a special case of on-line ones, however following the general treatment we
indicate how the preprocessing case can be handled more directly.

We are interested in families of algorithms (A) such that the query time for Ay is
O(k) and the update time is O(tx(n)) for a suitable sequence of functions ;. Such a family
will be called a tradeoff family. A sequence of functions t; : N — IN is suztable if it has
the following properties (for all k,n > 1):

(1) tr(1) =1 and tg(n) <tp(n+1) < tp(n)+ 1.
(2) () > 1 — tipa(n) < at(n).
(3) tk(2n) < th(n).

Conditions (1) and (3) indicate that t;(n) < n (note this is the time for a single update)
and that t; does not grow in sudden leaps, but with a certain regularity. Condition (2)
indicates that tx(n) decreases fast as k increases.

By a functional hierarchy we mean a matrix T(k,n) such that T(k,-) (the row func-
tion) increases faster as k grows. A suitable sequence of functions might be obtained by
inverting the row functions of such a hierarchy; formally, we define

(4) T(k,j) =min{n | ti(n)>j}.
Claim 1. For every suitable family (t;), the function T defined by (4) satisfies
tr(n) = min{j | T(k,j) >n}.
Tt also satisfies (for all k > 1):
T(k+1,1) > 2T(k, 1).

Proof. We define To see that it satisfies the first part of the claim, let
o = min (7 | T(k,§) > n).
Then T(k, jo) > n. By definition of T this implies
tr(n) < Jjo.
The definition of jy also implies that T(k,jo — 1) < n; hence by (4)
ti(n) >jo—1 = tr(n) > jo.
Combining the two inequalities we get t;(n) = jo, proving the first part of the claim.

For the second part, let
ng =T(k,1)=min{n |tx(n) > 1}.

Thus
— t5(2ng —2) <2 by (3)
— t5(2ng — 1) <3 by (1)

— tk_|_1(2’n0 — 1) =1 by 2)
= T(k+1,1) > 2ng by (4). |

We next define the “diagonal” function
t(m,n) =min{k | T(k,[m/n]) >n}

where [m/n] def max(1, | 7]).

We next display the connection between this function and the running time of al-
gorithms. Consider a tradeoff family (Ay). The running time of Aj on a sequence of n
updates and m queries is (ignoring constant factors) nty(n)+ mk. The best total running

time will be obtained by choosing k as to minimize this expression.

2

Claim 2. Let fy(m,n) = ntr(n)+mk. Then fym ny(m,n) = O(n+mt(m,n)). Moreover,
for all k, fr(m,n) = Q(fim,n)(m,n)).
The claim shows that the value k = t(m, n) approximately minimizes fi(n,m).

Proof. Because the proof is quite technical, we only give the main ideas. On one hand,
note that for k > t(m,n),

fr(m,n) > ntr(n) + mt(m,n) > n+mt(m,n).

On the other hand, for k < t(m,n), let £ = t(m,n) — k; then tx(n) > 2Ett(m7n)(n) because
of (2). Thus decreasing k makes the nty(n) term of gx(m,n) grow exponentially while the
term mk decreases linearly. Therefore fi(m,n) becomes larger than fy(y, »)(m,n). O

It is important for the sequel to note the function #(n,n), which by definition equals

min{k | T(k,1) > n}. Thus
k>tn,n) — tp(n)=1.

This function grows at most by one when n 1s increased by one; we assume that the
maintenance of ¢(n,n) under the operation of increasing n by one (starting at n = 0) can
be carried out in constant (possibly amortized) time. This holds for the functions we meet
in the applications given later.

A well known example is the Ackermann hierarchy [12,2,8], where the role of T'(k,n)
is played by the following function A:

A(r,0)=2 for ¢ > 1;
A(l,5)=27 for j > 0;
A(i,j)= AG —1,A(1,j —1)) fori>1,5>1.

The row inverse functions of the Ackermann hierarchy are known as a(n). The “diagonal”
function a(m,n) has been used by Tarjan to describe the running time of a union-find
algorithm [12] (in fact his definition of the function is a bit different, but the difference in
value is bounded by one).

We consider only families of algorithms which are uniform. This means that a single,
finite program can run any algorithm of the family, given k as input. In the proof below,
we will actually run some members of the family concurrently; this is the multitasking
technique, which we proceed to describe in detail. The experienced programmer will find
it easy to implement on any standard model of computation.

A task is an execution sequence of a program. It is standard procedure in programming
a sequential machine to interrupt the execution of a program so that it can be continued
later by saving a record of its state— usually the program counter and a small number of
registers. In this way the execution of several tasks can be interleaved. We assume that the
operations of saving a state record (SR) and loading one for use take constant time, and
that the size of the state record is a fixed constant (possibly depending on the program).
All tasks will be broken into steps of bounded duration, such that it will be convenient to

3

suspend a task between consecutive steps. In principle, we can suspend a task anytime, so
this is no restriction on the program.

Each of the members of the family that we want to run concurrently will constitute
a task. For managing the tasks, we make use of a list of state records (a linked list is the
natural implementation of this structure). A “rover” pointer into the list indicates the
next task to be elected for execution. As each of the algorithms is designed to process
requests on-line, we will hold a queue of the incoming requests and each task will have
its pointer into the queue. We will only put update requests on this queue, so its size is
O(n). In a scheduler round, certain suspended tasks are invoked and allowed to proceed
for a pre-determined number of steps. More specifically, the scheduler begins by loading
the SR indicated by the rover pointer and executing the task until enough steps have been
performed or the task finishes processing all its input (reaching the end of the queue). In
the latter case it moves the rover to the next task on the list. The state of each task which
loses control is stored back in its record on the list.

3. The Main Result

Theorem 1. Let (t) be a suitable sequence of functions and (A) a tradeoff family of
algorithms for (ty). Then we can construct an algorithm for the same problem running in
O(1) amortized time per update and O(t(m,n)) amortized time per query.

Proof. We begin with discussing the update procedure, in which we attempt to keep
the (amortized) operation time constant. Since the bound guaranteed is O(tr(n)), this
requires increasing the value of £ we use as the number of updates n grows larger. More
specifically, we will use Ay for k = t(n,n). This choice prevails up ton = T(k+1, 1) where
t(n,n) becomes k + 1. We conclude that for each k, we will start using Ay once n reaches
T(k,1). We will maintain the current value of #(n,n) in a variable named K. We denote
the data structure of Ay by Dx.

Running Ay alone will present a problem when it is time to increase K, because we
will have no data in Dg 1. Therefore, for each value of K, Ax ¢ will be also run as a task
concurrent to Ay (which remains the main task). When K increases, we want Ax4 to
have processed all past update requests, so that Dg 1 1s up-to-date. To this end, we feed
up to three update requests to Ax 41 each time that Ak handles a single update. The
resulting procedure is shown in Figure 3.1.

Note that there always is at least one update for Ax 41 to process, this is the request
just input. But if there is more in the queue, it will process up to three requests. Started
at n = T(K,1), it initially has T(K,1) requests to go. At the rate of three requests at a
time, it will catch up with Ax at n = 34T (K, 1), which by Claim 1 is less than T(K +1,1).
This shows that once it becomes the main task, it is ready to answer new queries. Note
also that we do not kill the former task, Ax_;. We simply don’t invoke it at the moment,
but it may read its input queue at a later time.

When we start a new task, we add its state record in front of the SR list. Thus the
two recent tasks, Ax and Ag1, are the first tasks in the list. The rover pointer is reset,

4

procedure update(request)
put request on the input queue
n«—n-+1
if t(n,n) > K then
K« K+1
invoke A 41 as an additional task
end if
run A on the request
advance the input pointer of Ax
repeat 3 times
if there is input for Ag ¢ then
run Ax 41 on the next request in its input queue
advance the input pointer of Ax 44
end if

end repeat

Figure 3.1

following each update operation, to the SR of Ax_1, the third in the list and the first to
have awaiting input.

Queries can always be answered by Apg, but when the number of queries becomes
large relative to n, we wish to decrease their processing time. Faster queries are possible
using lower values of k, so to this end, we will allot time to older tasks (with smaller k) in
order to allow them to process queued updates. Recall that tasks are called to execution in
LIFO order, following the list. We can thus maintain a variable ky to identify the smallest
k such that Dy is up-to-date. Following each update, it will be reset to K.

When a query is made, a scheduler round is started where the variable k¢ indicates the
number of steps to be performed. It is possible that, during this round, a task completes
processing all its input; then k¢ is changed to the index of that task. As a result of
the LIFO order, this change can only decrease ky by one. Therefore the count of steps
performed must eventually meet ky at which point this round will end. Next, A, is used
to process the query (we use the updated value of kg); this takes O(kg) time units, as did
the scheduler round, for a total of O(kg) time.

Update time: The running time of the update procedure can be divided into time invested
in managing the structure, and time required by Agx and Ag4q for processing. The
“management” includes maintaining #(n,n) and invoking at most one new task, which
we assume to require constant time per operation. We now consider the time spent in
the active tasks. Note that the task Ay is called up by the update procedure exactly for
processing the first T(k 4+ 1,1) — 1 update requests. The amortized time per update of
Ay is O(tr(n)) which for n < T(k + 1,1) is O(1). This means the total time it took is
bounded by a constant (say ¢) times the number of updates performed. This constant is
the same for all tasks. Divide the numbers 1, ..., n (counting the updates) into K = t(n, n)
epochs using the dividers T(1,1),...,T(K — 1,1). That is, the first epoch extends from 1

5

to T(1,1) — 1, the second from T(2,1) to T(3,1) — 1 and so forth. Let ¢} be the length
of the kth epoch. The update procedure activates Ay exactly during epochs k& — 1 and k,
during which it performs at most 3¢;x_1 4+ ¢ updates (where ¢y = {x4+1 = 0). Summing
up, we obtain that the total running time is bounded by

K K
Z?)(;Ek_l + el < 4e ka =4cn.

k=1 k=1

This proves that the amortized time of our update procedure is constant. Actually, the
time for each update is bounded by about four times the bound of the single update by a
single algorithm of the family, plus the time for maintaining ¢(n,n) and task handling; if
all of these take constant time (not just in amortized sense), so does our update procedure.
Query time: Let s = t(m,n). We show the amortized query time is O(s). We have shown
that the query time i1s dominated by the value of kg at its end. Thus, each query which
ended with kg < s clearly used O(s) time. Assume that at the end of processing some
query, ko 1s greater than s. It follows that D; is not up-to-date at this moment. There-
fore, at the activation of the query, there were update requests queued for processing by
Ag, Asyq, ... and the kg steps allotted by the scheduler round were used up by this process-
ing. Regarding the whole history of the structure, we obtain that the total running time of
queries of the latter kind is bounded by the processing time of all the update requests by
Ag, Asiq1,..., Ax—1. By the properties of the algorithm family this is O(Zf\:_sl nti(n)).
Using property (2) of the functions (¢), this is O(nts(n)). By definition of s = t(m,n), it
is O(n[m/n]) = O(n + m). Joining the two kinds of queries, their total processing time is
O(n +m + ms). If m > n, this is clearly O(ms) so the amortized operation time is O(s).

If m < n, t(m,n) = t(n,n) by definition. Therefore s = t(n,n) = K; and O(K) is
an upper bound on the processing time of each single query (being the time of the slowest
task). O

3.1 Preprocessing Problems

For preprocessing problems, the use of multitasking may be reduced. In the preprocessing
phase, we process all the update operations in the fastest way (O(1) time per update). To
this end we use Ax for K = t(n,n), providing a data structure D

In the second phase, we process queries using the data structure built, but at the same
time the updates are processed again using Ax_1. When Ax_1 completes processing all
the input, the data structure it produced can replace the one of Ax. Following queries
will be directed to D —1 while D5 will start being built. To sum up, at any moment we
have a complete data structure for querying and a single additional task that is building a
new structure.

Since Ag performs n updates in O(n) time, this is the cost of our preprocessing
phase. For the query phase, let s = t(m,n). As above, we want to bound the time
invested in queries where the last structure built, Dy, has k > s (all other queries take
O(s) time). Since each such query spends an amount of time equal to the length of
the query proper in building the next structure, the time we seek is bounded (up to a

6

constant factor) by the time it takes to build Dg_1,...,Ds. As above, this is bounded by

O(Ef\:_sl nti(n)) = O(n + m), and by the same considerations we obtain amortized time

of O(s) per query.

3.2 Cost in Space

All the algorithms we constructed require O(n) space for keeping the list of inputs which is
fed in turn to each of the algorithms invoked, plus some space for book-keeping functions,
and finally the data structures themselves.

In the preprocessing setting, the space requirements for data structures will be at
most twice those of a single member of the family, as only two members are operating at
the same time.

The algorithm constructed for the on-line case may require the sum of the amounts
of space required by Ay, ..., Ax+1. This potentially large requirement may be cut down
for specific problems. In particular, there are algorithm families where the differences
between members are such that most of the data structure does not have to be replicated;
an example is the algorithm family for union-find given in the next section. This is due to
the fact that a member with longer update time spends it on rearranging the structure in
a way which is more efficient for queries but leaves it amenable to further updates by its
faster fellows without decreasing their efficiency.

3.3 Applications

In [2], Ben-Amram and Galil display a family of algorithms for solving the on-line retrieval
by position problem on a shifting machine. This is a machine which has a finite number
of registers but can store unbounded integers in them and use these in computations
including a shift instruction. The problem calls for storing arbitrary data and retrieving
the th datum stored on a query for . The algorithms described form a tradeoff family
for the inverse Ackermann functions («). The main theorem applies and shows how to
construct a solution of best running time for a sequence of updates and queries, which also
features updates in bounded time. The value of K at any point of the algorithin is easily
determined from the data structure.

In [5], preprocessing algorithms are given which display the same tradeoff between
update and query time. For the LCA (lowest common ancestor in a static tree, where
n is the number of nodes), preprocessing can be accomplished in O(ak(n)) parallel time
to support a query in O(k) time: the functional hierarchy is again Ackermann. The
interpretation of our theorem for such a case yields a solution whose preprocessing time is
O(1), and if the n processors receive queries simultaneously, they will each process a query
in O(a(m,n)) time.

In the same paper, an algorithm family is given for the level ancestor problem (given
a node and a number ¢, determine the 2th ancestor of the node). In this family, the update
time of Ay is given by fSi(n) = log(k)(n). This demonstrates a non-Ackermann hierarchy.
The query time resulting from the application of our method is

B(m,n) =min{¢ | log(i)(n) < [m/n]}.

7

The Ackermann hierarchy also appears in algorithms from Alon and Schieber [1]. They
present a family of algorithms for answering on-line product queries after preprocessing.
They pair preprocessing in O(nag(n)) time with a query time of O(k). Thus our theorem
applies and yields a preprocessing time of O(n) with query time O(a(m,n)).

4. Recovering the Tradeoff

The union-find algorithm analyzed by Tarjan [12,13] is well known for being a sim-
ple algorithm having remarkable efficiency. In fact, this algorithm achieves the time of
O(ma(m,n)) for m operations, where n is the number of sets created and « is an inverse
Ackermann function. We have found such functions to describe the “balance point” in a
sequence of solutions having a tradeoff structure. Therefore in this case too it is natural
to expect a sequence of solutions which displays the underlying tradeoff. Union-find al-
gorithms that trade union time for find time have already been presented by La-Poutré
[9]. However, his algorithms are not related at all to the path compression algorithm. In
contrast, we attempt to give the most natural modification of the path compression algo-
rithm that yields a tradeoff family. The complexity analysis of our algorithms is also very
close to Tarjan’s original analysis. In fact, from our proofs an alternative presentation of
Tarjan’s result can be derived, which differs only slightly from his presentation but may
have some classroom value.

We observe that there is a common feature to the algorithm families that we have
studied. It is a leveled data structure, where in a query, one must move from level to
level at a constant cost. Thus each additional level increases the cost of a query, but
contributes to a faster update. The function ¢; describes the average cost of maintaining
a k-level structure.

We suggest that whenever similar time bounds can be achieved, the algorithm can be
put in the above framework. This was explicit in the previous examples; but in union-find,
the simplicity of the algorithm does not reveal it. However, it does appear in Tarjan’s
analysis of the running time. For this analysis, a level number was assigned to each node,
and the query time was related to the number of levels encountered on a find path. This
picture resembles the one described above, and we deduce that by keeping the number of
levels bounded by k, we should get the member U}, of a family of union-find algorithins.

4.1 Algorithm U

The algorithm is a variant of the solution in [12]. Sets are represented as rooted trees,
where each set element is a tree node and the root node is used to identify the set. Thus
to execute a find we follow pointers from the element specified to the root of its tree.
This is augmented with path compression, meaning that all the pointers in this path are
redirected to the root, thus cutting down the time of future finds. A union is implemented
by linking the root of one tree to that of the other; as in [12], we use the strategy of union
by rank. The rank is a number assigned to each node, which can be used as a bound on
tree height; its exact computation is specified in the sequel. Unzon by rank means that in
each union operation, the tree root who gets linked to the other is the one having smaller
rank (either one in case of equality). We augment the data structure by maintaining

8

ag(r) for every value of r which appears as a rank of some root. We omit elaborating on
techniques for maintaining these values, stating only that this does not lengthen the union
time (such techniques are elaborated in [2]). We further point out that this algorithm can
be implemented as a pure pointer algorithms [11,4] by representing those values as lists of
pointers. This is feasible thanks to the restricted way in which these values are used in
our algorithm, as explained in [11].

We modify the union operation by adding a rule of subtree compression. Consider a
union in which node x becomes a child of root y. There are two cases:

(i) rank(z) = rank(y). Then the rank of y is incremented. Afterwards, we check whether
ag(rank(y)) > ap(rank(z)). (1)

If this is the case, we compress the whole tree rooted at y, i.e. connect all the proper
descendants of y directly to y.

(ii) the ranks of z and y are different to start with. Then we check (1) as well, but if it
holds we move to y just the descendants of x.

Theorem 2. For a sequence of operations on n elements, including m > n finds, Algo-
rithm Uy uses O(k) amortized time per find and O(a(n)) amortized time per union.

The formulation of this theorem differs from the notation of the previous sections in the
use of n. However, the number of union operations is at most n — 1 and can be assumed
to exceed n/s, for otherwise some sets stay “out of the game”, and do not affect the time
bounds of our algorithm. Thus the result would not be different if the number of unions
were used.

The proof follows the outline of Tarjan’s analysis in [12], employing his “method of
multiple partitions.”

For every node z, p(x) denotes the parent of x in the current structure (p(z) = =
signifies a root). We further define f(z) to be the root of the current tree where = belongs
(the find result).

We define the auxiliary function B(z,7), similar to A(z,7), by
B(0,5)=17 for y > 0;
B(i,0)=0 for: > 1;
B(i,j)= A(1,7) fore>1,5>1.
For each level ¢+ > 1 we define a partition of the natural numbers into blocks by
Block(z,j) = [B(%,5)...B(i,5 + 1) — 1]

(see Figure 4.1). Note that for ¢ > 0, each Block(¢,) is a union of some blocks of level
i — 1. Let b;; be the number of level ¢ — 1 blocks contained in Block(z, 7).

The following lemma suminarizes some simple observations on the algorithm.

Lemma 1. Ifz is any node, rank(z) < rank(p(z)), with the inequality strict if p(z) # .
The value of rank(z) increases as time passes until x is linked as a child of some other node;
subsequently rank(z) does not change, but p(x) and f(x) do. The value of rank(f(x)) is a
nondecreasing function of time.

We define the layer of a node = to be the smallest ¢ for which the ranks of z and f(z) lie
both in the same i-level block. From the last lemma and the form of the block structure
we see that layer(z) is zero if and only if z is a root and becomes positive once p(z) is
assigned a value other than z; subsequently, it can only increase, as rank(f(z)) gets farther
from rank(z).

Lemma 2. Following any operation in Uy, each node whose layer is greater than k is a

leaf.

Proof. The statement is trivially true when the algorithm starts. A find operation does
not affect layers as it changes neither ranks of nodes nor the identity of roots. Further, a
node that was a leaf before the operation remains so afterwards. Hence the truth of the
statement before the find implies its fulfillment afterwards. A union operation may affect
the layer of a node by changing the identity of its root or the node’s rank. In case (i) of
the union operation, the rank of y is changed. This may cause the layer of descendants
of y to surpass k only if ai(rank(y)) increases. But in this case, we compress the tree,
making each affected node a leaf. Case (ii) is similar. O

4.2 Proof of Theorem 2

Update time: apart from subtree compression, each union takes constant time. Subtree
compression affects each node z exactly at those unions where ag(rank(f(z))) increases.
For each z, rank(f(z)) starts at zero and increases up to a value which is less than n.
Thus ai(rank(f(z))) increases from zero up to a value bounded by ag(n). Thus, the total
cost of these operations over n unions is bounded by ax(n) per node, or nax(n) altogether.

Query time: The running time of a sequence of operations is evaluated using a credit-debit
accounting scheme. In this method, each find is given ¢ credits to spend. One credit will
pay for a constant amount of computing. If we run out of credits before completing an
operation, we can get more credits by creating debits. The total running time is majorized
by me plus the number of debits in existence at the end of the run.

rank

level ,

Figure 4.1

A graphical representation of the partitions defined by Block(z, 7). Level zero is omitted
and a logarithmic scale is used. (from [12]).

10

In a find operation, we need one credit for each node on the find path (this is the
path from z up to f(z)). We assign one of the credits allocated to this operation to the
last node on the path belonging to each layer. Thus, the number of credits we need to
allocate 1s bounded by the maximum number of different layers which may be encountered
on the path. The rest of the nodes are covered with debits. Since the root is the only
node of layer zero, and only ranks of roots ever change, it follows that every node z starts
receiving debits only after its rank has ceased to change. We now relate the number of
debits received to this rank.

Lemma 3. For each ¢, the number of debits received by x while in layer i is bounded by
b; ; — 1 where j is the unique integer satisfying rank(z) € Block(z, j).

Proof. Consider a find operation in which x receives a debit. This means that = is not
the last node on the path of layer ¢. Since the layer function is monotone along the path,
it follows that p(x) has also layer 7. Also p(z) # f(x), because the root and only the root
has layer zero. Thus rank(p(z)) < rank(f(z)). Moreover, the root is not in the same block
with p(z) in level 1 — 1, for otherwise layer(p(z)) would be less than ¢. We deduce that
following the path compression, the new value of rank(p(z)) lies at least one level ¢ — 1
block above the old one.

This can happen at most b;; — 1 times, because once rank(f(z)) transcends Block(z, j)
the layer of = is no longer :. Thus the number of finds in question is bounded by b;; — 1.
O

From Lemma 2 it follows that on any find path, at most one node (the leaf) may be
of layer larger than k. Consequently the number of different layers on the path is bounded
by k + 2, and the credit ¢ needed for each find is O(k). Moreover, only layers 1 through k
contribute to the collection of debits. Thus using the last lemma, the number of debits is

bounded by
k

ZZni]‘(bi]‘ —1), (2)

=1 320
where n;; is the number of nodes which, by the end of the run, have a rank in Block(z,).
Obviously nijy < n. By definitions, b;; < A(z,7) and in particular, by = 2, hence
n0(bip — 1) < n. Tarjan shows [12, p.28] that for each j > 1, n;; < n/QA(i’j)_l. Thus the
above sum is bounded by

k
. [—
I RS C O] TR D D=

i=1 i>1 i=11>A(i,1)
k

AG,1)

=1

Hence the amortized time is O(k + W) Having assumed m > n, we get O(k). O

We remark that, in this algorithm, we must have an assumption such as m > n for
obtaining O(k)-time find, since a sequence of unions can be easily built to make a small

11

number of finds take a lot of time. In fact, this is unavoidable in general, provided that
the update time is required to be O(ax(n)); for a proof see the worst-case lower bounds
[6,7,3].

Our analysis differs from Tarjan’s in using layer(x) where he used level(z), the smallest
¢ for which rank(x) and rank(p(z)) lie in the same -level block. However, Tarjan’s proof
could be rephrased in terms of layer. We suggest that i1t may be advantageous to do it this
way, since the layer function is monotone along the path, while level is not; this makes the
choice of layer somewhat more intuitive.

Acknowledgment
Helpful remarks from Noga Alon are gratefully acknowledged.

12

REFERENCES

1]
2]

3]

N. Alon and B. Schieber, “Optimal preprocessing for answering on-line product
queries,” preprint, 1987.

A. M. Ben-Amram and Z. Galil, “On the power of the shift instruction,” to appear in
Infromation and Computation.

A. M. Ben-Amram and Z. Galil, “Lower bounds for data structure problems on
RAMSs,” Proc. Thirty-Second Annual IEEE Symp. on Foundations of Computer Sci-
ence, San-Juan, PR 1991. See also Ben-Amram’s PhD thesis (Tel-Aviv University,
1994).

A. M. Ben-Amram and Z. Galil, “On pointers versus addresses,” .J. of the ACM 39:3
(1992) 617-649.

O. Berkman and U. Vishkin, “Recursive *-tree parallel data-structure,” Proc. Thir-
tieth Annual IEEE Symp. on Foundations of Computer Science, Singer Island, FL
1989.

N. Blum, “On the single-operation worst-case time complexity of the disjoint set union

problem,” SIAM .J. Comput. 15:4 (1986), 1021-1024.

M. L. Fredman and M. E. Saks, “On the cell probe complexity of dynamic data

structures,” Proc. Twenty-First Annual ACM Symp. on Theory of Computing, Seattle,
WA 1989.

S. Hart and M. Sharir, “Nonlinearity of Davenport-Schinzel sequences and of gener-
alized path compression schemes,” Combinatorica 6 (1986), 151-177.

J. A. La Poutré, “New techniques for the union-find problem,” Proc. First Annual

ACM-SIAM Symp. on Discrete Algorithms, 54—63.

R. E. Tarjan and J. Van Leeuwen, “Worst case analysis of set union algorithms,” .J.

of the ACM 31 (1984), 245-281.

R. E. Tarjan, “A class of algorithms which require nonlinear time to maintain disjoint

sets,” J. Comput. System Sci. 18 (1979), 110-127.

R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania 1983.

R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,” .J. of the ACM
22 (1975), 215-225.

13

