Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/

T R96' 002 Email:

ftpmail @ftp.eccc.uni-trier.de with subject "help eccc’

An Isomorphism Theorem for Circuit Complexity*

Manindra Agrawalf
Institut fur Informatik
Universitat Ulm
Oberer Eselsberg
D 89069 Ulm
Germany
manindra@informatik.uni-ulm.de

Abstract

We show that all sets complete for NC' under AC°
reductions are isomorphic under ACP-computable iso-
morphisms.

Although our proof does not generalize directly to
other complezity classes, we do show that, for all com-
plezity classes C closed under NC'-computable many-
one reductions, the sets complete for C under NC°
reductions are all isomorphic under AC°-computable
isomorphisms. Qur result showing that the complete
degree for NC* collapses to an isomorphism type fol-
lows from a theorem showing that in NC', the complete
degrees for AC® and NC° reducibility coincide.

1 Introduction

The notion of complete sets in complexity classes
provides one of the most useful tools currently avail-
able for classifying the complexity of computational
problems. Since the mid-1970’s, one of the most
durable conjectures about the nature of complete
sets is the Berman-Hartmanis conjecture [BHT77],
which states that all sets complete for NP (un-
der polynomial-time many-one reductions) are p-
isomorphic; essentially this conjecture states that the
complete sets are all merely different encodings of the
same set. Although the isomorphism conjecture was
originally stated for the NP-complete sets, subsequent
work has considered whether the complete sets for
other complexity classes C collapse to an isomorphism

type.

* A version of this paper will appear in the Proceedings of the
Eleventh Annual IEEE Conference on Computational Complex-
ity (formerly Structure in Complexity Theory), 1996.

tOn leave from SPIC Science Foundation, Madras, India.
Research partially supported by the Alexander von Humboldt
Fellowship. New address after August 15, 1996: Dept. of CSE,
IIT Kanpur 208016, India.

tSupported in part by NSF grant CCR-9509603.

Eric Allender?
Department of Computer Science
Rutgers University
P.O. Box 1179
Piscataway, NJ 08855-1179
USA

allender@cs.rutgers.edu

This conjecture has inspired a great deal of work in
complexity theory, and we cannot review all of the pre-
vious work here. For an excellent survey, see [KMR90].
We do want to call attention to two general trends this
work has taken, regarding (1) one-way functions, and
(2) more restrictive reducibilities.

One-way functions are functions that are easy to
compute but hard to invert. Beginning with [JY85]
(see also [KMRS89, Se92, KLD86], among others)
many authors have noticed that if one-way func-
tions exist, then the Berman-Hartmanis conjecture
seems unlikely. In particular, if f is one-way, nobody
has presented a general technique for constructing
a p-isomorphism between SAT and f(SAT). (Rogers
[R095] does show how to construct such isomorphisms
relative to an oracle. However, the focus of our work
is on non-relativized classes.)

It is important to observe that there are one-way
functions in NCPO if there are any one-way functions
at all. Thus, although there has been an intuition
that one-way functions cause the isomorphism conjec-
ture to fail, this intuition is incorrect if the one-way
functions are sufficiently easy to compute.

One can also state and investigate versions of the
isomorphism conjecture for more restrictive reducibil-
ities. In fact, there has been previous work present-
ing classes of reductions R such that the R-complete
sets in natural (unrelativized) complexity classes are
all isomorphic (see e.g. [Ag94]). However, this work
has all relied on the fact that the reductions in R
can all be inverted in polynomial time. (For instance,
the 1-L and 1-NL reductions in [Ag94, Ag95] and ear-
lier work, and the first-order projections considered
in [ABI93] have this property.) A possible excep-
tion is the so-called “l-omL reducibility” considered
in [Ag94], which shares the non-invertibility property
of NC° and ACP reductions considered here. However

l-omL reducibility is a rather contrived reducibility
invented solely for the purpose of proving the “col-
lapse” result in [Ag94], and the proof of that result
relies heavily on the invertibility of the related 1-L
and 1-NL reductions. That is not the case with the
results presented in this paper. (Additionally, the full
version of this paper will show that the sets that are
complete under the reducibilities considered in [Ag94]
are in fact complete under logspace-uniform projec-
tions, and hence are also complete under NC° reduc-
tions. Thus the complete sets considered in [Ag94]
are a subclass of the sets for which we present isomor-
phisms.)

One of the major goals of the work presented here
is to correct a shortcoming of the results presented in
[ABI93]. In [ABI93], it is shown that, for essentially
any natural complexity class C, the sets complete for C
under first-order projections are all isomorphic under
first-order isomorphisms. The shortcoming of [ABI93]
to which we refer is this: the complete degree un-
der first-order projections is properly contained in the
isomorphism type of the complete sets. In order to
improve the result in [ABI93] to obtain a true analog
of the Berman-Hartmanis conjecture [BH77] it would
be necessary to show that the complete degree under
first-order reductions coincides exactly with the first-
order isomorphism type of the complete sets. Since
first-order reductions are precisely the functions com-
putable by uniform families of AC circuits [BIS90],
the result we present here can be seen as correcting
this defect in [ABI93] for the particular case of C =
NC?, except for the question of uniformity.

We do not know if our result holds for Dlogtime-
uniform ACY isomorphisms (also known as first-order
isomorphisms). Note that, since first-order projections
are a very restricted sort of NC° reduction, our result
showing that the sets complete under NC° reductions
are all ACl-isomorphic would be a strict improve-
ment of [ABI93] if not for the question of uniformity.
([ABI93] works in the Dlogtime-uniform setting; our
results are known to hold only in the less-restrictive P-
uniform setting (in some cases) and in the non-uniform
setting.) We believe that the result for non-uniform
reducibilities is interesting in its own right, and that
the technical aspects of the argument lend additional
interest to this work. Although we suspect that the
problem of uniformity can be overcome, we believe
that this will require significant additional effort.

Section 2 presents definitions for the classes of re-
ductions considered in this paper.

Section 3 presents our main results about sets com-
plete under NC° reductions.

Section 4 Presents the isomorphism theorem for
NC?, and presents some concluding remarks.

An appendix contains a proof of a technical lemma
concerning constant-depth circuits, using established

techniques [FSS84, Aj83, HAa87, Fo95, B95].

2 Basic Definitions and Preliminaries

We assume familiarity with the basic notions of
many-one reducibility as presented, for example, in
[BDG8S]. In this paper, only many-one reductions
will be considered.

A circuit family is a set {C,, : n € N} where
each C), is an acyclic circuit with n Boolean inputs
Z1,..., %, (as well as the constants 0 and 1 allowed as
inputs) and some number of output gates y1,..., yr.
{Cy} has size s(n) if each circuit C, has at most s(n)
gates; it has depth d(n) if the length of the longest path
from input to output in C, is at most d(n). A family
{Cy} is uniform if the function n — C,, is easy to com-
pute in some sense. In this paper, we will consider only
Dlogtime-uniformity [BIS90] and P-uniformity [Al89]
(in addition to non-uniform circuit families).

A function f is said to be in ACO if there is a circuit
family {C,} of size n®1) and depth O(1) consisting
of unbounded fan-in AND and OR and NOT gates
such that for each input z of length n, the output
of C,, on input z is f(z). Note that, according to
this strict definition, a function f in AC® must sat-
isfy the restriction that |z| = |y| = |f(z)| = |f(v)|.
However, the imposition of this restriction is an unin-
tentional artifact of the circuit-based definition given
above, and it has the effect of disallowing any inter-
esting results about the class of sets isomorphic to
SAT (or other complete sets), since there could be no
ACP-isomorphism between a set containing only even
length strings and a set containing only odd length
strings — and it is precisely this sort of indifference to
encoding details that motivates much of the study of
isomorphisms of complete sets. Thus we allow AC°-
computable functions to consist of functions computed
by circuits of this sort, where some simple conven-
tion is used to encode inputs of different lengths (for
example, “00” denotes zero, “01” denotes one, and
“11” denotes end-of-string; other reasonable conven-
tions yield exactly the same class of functions). For
technical reasons, we will adopt the following specific
convention: each C, will have n* + klog(n) output
bits (for some k). The last klogn output bits will
be viewed as a binary number 7, and the output pro-
duced by the circuit will be binary string contained
in the first » output bits. It is easy to verify that
this convention is ACC-equivalent to the other con-
vention mentioned above, and for us it has the advan-

tage that only O(logn) output bits are used to encode
the length. It is worth noting that, with this defini-
tion, the class of Dlogtime-uniform AC°-computable
functions admits many alternative characterizations,
including expressibility in first-order with {4+, x, <},
[Li94, BIS90] the logspace-rudimentary reductions of
Jones [Jo75, AG91], logarithmic-time alternating Tur-
ing machines with O(1) alternations [BIS90] and oth-
ers. This lends additional weight to our choice of this
definition.

NC! (NCP) is the class of functions computed in
this way by circuit families of size n®®) and depth
O(logn) (O(1)), consisting of fan-in two AND and
OR and NOT gates. Note that for any NC° circuit
family, there is some constant ¢ such that each output
bit depends on at most ¢ different input bits. An NC°
function is a projection if its circuit family contains no
AND or OR gates. The class of functions in NC° was
considered previously in [Ha87]. The class of projec-
tions is clearly a subclass of NC? and has been studied
by many authors; consult the references in [ABI93].

For technical reasons and for simplicity of expo-
sition, we do not allow an NC° circuit C, to pro-
duce outputs of different lengths for different inputs
of length n, although we do allow AC® and NC? cir-
cuits to do this by following the convention mentioned
above. That is, if f is computed by NCO circuit family
{Cy} where each C, has s(n) output bits, then for all
inputs z of length n, |f(z)| = s(n). Our chief justifi-
cation for imposing this restriction is that Corollary 8
shows that any set hard for NC! under AC° reductions
(using the less-restrictive convention allowing outputs
of different lengths) is in fact hard under NC° reduc-
tions (using the more-restrictive convention). Thus
we are able to obtain our corollaries about sets com-
plete under AC? reductions without dealing with the
technical complications caused by allowing NC° reduc-
tions to output strings of different lengths. Also note
that, even with this restriction, the NC° reductions
we consider are still more general than the first-order
projections considered in [ABI93].

For a complexity class C, a C-isomorphism is a bijec-
tion f such that both f and f~! are in C. Since only
many-one reductions are considered in this paper, a
“C-reduction” is simply a function in C.

(A language is in a complexity class C if its charac-
teristic function is in €. This convention allows us to
avoid introducing additional notation such as FAC?,
FNC!, etc. to distinguish between classes of languages
and classes of functions.)

A function is length-increasing if, for all z, |z| <
|f(z)]; it is C-invertible if there is a function g € C

such that for all z, g(f(z)) = z.

The following proposition is well-known:

Proposition 1 P=NP iff every length-increasing
Dlogtime-uniform NC° function is P-invertible.

Proof. The forward direction is obvious. For the
converse, assume that 3SAT is not in P. Consider the
following encoding of a 3CNF formula with variables
¥1,...,V,. Note that there are only 8n> clauses on
these variables that can possibly appear in any 3CNF
formula. A formula can thus be encoded as a sequence
of 8n3 bits, with each bit denoting the presence or
absence of the corresponding clause. Now consider
the function f defined by f(¢,¥) = (¢, z) where z is
the string of length 8n3 such that the ith bit of z is 1
iff (the th bit of ¢ is 0 or the ith bit of ¢ is 1 and the
corresponding clause evaluates to 1 when the variables
are set according to the assignment). It is clear that
f is length-increasing, and it is not hard to see that
f is computed by a Dlogtime-uniform family of NC°
circuits. Note that ¢ is in 3SAT iff (¢, 1/¢l) is in the
range of f, which can be detected in polynomial time
if f is P-invertible. [|

3 Main Results

Definition 1 An NC° reduction {C,} is a superpro-
jection if the circuit that results by deleting zero or
more of the output bits in each C, is a projection
wherein each input bit (or its negation) is mapped to
some output.

Note that every length-increasing superprojection
has an inverse that is computable in AC% On input
y, we want to determine if there is an z such that
f(z) = y. The ACP circuit will have a subcircuit for
each n < |y| checking to see if there is such an z of
length n. This subcircuit will find the n output bits
that completely determine what 2 must be (if such an
z exists), and then will check to see if f(z) = y.

Theorem 2 For every class C closed under Dlogtime-
uniform NC' reductions, every set hard for C under
P-uniform NC° reductions is hard under P-uniform
one-one, length-squaring superprojections.

Proof. Let A be hard for C under NC° reductions. We
shall show A to be hard under one-one length-squaring
superprojections in three stages.

Stage 1: In the first stage, we show that 4 is also
hard under NC° reductions that output a string whose
length is at least linear in the length of the input.

Take any set B in C. Define a set D as:

D={lz |z e B}U
{0z | z has an even number of ones}.

Set D is clearly in C (since D NCl-reduces to B and C
is closed under NC? reductions) and the set B reduces
to D via the reduction z — 1z. Consider the NC° re-
duction of D to A, given by the sequence of circuits
{Cy} for n > 0 (C, has n input bits and some number
of output bits). Take the circuit C,. Its output must
depend on every input bit except possibly for the first
one. (If not, then we set the first input bit to 0 and
then flipping the bit on which the circuit does not de-
pend would make no difference to the output. This is
not possible as the output must be different when the
parity of the number of ones in the input is different.)
It follows that there must be Q(n) output bits as each
output bit can depend only on a constant number of
input bits. A composition of the reductions from B
to D (namely z — 1z) and from D to A gives us a
P-uniform NC° reduction of B to A with the same
property. (We observe that this reduction satisfies a
stronger property: even if we fix a constant number
of bits of the input, there are Q(n) output bits that
depend on the rest of the (unfixed) input bits. This
property will be made use of in the next stage.) This
completes Stage 1.

Stage 2: We now show that A is also hard under
length-increasing superprojections.

Again take any set B in C. Again we define a new
set C, NC'-reducible to B, which is accepted by the
following procedure:

On input y, let y = 1¥0z. If k does not divide
|z| then reject. Break z into blocks of k con-
secutive bits each. Let these be uyususz. .. up.
We say that a u;, 1 < ¢ < p, is null if the
number of zeroes in it is more than k/2; it is
zero if the number of ones in it are between
k/2 and 3k/4—1; otherwise it is one. Form a
string z out of these blocks as follows. Start
with z = e. For each i, 1 < 7 < p, do the
following: if u; is null then do nothing; if
it is zero then append a zero to z otherwise
append a one to z. Now accept iff z € B.

It is straightforward to verify that C is NCI-
reducible to B, and thus C € C by the closure prop-
erties of C. Hence, by the result of Stage 1 there is
an NC° reduction of C to A, given by the family of
circuits {D,, }, where the length of the output of any
circuit D, is at least linear in the length of the input.

In what follows, we will use the circuits D,, (reducing
C to A) to construct a projection reducing B to C
with the property that the composition of these two
reductions is a superprojection from B to A.

Let the depth of circuits in the family {D,} be

bounded by the constant d. Let ¢ = 222d . The projec-
tion from B to C will map strings of size n to strings
of size 4c+ 14 4em where m = O(n®) (the exact value
of m will be given later). It will map string z, |z| = n,
to string 1%*°0ujus ... u, where each w; is of size 4c,
and where the string formed out of these u;s (as de-
scribed in the procedure defining C) is z. We show
below how the values of the u;s are computed. In the
discussion below, we refer to the u;s as blocks.
Consider the circuit Dacyi144em. Set the first 4c+1
input bits to the value 1%°0. Consider the reduced
circuit with 4¢m remaining input bits. Each output
bit of this circuit depends on at most 2¢ input bits.
Let r be the number of output bits that depend on at
least one input bit, and recall that for some é > 0

r > ém. (1)

Let O be a set that initially contains the above r out-
put bits of the circuit.

The remaining input bits are denoted as usual with
T1, .« Lacm. We view each output bit as the outcome
of a (bounded) truth-table evaluation on the input bits
on which it depends. (We need to be fairly precise here
about how we associate a truth table to each output
bit. Consider one of the output bits in O, and con-
sider the fan-in two circuit of depth d that computes
this output bit. Order these input bits according to
the index, with z; coming before z; if ¢+ < j. If one
of these < 2¢ input bits actually has no effect on the
value of the output, then remove that input bit and
simplify the circuit computing the output bit accord-
ingly, and let the number of input bits remaining be
d' < 29, The “truth table” for this output bit has
variables v1,...,v4. The value of the output bit is
obtained by plugging in the appropriate input bit for
each v;.) Note that there are at most 222& = c different
such truth-tables. We choose some truth-table, say «,
such that no other truth table is associated with more
output bits than « is.

At this point, remove from O all output bits that
do not have « as their truth table, and let s be the
number of output bits that now remain in 0. Clearly,

s> r/e. (2)

Consider the ith output bit remaining in O. Let
the ordered set of input bits on which it depends be

{Zi1,2i2,...,2;a} where d’ < c. Consider the family
of sets F = {S;} where S; = {(j,z;;) : 1 < j <
d'}. Clearly all of the sets in F have size at most
¢. Thus by the Sunflower Lemma of [ER60] (see also
[BS90, Lemma 4.1]), the collection of sets F contains
a sunflower of size at least

t> (s/(c)?)) — 1. 3)

We now remove from O all of those output bits ¢ such
that S; is not in this sunflower. Thus |O]| =t now.

Consider any two bits ¢ and j that remain in O. §;
and S; record the input bits on which output bits 2
and j depend, and note that the input bits in S5; N S;
correspond to exactly the same variables in the truth
table « that determines how 7 and j depend on these
inputs. Now, set the bitsin the core of the sunflower to
0-1 values such that the truth-table « does not become
a constant (this can always be done, because the truth
table « depends on all of its d' input bits). So now
each output bit in O depends only on the input bits
that are in the corresponding petal of the sunflower.
We will process each petal of the sunflower in turn.

Consider the first petal (corresponding to output
bit 41). Since setting the bits in the core did not make
a a constant, there is some bit z;, in this petal and
some assignment of {0,1} values to the other bits in the
petal such that the output bit ¢; depends only on the
value of z;,. Moreover, since the truth-table relating
the output bits to petals is identical for all petals, we
obtain a corresponding bit z; in each petal, along with
an identical assignment to the remaining bits in each
petal. (There is a subtle point here. Although the sets
in our sunflower F have pairwise intersection equal to
the core of the sunflower, and thus the petals are each
pairwise disjoint, this says only that a tuple (7, zx ;)
can appear in at most one petal, but it does not say
that a given input variable can appear in at most one
petal (although it does follow that a given input vari-
able can appear at most d’ < ¢ different petals, each
time paired with a different number j). In particular,
it is certainly possible that the “identical assignments
to the remaining bits in each petal” referred to above
will conflict with each other. We will show below how
to deal with this.) Call the bit z; the identified bit for
the petal 1.

Recall that our goal is to map a string z of length
n to a string of the form 1%°0ujus . ..u,, where each
u; is of size 4¢, and where each wu; is either “null”
or represents a single bit of z. Our overall approach
is to map input bits of z to the identified bits z; in
the petals of the sunflower. When we try to do this
we have to assign values to the bits in the core of

the sunflower and to the other bits in the petals of
the sunflower; this will cause us to make some of the
blocks u; “null”, and it will cause us to remove some
of the petals from 0. We will succeed if we can show
how to make this assignment and still end up with
enough petals to encode all of the bits of z.

Process each output bit 2 € O in turn. Consider
the unset bits in S;. (Initially, none of the bits in S;
are set. When we process the first bit 2 in O we will
set all of the bits in §; except for z;, including all of
the bits in the core. When we process the other bits
in O only the bits in the petal will be unset.) For
each of these bits other than z;, set this bit to the
value (discussed above) so that output bit ¢ depends
only on the value of z;. (This causes at most ¢ — 1
bits to be set.) Each of these bits is in some block
uj. Consider any such block u; that contains one of
these bits that has just been set but does not contain
z;. Set the rest of the bits in such a block u; to zero.
Note that this has the effect of making block u; null,
since the length of u; is 4c and we are setting at least
3¢ 4+ 1 > 2¢ variables in this block to zero. We have
now set all blocks containing variables in S; except
for the block u;, containing z;. This block contains at
most ¢ — 1 variables that have been set. Set the rest
of the inputs in block wu;, (that is, set the variables
in u;, other than z;) so that there are exactly 3¢ ones
and ¢ — 1 zeroes in the block. (This has the effect
of making the block depend on the identified bit: it is
zero when the identified bit is zero and one otherwise.)
Thus far in processing petal ¢, we have set fewer than
4¢? input bits (at most 4¢ for each bit other than z;,
and at most 4¢ — 1 for z;). Some of the input bits
we have set (including some of the bits in the petal
just processed) may be elements of other petals in our
sunflower. Remove from O any output j such that
its petal contains a bit that has been set in this way;
remove also any j such that its petal contains the bit
2; just processed. This causes O to lose fewer than 4¢3
output bits (since each of the < 4¢? bits can appear
in at most ¢ petals), and in the remaining sunflower,
none of the bits in any petal has been set. Note that
the end result of processing this element 2 € O is that
we have obtained an input bit z; such that the output
bit ¢ is a projection of z;. Now repeat this paragraph
for the next bit remaining in O.

We repeat this process |z| times to obtain |z| such
bits z;. In order for this to be possible, it is sufficient
for ¢ to be at least (4c> + 1)|z|. This gives us a bound
onm: m<r/§(by (1) <ec-s/6(by(2)) <c-(t+1)°
c1?2/6 (by (3)), and thus if we pick ¢ to be (4¢3 + 1)|z|,

it follows that it is sufficient to choose m to be ¢’ - |z|°

for some constant ¢” depending on ¢ and §.

So our reduction of B to C will, on input z of length
n, identify bits 21, ..., z, and map z; to bit z;, where
the other bits of circuit Dycq1+44cm are set according to
the procedure listed above (or if there are any remain-
ing bits left unset by this procedure, we set those bits
to zero, having the effect of nullifying all remaining
blocks not containing one of the z;s). This reduction
of B to C is just a projection from B, since every out-
put bit depends on at most one input bit. It maps
a string of size n to one of size 4¢ + 1 4+ 4e¢m with
m=c"-n".

If we now consider the reduction from B to A that
results by composing the projection from B to C' with
the reduction Dycy144cm, we note that the n bits that
are determined by the z; are merely the projections
of the input z, and the other bits are either fixed or
correspond to output bits that were deleted from O
by the foregoing procedure, but nonetheless are still
computed by the NC° circuit. Thus the reduction is
a superprojection.

It is somewhat tedious to verify that this reduc-
tion can be made P-uniform. First observe that « can
be found in logspace. Then observe that there are at
most n° sets that could possibly be the core of the de-
sired sunflower; exhaustively trying each such possible
core in turn, and then using a greedy algorithm to find
a maximal collection of sets containing the core and
with pairwise disjoint “petals” will eventually uncover
a sunflower of the desired size. (The proof of the sun-
flower lemma given in [BS90] shows that this approach
will succeed.) Finding the desired setting of the bits in
the core and petals is easy. Then sequentially deleting
the bits from the petals is straightforward.

Stage 3: It is clear at this point that the reduction of
B to A described above is length-increasing and also
1-1 at least on strings of the same length. However, it
may map strings of two different lengths to the same
string. To take care of this problem, we add another
stage of the construction.

Once more, we take any set B in C. Once more, we
define a new set E NC!-reducible to B. The definition
of E is straightforward:

E = {z10* | z € B}.

E is clearly in C and therefore there exists an NC°
reduction of E to A that is a length-increasing super-
projection. Let this reduction be given by the function
f. We know that for all z: |z| < |f(z)|] < p(|z|) for
some polynomial p > n2. Define a function r as fol-

lows: 7(0) = 1, and »(¢) = p(r(t — 1)) + 1. And now

define a reduction g of B to E as: g(z) = 210* where
k is the smallest number such that |z|+ 1+ &k = r(¢)
for some t. Function ¢ can clearly be computed by
a projection circuit, and so f o g is an NC° reduc-
tion of B to 4. It is length-increasing because g and
f are both length-increasing. It is 1-1 also, which
can be seen as follows: for any two strings z and
y such that |g(z)| = |g(v)|, f(g(=)) # f(g(y)) fol-
lows from the nature of f. And when |g(z)| > |g(v)]
then |f(g(y))| < p(lg(v)]) = p(r(t)) (for some 1)
<r(t+1) < lg(@)] < | F(g(@)]

Also note that, since we assumed p(n) > n?, the
resulting superprojection is at least length-squaring.

Checking P-uniformity of this step is trivial. [|

The following corollary (the nonuniform case) is a
trivial consequence of the foregoing.

Corollary 3 For every class C closed under Dlog-
time-uniform NC' reductions, every set complete for
C under NC° reductions is complete under one-one,
length-squaring superprojections.

Corollary 4 For every class C closed under Dlog-
time-uniform NC' reductions, all sets complete for C
under P-uniform NC° reductions are P-uniform ACP-
isomorphic.

Proof. The main result in [ABI93], showing that all
sets complete under first-order projections are first-
order isomorphic, carries over also into the P-uniform
setting, and the same proof also works for superpro-
jections. [|

Corollary 5 For every class C closed under Dlog-
time-uniform NC' reductions, all sets complete for C
under NC° reductions are ACP-isomorphic.

4 Conclusions

In a very recent paper by Arora [Ar95] there is a
statement of a lemma showing that AC® and NCO re-
ductions are quite closely related. Arora presents a
number of interesting observations about the limita-
tions of what can be proved to be hard for NP un-
der ACO? reductions. Although the following lemma
is stated explicitly in [Ar95], it has been known since

[FSS84, Aj83].

Lemma 6 For any AC° reduction computed by a
family of circuits {Cn} there ezists (1) a constant
B > 0, (2) a partial assignment p assigning values
in {0,1} to n —nP of the n input variables of Cy,, and
(3) a constant ¢ such that, for any output gate g of
C,, after the variables have been set according to p,

the value of g depends on at most ¢ of the n’ unset
variables.

The proof of this lemma follows along the lines in
[BS90] (or also see [Fo95] or [B95] for alternative
formulations); applying a suitably-chosen random re-
striction to an ACY circuit yields an NCO circuit.

We need a very slight strengthening of this lemma,
that also follows easily by a slight modification of the
original proof. The essential idea is to consider restric-
tions over a larger alphabet than {0, 1}. For a number
b, define a partial b-block assignment to be an assign-
ment to the variables z, ..., z, with the property that
for all j > 0 either allof the variables zjp41,...,Z540
are given values, or none of them are. (The variables
Zjb41,- -5 Lib4s together constitute the j-th b-block.)
Then we obtain:

Lemma 7 For any AC® reduction computed by a
family of circuits {C,}, and for any constant b, there
exists (1) a constant B > 0, (2) a partial b-block as-
signment p assigning values in {0, 1} to n—nP of the n
input variables of Cy, and (3) a constant ¢ such that,
for any output gate g of C,, after the variables have
been set according to p, the value of g depends on at
most ¢ of the n® unset variables.

A proof this lemma is included in the appendix.

Corollary 8 All sets hard for NC' under (nonuni-
form) AC° reductions are hard under (nonuniform)
NC° reductions.

Proof. Let S5 be the group of permutations on five
elements, and let W5 be the word problem on Ss
(i.e., the set of all sequences of permutations that
when composed evaluate to the identity); this prob-
lem is known to be complete for NC! under projec-
tions [IL95]. Let A be any set hard for NC!, and let
{D,} be the circuit family reducing S5 to A. We will
show that there is an NC° reduction reducing Ws to
A.

Note that any permutation on S5 can be encoded
using 7 bits. By Lemma 7, there is a partial 21-block
assignment p assigning values to at most n—n? of the
n input variables of D,, such that the output bits de-
pend on at most a constant number of the remaining
nP unset input bits. For each of the O(logn) output
bits that are used to encode the length of the out-
put of the circuit (using the convention described in
Section 2), set all of the blocks containing input bits
on which they depend to zero. Note that each un-
set block of input variables is long enough to encode
three permutations. Thus it is possible to leave the

middle seven bits in each such block unset, and set
remaining fields in each block either to the identity
permutation or to the permutation that computes the
inverse of the permutation 7 that results by composing
the permutations encoded in the consecutive set fields
to the right or the left. The result is a new assign-
ment p' with the property that (1) p still has at least
1/3-nP — O(logn) > n® unset variables (2) all con-
secutive blocks of set variables encode permutations
that, when composed, yield the identity map (3) the
output bits of D, depend on at most a constant num-
ber of unset input bits (4) the O(logn) output bits
that encode the length are all fixed to some value 7,
and thus an NC° circuit results by taking subcircuits
for the first r output bits.

Let h be the projection that takes an input y of
length n® and outputs the result of setting some of
the n bits of output according to restriction p’, and
plugs the values of y into the remaining bits. Then
y evaluates to the identity iff h(y) does, and thus h
reduces Wy to itself.

Thus for any set B in NC!, there’s a projection f
reducing B to Ws, and thus z € B iff f(z) € W; iff
h(f(z)) € W5 (where h is the function defined above)
iff D,,(h(f(z))) € A. On inputs in the range h, D, is
an NCP reduction, and thus the composition of these
functions is an NC° reduction. This establishes that
all sets hard for NC! under AC® reductions are hard
under NC° reductions; isomorphism now follows by
our main result. |

Corollary 9 All sets complete for NC' wunder
(nonuniform) AC® reductions are AC°-isomorphic.

In closing, let us summarize our results. Berman
and Hartmanis conjectured in [BHT77] that all sets
complete for NP under poly-time many-one reduc-
tions are P-isomorphic. Following the lead of [ABI93]
we have considered the analogous question, where
polynomial-time reductions and isomorphisms are re-
placed by ACP°-computable reductions and isomor-
phisms. In [ABI93] it was shown that all sets complete
under ACP projections are ACC-isomorphic. We have
improved that result to show that all sets complete un-
der NC° reductions are AC%-isomorphic. To give some
indication of the nature of this improvement, note that
(1) projections are a very simple sort of NC° reduc-
tion, and (2) projections are easily invertible in AC?,
whereas NCP reductions are not invertible in poly-
nomial time unless P=NP. (Invertibility is relevant
here, since the likely existence of non-invertible poly-
time reductions is one of the main considerations lead-
ing many researchers to conjecture that the Berman-

Hartmanis conjecture is false [JY85].) Finally, we use
our main result about NC%-reducibility to show that a
true analog of the Berman-Hartmanis conjecture does
hold for NC!. (That is, the sets complete under AC°
reductions are all AC%-isomorphic.)

An obvious open question is whether similar col-
lapses hold for other complexity classes, such as NP.
It would also be interesting to see if the constructions
presented here can be made uniform. We especially
call attention to the following problems:

1. Are there other classes C such that the classes of

sets hard for € under AC? and NC° reductions
coincide?

2. Are there any natural classes C (larger than P)
such that the classes of sets hard for C under (a)
polynomial-time many-one reductions, and (b)
uniform NC° reductions, differ?

Note in this regard that [Ar95] shows (a) there is a
poly-time reduction f: PARITY <P, Clique such that
z € PARITY implies f(z) has a very large clique,
and z ¢ PARITY implies f(z) has only very small
cliques, and (b) no AC® reduction can have this prop-
erty. Nonetheless, there is no version of the Clique
problem (or any other NP-complete problem) that is
currently known not to be complete under ACY (or
NC%) many-one reductions.
Acknowledgments

We acknowledge helpful conversations with M. Aj-
tai, S. Arora, R. Boppana, and M. Ogihara.

References

[Ag94] M. Agrawal, On the isomorphism problem
for weak reducibilities, in Proc. 9th Structure
in Complexity Theory Conference (1994) pp.
338-355.

[Ag95] M. Agrawal, DSPACE(n). NSPACE(n): A
degree theoretic characterization, in Proc. 10th
Structure in Complexity Theory Conference

(1995) pp. 315-323.

[Aj83] M. Ajtai, %1 formulae on finite structures,
Annals of Pure and Applied Logic 24, 1-48.

[Al189] E. Allender, P-uniform circuit complezity, J.
ACM 36 (1989) 912-928.

[ABI93] E. Allender, N. Immerman, and J. Balc4zar,
A first-order isomorphism theorem, to appear
in STAM Journal on Computing. A prelimi-
nary version appeared in Proc. 10th Sympo-
sium on Theoretical Aspects of Computer Sci-
ence, 1993, Lecture Notes in Computer Sci-

ence 665, pp. 163-174.

[AGY91] E. Allender and V. Gore, Rudimentary reduc-
tions revisited, Information Processing Letters

40 (1991) 89-95.

[Ar95] Sanjeev Arora, ACC-reductions cannot prove
the PCP theorem, manuscript, 1995.

[BDGS88] J. Balcazar, J. Diaz, and J. Gabarrd, Struc-
tural Complezity I and II, Springer-Verlag,
1988, 1990.

[BIS90] David Mix Barrington, Neil Immerman,
Howard Straubing, On Uniformity Within
NC, J. Computer Sys. Sci. 41 (1990), 274-
306.

[B95] P. Beame, A switching lemma primer,
manuscript, available from
http://wuw.cs.washington.edu/

homes/beame/papers.html.

[BH77] L. Berman and J. Hartmanis, On isomor-
phism and density of NP and other complete
sets”, STAM J. Comput. 6 (1977 305-322.

[BS90] Ravi Boppana and Michael Sipser, The com-
plexity of finite functions, in J. van Leeuwen,
ed. Handbook of Theoretical Computer Sci-
ence, Vol. A: Algorithms and Complezity, El-
sevier, 1990, pp. 757-804.

[ER60] P. Erdos and R. Rado, Intersection theorems
for systems of sets, J. London Math. Soc. 35
(1960) 85-90.

[Fo95] L. Fortnow and S. Laplante, Circuit lower
bounds a la Kolmogorov, manuscript.

[FSS84] Merrick Furst, James Saxe, and Michael
Sipser, Parity, Circuits, and the Polynomaial-
Time Hierarchy, Math. Systems Theory 17
(1984), 13-27.

[Ha87] J. Hastad, One-Way Permutations in NC°,
Information Processing Letters 26 (1987),
153-155.

[IL95] Neil Immerman and Susan Landau, The Com-
plexity of Iterated Multiplication, Information
and Computation 116 (1995), 103-116.

[Jo75] Neil Jones, Space-Bounded Reducibility among
Combinatorial Problems, J. Computer Sys.

Sci. 11 (1975), 68-85.

[JY85] D. Joseph and P. Young, Some remarks on
witness functions for nonpolynomial and non-
complete sets in NP, Theoretical Computer

Science 39 (1985) 225-237.

[KLD86] Ker-I Ko, Timothy J. Long, and Ding-Zhu
Du, On one-way functions and polynomial-
time isomorphisms, Theoretical Computer

Science 47 (1986) 263-276.

[KMRS89] S. Kurtz, S. mahaney, and J. Royer, The
isomorphism conjecture fails relative to a ran-
dom oracle, Proc. 21st ACM Symposium on
Theory of Computing, 1989, pp. 157-166.

[KMRI0] S. Kurtz, S. mahaney, and J. Royer, The
structure of complete degrees, in A. Sel-
man, editor, Complezity Theory Retrospective,

Springer-Verlag, 1990, pp. 108-146.

[LV93] M. Li and P. Vitanyi, An Introduction to
Kolmogorov Complezity and its Applications,
Springer—Verlag, 1993, p. 99.

[Li94] Steven Lindell, How to define exponentiation
from addition and multiplication in first-order
logic on finite structures, (manuscript). This
improves an earlier characterization that ap-
pears in: Steven Lindell, A purely logical char-
acterization of circuit uniformity, Proc. Tth
Structure in Complexity Theory Conference

(1992) pp. 185-192.

[Ro95] J. Rogers, The isomorphism conjecture holds
and one-way functions exist relative to an or-
acle, in Proc. 10th Structure in Complexity

Theory Conference (1995) pp. 90-101.

[Se92] A. Selman, A survey of one way functions
in complexity theory, Mathematical Systems

Theory 25 (1992) 203-221.

5 Appendix

In this appendix, we give a proof of Lemma 7. Note
that we have not tried to obtain the best constants in
this proof. Instead our goal was to make the proof as
simple as possible.

Recall the statement of the lemma.
Lemma 7 For any AC® reduction computed by a fam-
ily of circuits {Cy}, and for any constant b, there ez-
ists (1) a constant 5 > 0, (2) a partial b-block assign-
ment p assigning values in {0,1} to n — n® of the n
input variables of Cy, and (3) a constant ¢ such that,
for any output gate g of C,, after the variables have

been set according to p, the value of g depends on at
most ¢ of the n® unset variables.

Without loss of generality, the circuit family {C,}
is

e of depth k

o leveled (meaning that the circuit has n inputs
Z1,...,2n, and n negated inputs —zi,..., "z,
and that these inputs feed into AND gates, and
that AND gates feed into OR gates, and vice-
versa)

o of bottom fan-in 1 (meaning that the AND gates
that z1,...,2,, and —-zq,..., "z, feed into have
fan-in only 1).

In the settings where we make use of Lemma 7, n
will always be a multiple of b. To simplify notation, we
will assume throughout the proof that n is a multiple
of b. Let m = n/b.

Let R! , denote the set of all partial b-block assign-
ments to the variables Z1,...,Z, that have exactly £
blocks of b variables unset. It will usually be the case
that n and b are understood from context, and thus we
will usually delete the subscripts. We will frequently
use the word “restrictions” as a synonym for “partial
b-block assignments” to refer to the elements of RE.

Note that
y) M on—tb
= 2 .
= (")

Thus there is a constant ¢; such that, for any p € Rfl,b,

K(p|n,£,b) < e1+n—£b+log (TZ)
(Here, we are assuming some fixed system for encod-
ing restrictions; the particulars are irrelevant. We are
assuming that the reader is familiar with Kolmogorov
complexity. For details, see [LV93].) Note also that,
for s > 0,

|Rl|/|Rl—s| — 2—36_ ((rﬁ)) > (g;ﬁf)

In our applications, s will be much larger than b, and
n/b will be much larger than £, and thus R‘~* is much
smaller than R, In particular, although at first it may
seem counterintuitive, a Kolmogorov-random element
p € R* has greater Kolmogorov complexity than any
element p’ of R‘~* (even if p’ is the result of assigning
values to some of the unset variables of p). This simple
fact is a key observation underlying the proof of the
switching lemma.

In the following, we will not make any meaningful
distinction between a circuit C, and the bit string that
describes an encoding of C,. Thus given any circuit
C, of size t, any gate in the circuit can be described
using an additional log¢ bits, and thus a pair (C,, %)
is a description of the function computed by gate i of
C,. If gate ¢ is on level two of C, (and thus by our
assumptions it is an OR of ANDs, where the ANDs
are connected to input literals), then the pair (C,, %)
immediately gives a DNF formula F, ; where this for-
mula lists the AND gates feeding into gate ¢ (listing
them in the order in which they appear in C,) where
each AND gate is presented by the literals feeding into
that gate (where the ordering on the variables imposes
an order on the literals).

Given any DNF formula F and restriction p, F|,
is the formula that results by (1) deleting from F' all
terms (i.e., conjunction of literals) that are made false
by p, and (2) replacing each remaining term C by the
term C|, obtained by deleting from C' all the literals
that are satisfied by p. It should be emphasized that
this is a syntactic operation, and that F|, is a syntac-
tic object. A formula with an empty term denotes the
constant function 1; a formula with no terms denotes
the constant function 0.

Given any DNF formula F, we follow [B95] and
define the canonical decision tree for F (denoted T'(F'))
as follows.

1. If F has no terms, then T(F) is a single leaf la-
belled 0.

2. If the first term in F is empty, then T(F') is a
single leaf labelled 1.

3. If the first term C; of F is not empty, then let F’
be the rest of F (i.e., F = C1V F'). The decision
tree T(F') begins by querying all of the variables
that appear in any b-block containing a variable in
C1. (That is, if C; has r variables, the tree T'(F)
begins with a complete binary tree on the r'b < rb
variables in the r’ blocks that contain variables
appearing in C7.) Each leaf v, of this complete
binary tree is reached by some path labelled by a
restriction o recording an assignment to the vari-
ables in C;. Each such node v, is the root of a
subtree in T(F') given by T(F|,). For the unique
o that satisfies Cp, T(F|,) is a single node la-
belled 1. For all other o, T(F|,) = T(F'|s).

For a restriction m, let Dom(w) denote #=1({0,1}),
i.e., the variables set by 7. For § C {z1,...,z,}, let

7|s denote the restriction

_ *, T; ¢ 57
rls(zi) = { o) mes

For a Boolean expression F, we will sometimes write
w(F) for F|.

Following [B95], we will show that for any
Kolmogorov-random p and for any DNF formula F,
the height of T'(F'|,) (denoted |T(F|,)|) is small.

It is easy to observe that if f is a Boolean func-
tion having a decision tree with height bounded by s,
then it has a DNF formula with term size bounded by
s. (The disjuncts consist of the conjunctions, over all
paths of the tree ending in 1, of the literals queried
along those paths.) Similarly, such an f has a CNF
formula with term size bounded by s (since = f clearly
has a small decision tree, and hence a DNF formula
with small term size). Note that saying that |T(F)| is
small is a much stronger statement than merely saying
that the function computed by F has a decision tree
with small height; this is because T'(F') may well be a
very inefficient decision tree.

Lemma 10 (Hastad Switching lemma) There is a
constant c¢q4 such that, for any DNF formula F in n
variables with terms of length at most r, and for any
b and for any 0 < s < £ < n/b, and for any p € thb,
i
f

K(Mfﬁnﬂﬂ&b)>c4+n—awsbbgUﬁT%Hog(gvb>
— 8

then |T(F|,)| < sb.

First, let us see why the Switching Lemma gives
a proof of Lemma 7. This is accomplished by the
following two claims.

Claim 11 Let C be a leveled circuit on n inputs with
depth k > 3 and with bottom fan-in < r = r(n, k) =
W and having no more than 27 gates at levels
2 and above. Let b > 2. Then for all large n, there is
a partial b-block assignment p leaving n*/*=1) blocks
unset, such that there is a depth-two circuit (either
with each output being an OR of ANDs or with each
output being an AND of ORs) with bottom fan-in <

nt/ 4 k=18 computing C|,.

Proof. (of Claim 11) We prove the claim by induction
on k. We first establish a few facts, and then proceed
with the basis and inductive steps.

Let s = 7 and let ¢ = n*=2/(*-1) pick p €
sz,b such that K(p|C,n,¥,s,b) is maximized. (Thus

K(p|C,n, £, 5,b) > n— b+ log (*]").)

Consider any of the gates on level two of C, and
consider the DNF formula F represented by this gate.
Before we go further, we must argue that

K(p|F,n,£,s8,b) > ca+n—Lb+sblog(16s)+log (gn/bs>
and that we can therefore appeal to the Switching
Lemma.

Since there are most 2° gates at level two of C, it is
easy to see that K(p|C,n,£,s,b) < K(p|F,n, £, s,b)+
¢5 + s. (The constant ¢s is enough bits to say “count
the number p of gates in C' at level 2 and above, and
use the next [logp]| < s bits to identify one of the OR
gates on level two of C. Construct the DNF formula
F computed by this gate, and then use the remaining
bits of information to construct p from F.”)

Thus K(p|F,n,¥,s,b) > K(p|C,n,2,8,b)—c5—5>
n—£h+log ("°
by ¢4 +n — £b+ sblog(16s) + log (?_/i’) if and only if

()
(.2)

Thus it is sufficient to show that

) —c¢5 — 8. This value is bounded below

log > (ca +¢5) + s + sb(log 16s).

no_ g\
log (b 7) > (cq +¢5) + s+ sb(log 16s).
This is equivalent to showing that

% — 0> 294(165)?
where d = 1+ (¢4 + ¢5)/s. For all large n, since s =
r(n, k), note that d < 2. Since there is some vy > 0
such that £s® < n'~7, it is thus sufficient to show that
n/b—£ > 23+2p1=7 which is clearly true for all large
n. Thus we have established that, for the chosen values
of £, s, and p, the hypothesis of the Switching Lemma
is satisfied.

Thus by the Switching Lemma, each of the OR
gates at level two of C|, has a decision tree of height
< sb, and thus each of those OR gates can be com-
puted by CNF circuits with bottom fan-in sb. The
circuit that results by substituting these CNF circuits
into C|, has AND gates on levels two and three. If
we merge these two levels, we obtain a circuit having
depth k — 1, having £ variables, and with bottom fan-
in bounded by sb = r(£, k — 1) and with no more than
27(tE=1) gates at level two and above.

When k = 3, this establishes the basis.

For the inductive step, note that we can apply De-
Morgan’s laws to the circuit C|, and obtain a cir-
cuit D computing —C|, that satisfies the inductive

hypothesis. Thus there is a p' leaving £2/(*=2) =
nt/(¥=1) b_blocks unset, such that D\, is computed by
a depth two circuit with bottom fan-in < ¢1/4(k=2)b —
nt/4F-1b Tetting p’ be the negation of p/, it is now
clear that C|,,n is the restriction of C' computed by a
depth two circuit as required by the claim. B (of

Claim 11)

Claim 12 Let n be sufficiently large. Let f be a func-
tion on n inputs such that |f(z)] < n® for all z of
length n, where f is computed by a depth-two circuit C
having bottom fan-in < r = r(n) = n'/**. Then there
is a restriction p leaving n'/% b-blocks unset, such that
each output bit of C|, has a decision tree of height at
most sb, where s = 4a.

Proof. Assume without loss of generality that the
output bits of C' are ORs. The other case follows eas-
ily.

Pick £ = nl/*, and let p be an element of p € R,
such that K(p|C,n,¥£,s,b) is maximized. 7

Consider any of the output gates of C, and consider
the DNF formula F represented by this gate. Before
we go further, we must argue that

b
K(p|F,n,£,8,b) > ca+n—_Lb+sblog(167)+log (fn/ >
— s

and that we can therefore appeal to the Switching
Lemma.

Since there are most n® output gates in C, it is easy
to see that K(p|C,n,¥,s,b) < K(p|F,n,? s,b)+ec5 +
alogn. Thus K(p|F,n,t s,b) > K(p|C,n,t, s,b)—
cs—alogn > n—~2b+log (”éb) —cs—alogn. This value
is bounded below by ¢4 +n—£b+ sblog(167)+log (?_ﬂs’)
if and only if

(5
(.2.)

Thus it is sufficient to show that

log >(ca + ¢5) + alogn + sb(log 167).

n

AN
log 7 > (cq + ¢5) + alogn + sb(log 167).

By our choice of s this is equivalent to showing that
% — 0> olesten)/sp1/4p(16p)P

Since n/*r?0 = o(n), the hypothesis of the Switching
Lemma is satisfied for all large n.

Now the claim follows immediately from the
Switching Lemma. B (of Claim 12)

Thus it will suffice to give a proof of the Switching
Lemma.

Proof. (of the Switching Lemma)

Let F,Z4,s,n,t,p be as in the hypothesis of the
lemma. We will prove the contrapositive. That is,
we’ll show that if T(F|,) contains a path « of length
at least sb, then K(p|F,n,¢, s,b) < ca +n — £b+
sblog(167) + log (Z‘_/b).

k]

The strategy is to construct p' € R*~* extending p
(i.e., fixing more variables), such that K(p|p', F, £, s,b)
is not much bigger than K(p'|F,n, ¥4, s,b). As we ob-
served above, K(p'|F,n, ¥, s,b) is small, because R‘~*
is small.

Let p € R* and let be any path in T(F|,) having
length at least sb. Note that we may view 7 as a
restriction (namely the restriction that gives to the
> sb variables queried along 7 the value determined
along path 7, and leaving the other < n — sb variables
unset).

We now define sequences of restrictions o1, 09, ...
and w1, 73, ... (where each m; in turn is decomposed
into m; = wixl!, where Dom(m;) = Dom(s;)). Our goal
is to define p' = poyn{ ool ... o) in such a way that
p is easy to retrieve from p'.

Let C;, be the first term in F' that is not set to 0 by
p- (Such a term must exist, since otherwise the height
of T(F|,) would be zero; by the same observation,
Ci,|p is not empty.) Thus C,, |, is the first term of F|,.
Let Sy be the set of variablesin Cj, |5, and let o1 be the
unique restriction of the variables in S; that satisfies
Ci,|p- (Thus, Sy = Dom(o1).) Let P be the set of
variables that are in b-blocks containing an element of
S1, and let P; = P\ S;. Note that, by the definition
of the canonical decision tree, P C Dom(), since the
tree queries all variables in each block touched by a
term. Let 7] = 7|s, and) = «|p,, and let 71 = 7|p,
so that w3 = w7{. Note that 7, is a prefix of path =.

If 7y is in fact all of w, then the first part of the
construction is over. Otherwise, by the definition of
the canonical decision tree, it must be the case that
there must be some Cj;, that is the first term in F' that
is not set to zero by pmq, and Cj,|px, is the first term
of F|px,, and it is this term that is explored next in
the decision tree along path 7. As above, let o3 be the
unique assignment to the variables S» in Cj,|,x, that
satisfies this term, let Py be the other variables in the
blocks touched by S; and let 74 = 7|g, and 74§ = «|p,.

Continue in this way until the entire path # is pro-
cessed, maintaining the property that clause Cj;, is
the first term of F' not falsified by pmy...75—1, and
P71 ... Th_10p satisfies C;, . It is important to observe
also that each set S is nonempty.

Note that, since the length of 7 is at least sb, it must
touch at least s b-blocks. A slight problem is caused
by the fact that = may touch more than s blocks.
Since we want p’ to be in R‘™*, we simply consider
the first stage k such that m;...wr_10% touches at
least s b-blocks, and redefine Sy to be the initial se-
quence of variables in clause C;, up through the st
block touched, define P to be the other variables in
those blocks, and redefine o, to be the setting to those
variables that does not falsify the clause, m}, = 7|s,,
and 7 = w|p,. (Note that k < s.) By setting p’ equal
to poymioamy ... op7), we have defined the desired el-
ement of Rf;;.

We now want to show that p is easy to recover from
p'. To do this, we define a sequence Sy, ..., Bk, where
each By describes how o} and =}, differ. Each By is a
string of length r over the alphabet {0,1,x*}, defined
as follows. The j*® bit of By is * if either (1) clause C;,
of the original formula F' has fewer than j variables,
or (2) the ;! variable in clause C;, is not in Sj. The
5 bit of By is 0 if the 58 variable in Cj, is in Sy and
oy and 7} agree on this variable. The j*® bit of 8y
is 1 if the j*® variable in C;, is in Sy and op and 7,
disagree on this variable. Note that each 3, contains
at least one symbol that is not a *. The total number
of non-* symbols is at least s and no more than sb
(since the op’s together touch exactly s blocks). Let
B = PB1...0k; thus 3 is a string of length kr < sr. We
will pad 8 with *’s at the end to obtain a string 3’ of
length exactly sr.

Observe that, for some constant ¢z, K(f'|s,b,7) <
¢z + sb(3 + logr). (This is because (' is of the form
wJ171p wd2= L po xIv= 1 bk k. ..% where each b, €
{0,1}, and v < bs and each jp < 27 (since no Gy is all
*’s, Note that many of the numbers j;, may be equal
to zero. By making jy41 = ...jss = 0 and making
by = ...= bps we can encode 3’ using exactly bs such
numbers. Thus we can encode (3’ as a sequence of
exactly bs numbers j; of exactly [logr] + 1 bits, and
a bit string of exactly bs bits encoding the bp’s.)

Now we claim that, for some constant cg,

K(p|F,n,£,s,b) < ca+n—Lb+sblog(16r)+log (zn/b8> .
To see this, note that p’ can be described with ¢; +
n — £b + sb + log (?_/g) bits. Since r can be obtained
from F, B’ can be described with ¢z + sb(3 + logr)
bits. The bound on the Kolmogorov complexity of p
now follows from an additional ¢ bits of information,

encoding the following instructions:

Find the first clause C;, in F' that is not
made false by p’. (Note that po; makes C;,

true, and the further assignments made by p’
cannot change this.)

Use f31 to find the elements of S;. (If the
7t bit of By is not *, then the jt* variable in
C;, isin S1.)

Use C;, and S; to obtain 1. Use o1 and
1 to obtain 7]. P; consists of all of the other
variables in blocks touched by Sy; 71 is p|p,;
m = w7y,

Let C;, be the first clause of F that is
not made false by pmioamy ...opw). (Note
that this can be obtained from p' (without
knowing what p is) by changing the setting
of the variables in S; and P; to w1. As
above, compute o3 and w2, and then use
pm1ma03Ty .. .opmy to find Ciy, and continue
in this way, to obtain 7y,..., 7%.

Obtain p by defining p(z;) = * if z; €
Dom(ny ...m), and p(z;) = p'(z;) other-
wise.

