Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 004 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Deterministic Restrictions in Circuit Complexity

SHIVA CHAUDHURI *

Max-Planck Institut fir Informatik
Im Stadtwald, D-66123 Saarbriucken, Germany
E-mail: shiva@mpi-sb.mpg.de

JAIKUMAR RADHAKRISHNAN

Tata Institute of Fundamental Research
Bombay, India

E-mail: jaikumar@tcs.tifr.res.in

December 8, 1995

Abstract

We study the complexity of computing Boolean functions using AND, OR and NOT gates.
We show that a circuit of depth d with S gates can be made to output a constant by setting
O(S*=<(D) (where ¢(d) = 4= %) of its input values. This implies a superlinear size lower bound for
a large class of functions. As a consequence, we show that constant depth circuits of polynomial
size are strictly more powerful than constant depth circuits of linear size. We give circuit
constructions that show that the bound O(Sl_f(d)) is near optimal.

We also study the complexity of computing threshold functions. The function 7 has the
value 1 iff at least r of its inputs have the value 1. We show that a circuit computing 7* has at
least Q(r2(logn)/logr) gates, for r < n'/3, improving previous bounds. We also show a trade-
off between the number of gates and the number of wires in a threshold circuit, namely, a circuit
with G (< n/2) gates and W wires computing T satisfies W > Q(nr(logn)/(log(G/logn))),
showing that it is not possible to simultaneously optimize the number of gates and wires in a
threshold circuit. Our bounds for threshold functions are based on a combinatorial lemma of
independent interest.

1 Introduction

A fundamental goal of Boolean circuit complexity theory is to obtain bounds on the size of circuits
computing various functions. A counting argument shows that most Boolean functions are hard
to compute, specifically, they require circuits of exponential size [21, 18](see [5], pp. 763, Theorem
2.4). However, this yields no information about the complexity of explicit Boolean functions. Few
techniques are known that yield lower bounds for explicit functions in N P, and this is an important
problem in circuit complexity. One of the most succesful techniques for proving lower bounds on the
size of circuits is the method of random restrictions [14, 23, 16]. The method consists of randomly
setting the value of a number of the inputs to a circuit and showing that the resulting circuit has a

*This work was partially supported by the EC ESPRIT Basic Research Action No. 7141 (ALCOM II).

simple structure. In this paper, we study a similar technique, deterministic restrictions, that yields
lower bounds in some situations when random restrictions fail. Here also, the basic technique is to
set input values and simplify the circuit, but the inputs to set are chosen deterministically, based
on the structure of the circuit. As an application of the method, we obtain a separation between
linear and superlinear size circuits of constant depth. We also study the computation of threshold
functions and prove better size lower bounds for circuits computing small threshold functions and
lower bounds on the number of wires in threshold circuits. We discuss the results in more detail.

Using the random restriction technique, it can be shown (see [5], pp. 772, Corollary 3.7) that
a circuit with S gates of depth d can be made to output a constant by setting the values of
n —n/(0(log §))? inputs. Thus, any polynomial size circuit can be made to output a constant by
setting n — n/polylog(n) inputs. This yields a superpolynomial size lower bound for a constant
depth circuit computing any function that cannot be made constant by setting n — n/polylog(n)
input bits. However it does not say anything about functions which can be made constant by
setting this many bits. We prove the following Restriction Lemma: a circuit with S gates and
depth d can be made to output a constant by setting 551<(4) input values, where e(d) = 1/4%.
Thus, for appropriate constants a, 3, a circuit of constant depth with O(n!T®) gates can be made
to output a constant by setting O(nl_ﬁ) input values. This yields a superlinear lower bound for
any constant depth circuit computing a function that cannot be made constant by setting O(nl_'g)
inputs. In other words, this allows us to prove a superlinear lower bound for a much larger class of
functions.

Hastad showed that PARITY cannot be computed by a circuit of polynomial size and depth
d for any fixed d [16]. Since any Boolean function can be computed by a depth 2 circuit of
exponential size, the result can be interpreted as saying that exponential size circuits are strictly
more powerful than polynomial, for constant depth. We would also like to see such a separation
between polynomial sizes of different degrees, i.e. between n* and n*+'. However, nothing is
known about this. A special case of this question is the following. AC? is the set of functions
computable by uniform polynomial size circuits of constant depth. The class LCY is the set of
functions computable by uniform linear size circuits of constant depth [19, 20]. While LC? appears
to be a severely restricted class, it turns out to contain surprisingly complex functions. An open
question posed in [19, 20] is whether LCY is properly contained in ACP.

We answer this question in the affirmative. An 1/4-approzimate selector is any function whose
value is 0 if the number of 1’s in the input is at most n/4, 1 if the number of 1’s is at least 3n/4
and can be either 0 or 1 otherwise. Such a function provides a rough estimate of the number of
1’s and is extremely useful in parallel computation [19, 15, 10]. The existence of polynomial size
constant depth circuits that compute a 1/4-approximate selector function was shown in [1, 3]. The
construction used probabilistic arguments and was nonuniform. Recently, Ajtai gave a uniform
construction of an AC? circuit to compute such a function [2]. Tt is easy to see that a 1/4-
approximate selector function cannot be made constant by setting n/4 or fewer input bits. The
Restriction Lemma then implies a superlinear lower bound on the number of gates in any constant
depth circuit that computes such a function. Thus, no approximate selector function is in LC°.
Thus, polynomial size circuits are strictly more powerful than linear, for constant depth circuits.

We actually prove a size-depth tradeoff for a general class of functions. The robusiness of
a function is the maximum number of input bits that can be revealed to an adversary without
revealing the value of the function. In [22, 9], robustness was called everywhere-sensitivity. For
example, the robustness of PARITY is n — 1, of MAJORITY |[n/2], and of a 1/4-approximate
selector, n/4. The Restriction Lemma implies that a circuit of depth d with S gates computing
a function of robustness R, has § = Q(R't<(?)) where ¢(d) = 1/4%. Thus, a depth d circuit for
a 1/4-aproximate selector has size Q(n'+<(?)). The lower bound is optimal upto the value of ¢(d).

We give uniform, constructions of circuits of depth O(d), computing a 1/4-approximate selector,
with O(n'*t4(®) gates, where §(d) = 1/2%. Thus, a linear size 1/4-approximate selector circuit has
depth O(loglogn). Our construction is based on a PRAM algorithm given in [15].

The threshold function 7" assumes the value 1 iff at least r of its input bits have value 1.
It follows from the lower bounds in [16], that if 7 = (logn)~(!), then T is not in AC?. Tt was
shown by Denenberg et al. that for r = (logn)* for constant k, T is in ACC [11]. Subsequently,
constructions using fewer gates were given and finally it was shown that for these values of r, T?
is in LC° [20, 17]. In [17], circuits of depth d for T are constructed using 20(r/%) log n gates. The
lower bound in [16] implies that a depth d circuit for T requires 20(r'/%) gates. For unbounded
depth circuits, [17] showed that a circuit for T)* requires r gates. For small values of r, there is a
large gap between the bounds, in particular, the lower bounds do not even depend on n. We show
that any circuit computing 77, for 2 < r < n'/3, must have Q(r?(logn)/logr) gates. The lower
bound holds for circuits without any restriction on depth, and for small values of r, considerably
improves the previous bounds, both for bounded and unbounded depth circuits.

While the number of gates has been extensively studied as a resource in circuit complexity,
much less attention has been given to wires [7]. There is often a trade-off between gates and wires.
T can be computed by a circuit with O(n) gates and wires. On the other hand, for small values
of r, the optimal number of gates is much less. The constructions in [17] and [20] use fewer gates
(o(n)) but more wires (O(n(rlogn)?) and O(nr*logn) wires respectively). For constant r, the
results of Friedman imply 77" circuits with O(logn) gates and O(nlogn) wires [13]. In particular,
is it possible to simultaneously optimize the number of gates and the number of wires? We give
a partial answer to this question, by showing that a circuit with G (< n/2) gates and W wires
computing T, for 2 < r < n'/? satisfies W > nrlnn/(1001n(G/Inn)) Thus, it is not possible to
simultaneously achieve a sublinear number of gates and a linear number of wires, when r is not
constant. In particular, this gives tight bounds on complexity of constant threshold functions.

Our lower bounds for threshold functions are based on a combinatorial lemma of independent
interest. A family of sets is k-cover-free if no set is contained in the union of & others. Suppose
we are given a k-cover-free system of n subsets of a ground set X. What is the minimum possible
cardinality of X7 Erd6s, Frankl and Fiiredi [12] showed that | X| > Q(klogn). We improve this
bound and show that | X| > Q(k?logn/logk).

2 Definitions

The model of computation we consider is unbounded fan-in and fan-out circuits with AND, OR
and NOT gates. A circuit is modelled by a DAG in which each vertex of indegree greater than 0 is
labelled by one of AND, OR, NOT. We refer to the vertices as gates and the edges as wires. There
are n vertices, 21, ..., Z,, of indegree 0, called input gates, which correspond to the input variables,
and one vertex of outdegree 0, called the output gate.

The level of a gate, g, is the length of the longest path from an input gate to g.

By fizing or setting an input variable, we mean assigning it a value in {0,1}. A partial input
is an input in which some of the input variables are fixed. Given a partial input, by admissible
inputs, we mean the set of inputs consistent with the partial input (i.e. those inputs which agree
with the partial input on its fixed variables).

We say a gate or a wire in the circuit is fized by a partial input if, over all admissible inputs,
the gate output or the value carried by the wire has the same value. A gate or wire that is not
fixed is called free, as is an input variable whose value is not set.

We define the notions of indegree and outdegree of gates in the context of a partial input. Given

a partial input, the indegree of a gate g is 0 if it is fixed by the partial input; otherwise it is the
number of free gates feeding into g. The outdegree of a gate ¢ is 0 if it is fixed by the partial input;
otherwise, it is the number of free gates that g feeds into.

Say an input variable influences a gate, g, if there is a path from the input gate to ¢ passing
through only free gates and wires. It is not hard to see that whenever all the inputs that influence
a gate are fixed, the gate is also fixed. Define é§(g) to be the set of variables that influence gate g.
(Note that influence and 6(g) are defined with respect to a partial input.)

We say a function has robustness r if it is not possible to fix less than or equal to r of its input
bits and fix the value of the function. An equivalent definition considers the function, f, as giving
a 2-colouring of the vertices of the boolean cube {0,1}", i.e. for € {0,1}", the colour of the
vertex z is f(x). If the largest monochromatic subcube has dimension d, then the robustness of
the function is n — d.

3 Small size, small depth circuits

In this section, we obtain a bound on the number of inputs that need to be fixed in order to make
a circuit output a constant value. In the course of our proof, we will fix input variables so that for
the resulting partial input the indegree and outdegree of gates are small.

Definition 3.1 (Regular Circuits) Let d and M be positive integers. Let dg = 1, dy = d and
dit1 = d}. A circuit C is (d, M)-regular if

(a) the indegree of every gate at level i is at most d;; and
(b) the outdegree of every gate g at level i is at most M - 6(g).

If with respect to a partial input o, the circuit C satisfies conditions (a) and (b) above, then we say
that C|, is (d, M)-regular. (C|, is the circuit obtained by applying the partial input to C.)

Suppose C is a circuit of depth k. Let the size of C be S (including the input gates). We wish
to obtain a partial input o so that C|, is (d, M)-regular. To do this, we set some input variables
carefully so that gates with high indegree or outdegree are eliminated. The method for setting
the input variables is described in the procedures below. Let d > 2, M and dy,dy,... be as in
Definition 3.1.

FixIndegree(7) Repeat as long as there is a free gate g in level ¢ with indegree more than d;. Since
g is free, there must be a free gate g’ at some lower level that feeds into g. Fix ¢’ so that ¢ is
fixed. That is if g is an OR then fix ¢’ at 1 and if g is an AND then fix ¢’ is at 0. For this,

we need to set at most 6(g') input variables.

FixOutdegree(i) Repeat as long as there is a free gate ¢ in level ¢ with outdegree(g) > M - 6(g).
If at least half the gates that g feeds into are ORs then fix g at value 1 by suitably setting
the 6(¢) input variables that influence g; otherwise, fix g at value 0 by setting the 6(g) input
variables suitably. Note that the number of gates fized in this step is at least M /2 limes the
number of input variables set.

To obtain the required partial input, we start with the partial input with no input variables set,
and refine it successively by applying FixIndegree and FixOutdegree in the order FixOutdegree(0),
FixIndegree(1), FixOutdegree(1), FixIndegree(2), ..., FixIndegree(k). Let the partial input obtained
in the end using this process be o(d, M).

Claim 3.1 Cl,(gr) is (d, M)-regular.
Proof. Immediate from the definitions of FixIndegree and FixOutdegree. Details omitted. |

Claim 3.2 The number of inputs set during calls to FixOutdegree is at most 25/M.

Proof. The number of gates fixed is at least M /2 times the number of input variables set. Since
there are only S gates in all, we set at most 2.5/M inputs. |

Claim 3.3 The number of inputs set during calls to FixIndegree is at most 25 M /d.

Proof. FixIndegree(7) is invoked after FixIndegree(1), FixIndegree(2), ..., FixIndegree(i — 1). This
ensures that the indegrees of all gates at levels j less than 7 are at most d;. Thus §(h) < dydy...d;_q,
for gates at h at levels less than 7. It follows that the number of inputs variables set while fixing
any gate at level 7 is at most dyd;y .. .d;_1.

Since, FixIndegree(?) is invoked after FixOutdegree(0), ..., FixOutdegree(i — 1), the outdegree of
any gate in levels j less than ¢ is at most M - (dids .. .dz_l). Since there are at most S gates in
these levels, the number of free wires entering level ¢ gates is at most SM(dydy...d;—1). Hence,
the number of gates in level ¢ with degree more than d; is at most SM(did;y...d;—1)/d;.

Thus, the number of input variables set during FixIndegree(7) is at most

Sﬂf(dldg .. .di_1)2/di.

Summing over all levels ¢, we get that the total number of input variables set is at most

MZ

Using the conditions d; > 2 and d;1 = d?, it can be verified that (didsy...d;_1)?*/d; < 1/(2i_1d);
thus the sum above is bounded by

d1d2 1)?

25M
7

k
_M E 9—i+1 <
=1

We can now prove the main result of this section.

Lemma 3.1 (Restriction Lemma) Let C be a circuit of size S and depth k. Then there exists a
partial input p which sets alt most 557 ~*) inputs, where e(k) = 47k such that C|, is a constant.

Proof. Let d = §%®) and M = §(*). By the Claim 3.1 above, Clo(d,my is (d, M)-regular. Now, we
may fix the output of C|G(d,M) by fixing at most did; ...dr_1 additional inputs. It can be verified
that

dydy ... dpy < dj = d*"7 < §% < g1,

[if £ = 0 then S = 1.] Hence, by setting at most (using Claims 3.2 and 3.3 to bound the number of
variables set in o(d, M))

25 25M
Sl—e(k) — 551—5(k)
M + d +
input variables, we have obtained the partial input p that fixes C to a constant. |

Clearly, if a circuit of depth k with S gates computes a function of robustness R, then 551-<(k) <
R, because otherwise, the function can be made constant by setting less than R inputs, a contra-
diction. This proves

Theorem 3.1 If a circuit of depth k with S gates computes a function of robusiness atl least R,
then .
1
5> —R'tiE,
=10 "
The following is now easy.
Corollary 3.1 LC° c ACC.

Proof. Consider a 1/4-approximate selector function. Suppose we could fix less than n/4 inputs
and fix the value of the function to 0. By setting the remaining bits to 1, we have an input with
more than 3n/4 1’s but the value of the function is 0, a contradiction. A dual argument applies
when the function is fixed to 1. Hence, the robustness of the function is at least n/4. By Theorem
3.1, any constant depth circuit computing a 1/4-approximate selector function has superlinear size.
Thus all such functions do not belong to LCP. Since, by [2], there is such a function in AC?, the
claim is proved. |

4 Upper bounds for approximate selectors

We describe a circuit that computes a 1/4-approximate selector function. Note that it is enough to
construct an approximate addition circuit, i.e. one that takes n bits as input, and computes log n
bits representing an integer, satisfying the following condition: If S'is the integer represented by the
output bits and E is the sum of the input bits, then £ —n/4 < § < E+n/4. It is not hard to verify
that a function which outputs 0 when S < n/2 and 1 when S > n/2 computes a 1/4-approximate
selector. Thus we can simply output the high order bit of S.The rest of this section describes the
construction of an approximate addition circuit.

Ajtai [2] describes a circuit of constant depth with a polynomial number of gates that behaves
as follows: The inputs are 1,...,&5,71,. .., Tlogn. LThe circuit outputs 0 if 3" z; < r — n/(logn)?
and 1if S z; > r + n/(logn)?, where r is the number between 1 and n represented by the bits
T, .., Tlogn. Construct a circuit by placing n copies of the above circuit in parallel, each recieving
the same inputs x1,...,z,, but with the ith copy using the value r = 7. Let y; be the output of
the ith circuit. Let z; = y; A=(y;—1 V...V yp). Then, z; is 1 iff 7 is the smallest value of for which
the circuits computed 1. It follows that the z;’s are a unary representation of a number, s such
that 3> z; — n/(logn)? < s <3 z; + n/(logn)?. Convert this into the binary representation of the
number. A polynomial size, constant depth circuit for unary to binary conversion is given in [8].
We have proved

Lemma 4.1 We can construct polynomial size, constant depth circuils that have inputs x1,...,2,
and oulpuls y1,. .., Yiogn such that 37 z; — n/(logn)? < s <37, z; — n/(logn)?, where s is the
integer between 1 and n represented by the bils y1,. .., Yogn-

We call the circuits constructed above approzimate bit addition circuits.

Suppose we wish to compute the sum of m numbers of ¢ bits each, ¢ < m, which sum to at
most n. In [8], it is shown how to construct such a circuit using ezact bit addition circuits that
add m bits. It is not hard to see, from their construction, that if we use approximate bit addition
instead of exact, the approximate sum we compute differs from the actual sum by at most n/logn.
Further, the construction is of size polynomial in m, and constant depth. It follows that

Lemma 4.2 We can construct polynomial size (in m), constant depth circuits to compute the 1-
approzimate sum of m numbers of q bils each, ¢ < m, which sum to at most n. If the real sum is
S, the i-approximate sum is defined as a number s' satisfying S — in/logn < s’ < 5 +in/logn.

Let the circuits in the previous lemma have depth d and size m'*¢ for some constant c¢. Write
f(m, 1) for the minimum size circuit of depth id that computes the i-approximate sum of m numbers
summing to at most n. Given such circuits of depth id, we can construct circuits of depth (i+1)d as
follows: Divide the input numbers into a groups, each of m/a numbers. Compute the approximate
sums of each of the groups using circuits of depth ¢d. Compute the approximate sum of the sums
computed using the circuit of the previous lemma. Then, we have

f(mi+1) < af(mfa,i)+a*, 1<a<m (1)

By choosing a such that af(m,i) = a't°, we can show, by induction, that f(m,7) < m'**/*. Thus,
f(m,c) < m? Note that the circuit has depth cd, a constant. It is possible to show that the circuit
computes the c-approximate sum. The intuition is that each stage in the construction introduces
an error of at most n/logn. We omit the proof from this abstract.

Write g(m, ¢) for the minimum size circuit of depth icd that computes the ic-approximate sum
of m numbers summing to at most n. Then g(m, 1) < m?2. Call this the basic circuil. We construct
circuits of depth (i + 1)ed, given circuits of depth icd as before, except that we now choose the
size of each group to be \/m and use the basic circuit to compute the sums of the groups. The
recurrence relation for the sizes is

g(m,i+1) = Vmg(v/m, i) + (Vm)? (2)

It can be shown, by induction, that g(m,) < m1 /270 4 (i—1)m.

As before, it is possible to show that a circuit of depth icd, constructed as above, computes a
number which differs from the true sum by at most icn/logn. Thus, as long as ic < logn/4, we
have an estimate that differs from the true sum by at most n/4.

Given n bits and a depth k, we can compute, in logk stages, the sums of disjoint groups of k
bits, by using pairwise addition. A circuit for pairwise addition with constant depth and a linear
number of gates is given in [6]. Then we can use the circuit of depth kcd described above with
m = n/k, to compute the approximate sum of the bits. The discussion above gives us the following

Theorem 4.1 For any k < loglogn, we can construct a 1/4-approzimate selector circuit of depth
O(k) with O(n**Y/2"™" gates. Thus selecting k = loglog n yields a circuit with O(n) gates and
O(loglogn) depth.

5 k-cover-free systems

In this section, we prove bounds on the size of certain set systems. The bounds we prove will be
used in proving lower bounds for threshold circuits.

A family of sets F is k-cover-free if Fy € FyU...U Fy, for all Fy,...,Fr € F (F; # Fyif ¢ #0).
Let fr(m) denote the maximum cardinality of a k-cover-free family F C 2] Erdés, Frankl and
Fiiredi [12, Theorem 3.1] showed that

(L+o(1))m

(14 1) < Jilm) < exp(E220), 3)

In our application, we will be given a k-cover-free family F of cardinality » and will need a
lower bound on m = | Uper F|. The second inequality in (3) gives m = Q(kInn). We improve this
bound and show that m = Q(k?Inn/Ink). In other words, we strengthen the second inequality in
(3) to fr(m) = exp(O(m1Ink/k?)).

Assume that k is a large number and n > k3. We say that F is an (n, k)-family if |F| > n and
F is k-cover-free. Let m(F) = |Uper F|.

Lemma 5.1 Let F be a (n,r)-family such that m(F) < 2n/3. Then there is a set in F of size at
least (rlnn)/(101In(m(F)/Inn)).

Proof. Since m(F) < 2n/3, at most 2n/3 sets have a private element (an element not in any other
set in the family). Then, every other set in F has at least r + 1 elements. Let F’ be the family
of these at least n/3 sets that do not have any private element (with respect to F). Then F' is a
(n/3,r)-family, where each set has at least 7 + 1 elements.

For each set F' € F' there is a subset S of size [|F|/r] that is not included in any other set in
the family F (for otherwise we could cover F' by writing it as a union of r such sets). Then, the
family of sets § = {Sr : F € F'} is an antichain of size n/3 (an (n/3, 1)-family). Let ¢ be the size
of the largest set in F’. Then the size of largest set in S is at most [¢/r]. Since ¢t > r + 1, we have
[t/r] < 2t/r. Since there are n sets in F, we have m(F) > logn. Thus, if 2¢/r > m(F)/2, then
the lemma follows easily.

Otherwise, using the LYM inequality [4, page 11], we have

<6m(}_)>2m . <em(f)>rt/ﬂ X (m(}")) > n/3.

2t/r [i/r] [1/7]

The lemma follows from this.]

Lemma 5.2 Let r > 1 and F be a (n,r)-family such that m(F) < n/2. Then the sum of the sizes
of the sets in F is al least

nrinn
50Ilnm(F)/Inn’
Proof. Consider the n/4 largest sets in F. It follows from Lemma 5.1 that they each have size at
least (rInn')/(101In(m(F)/Inn")), where n’ = 3n/4. The lemma follows from this. |
Th 5.1 If 7 is an (n, k)-family then m(F) > k2 In n
eorem 5. is an (n, k)-family then m Z 00k
Proof. We construct a sequence of family of sets 71 = F,...,F;/, and a sequence of sets

Fi, ..., Fyyy as follows. F; will be the set in F; of the largest size and
fi+1I{F—E:F€fiandF7§Fi}.
It can be verified that each F; is an (n — k/2,k/2)-family. Hence, by Lemma 5.1 (we may assume

that m(F;) < k?1Inn),
(k/2)In(n — k/Q)

| >
Bl > 201n k
Thus,
(F)> ’E/j s b (/20— ky2)
= = 201n & '
The theorem follows from this.]

Corollary 5.1 fi(m) = exp(O(mInk/k?)).

6 Threshold Circuits

In this section we prove lower bounds on the number of gates in a circuit computing 77, and show
a tradeoff between the number of gates and the number of wires in such a circuit. For both the
above bounds, we use the following property of threshold functions. The value of the function is
critically dependent on every input variable, in the sense that, for each variable, there is an input in
which the value of the function changes when the value of that input is changed. Therefore, in the
circuit, one cannot block the effect of any input variable on the output by fixing a small number of
input variables. This implies that the family of sets formed by the gates connected to each input
is a k-cover-free system.
The following lemma is folklore, and easy to prove. The proof is omitted from this abstract.

Lemma 6.1 Any circuit C', may be converted into a circuit C', in which the negalions are connected
to only input gates. The number of gates in C' is at most twice the number of gates in C'.

Theorem 6.1 A circuil computing T}, with k < n'/> has Q(k*(Ilnn)/Ink) gates.

Proof. By Lemma 6.1, we may assume that all the negations in the circuit are connected to the
input gates. Let g be the number of gates in the circuit. If any AND (respectively, OR) gate
is connected to a non-negated (respectively, negated) input gate, then set this input to 0. This
ensures that this gate outputs a constant value, and we may delete it from the circuit. Repeat this
until no remaining AND gate is connected to a non-negated input and no remaining OR gate is
connected to a non-negated input.

The number of inputs whose values have been set is at most ¢, since each time an input is set
to a fixed value, a gate is deleted from the circuit. If g > n/2 then the theorem holds. Otherwise,
set an additional n/2 — g inputs to 0. The circuit now computes T,?/Q and satisfies the conditions
above.

Let 21,...,2,,, m = n/2, be the inputs to the circuit and let S; be the set of gates that input z;
is connected to, either directly, or through one negation. Suppose there is a set 57 that is contained
in the union of S5,...,5,. Then set inputs z3,...,z; to 1. Now, all the gates in the union of
Sa,..., 5, output a constant, because all the AND gates are connected to only negated inputs
and all the OR gates to only non-negated inputs. Thus, the gates in Sy all output a constant,
therefore the output of the circuit is independent of the value of z;. However, the circuit must
compute Tlm_kH7 and hence should depend on the values of all inputs except xs,...,xx, which is
a contradiction.

Hence, the collection of sets S1,...,5,, satisfies the condition that no set is contained in the
union of k£ — 1 other sets. Applying Theorem 5.1 now yields the desired result.
|
Theorem 6.2 If a circuit with W wires and G (< n/2) gates computes T}, then
W nklnn
~ 100In(G/Inn)
Proof. As in the previous theorem, we may assume that there are m = n/2 input variables
X1,...,Tm, such that z; is connected to the set of gates S; and that the sets 5; form a k — 1-cover-
free system. Since the number of wires in the circuit is at least the sum of the cardinalities of the
Si’s, applying Lemma 5.2 yields the claimed bounds. [|

7 Remarks

We have shown that constant depth circuits with n? gates are more powerful than constant depth
circuits with O(n) gates. It would be interesting to show that for each & > 1, constant depth
circuits with n*t!
this, it seems new techniques are necessary.

It was conjectured that polylog threshold functions are candidate functions to separate AC?
and LCP, but this was shown to be false [20]. W LC? is the class of functions that have circuits of
constant depth with a linear number of wires. Addition of two n bit numbers is known to be in
LCP but not in WLCP. There is no single output function known that separates LC® and W LC?.
We conjecture that polylog threshold functions are not in W LCP.

The bounds of [16] yield a lower bound of 2k for T7' and we prove a lower bound of

gates are more powerful than those with O(nk) gates. However, in order to do

(k?/logk)logn. It would be nice to combine the two bounds and prove a lower bound of k! log n.

8 Acknowledgment

We would like to thank Mike Paterson and Uri Zwick for helpful discussions and for pointing us to
the work in [2].

References

[1] M. Ajtai. 3 - formulae on finite structures. Ann. Pure Appl. Logic 24 (1983), pp. 1-48.

[2] M. Ajtai. Approximate counting with uniform constant depth circuits. In J.-Y Cai, ed.
Advances in Computational Complexily Theory, DIMACS Series in Disc. Math. and Theoret.
Comp. Sci., American Math. Society, (1993) pp. 1-20.

. tal an . Ben-Or. theorem on probabilistic constant depth computations. In Proc.
3] M. Ajtai and M. Ben-Or. A th probabilisti deptl putations. In P
16th STOC, (1984), pp. 471-474.

[4] B. Bollobds. Combinatorics. Cambridge University Press, 1986.

[5] R.B. Boppana and M. Sipser. The complexity of finite functions. Handbook of Theoret. Comp.
Sci., Vol A, Algorithms and Complexity, Elsevier Science Publishers, 1990.

[6] A. K. Chandra, S. Fortune and R. J. Lipton, “Unbounded Fan-in Circuits and Associative
Functions”, Proc. of the 15th ACM STOC, 1983.

[7] A. K. Chandra, S. Fortune and R. J. Lipton, “Lower bounds for Constant Depth Circuits for
Prefix Problems”, Proc. of the 10th Intl. Colloquium on Autornata, Languages and Program-
ming, Lecture Notes in Computer Science, Springer- Verlag, 1983.

[8] A.K. Chandra, L. Stockmeyer and U. Vishkin. Constant Depth Reducibility. SIAM J. Comput.
13, 2, (1984), pp. 423-439.

[9] S. Chaudhuri, “Sensitive Functions and Approximate Problems”, Proc. of 34th IEEE FOCS,
(1993), pp. 186-193.

[10] S. Chaudhuri, T. Hagerup and R. Raman. Approximate and Exact Deterministic Parallel
Selection. In Proc. 18th Math. Fdins. of Comp. Sci., (1993), LNCS 711, Springer-Verlag, pp.
352-361.

10

[11] L. Denenberg, Y. Gurevich and S. Shelah. Definability by constant depth polynomial size
circuits. Information and Control, 70 (1986), pp. 216-240.

[12] P. Erdos, P. Frankl and Z. Fiiredi. Families of finite sets in which no set is covered by the
union of r others. Israel Journal of Mathematics, 51 (1985), pp. 79-89.

[13] J. Friedman. Constructing O(n log n) size monotone formulae for the kth elementary symmetric
polynomial of n Boolean variables. In Proc. 25th Symp. on Found. of Comp. Sci., (1984), pp.
506-515.

[14] M. Furst, J. Saxe and M. Sipser. Parity, circuits and the polynomial time hierarchy. Mathe-
matical Systems Theory, 17, (1984), pp. 13-27.

[15] T. Goldberg and U. Zwick. Optimal Deterministic Approximate Parallel Prefix Sums and
Their Applications. In Proc. Israel Symp. on Theory and Computing Systems (ISTCS’95),
(1995), pp. 220-228.

[16] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proc. of18th STOC,
(1986), pp. 6-20.

[17] J. Hastad, I. Wegener, N. Wurm and S-Z. Yi. Optimal Depth, VerySmall Size Circuits for
Symmetric Functions in AC?. Information and Computation 108, (1994) pp. 200-211.

[18] D.E. Muller. Complexity in electronic switching circuits. IRE Trans. Electronic Computers,
5, (1956),pp. 15-19.

[19] 1. Newman, P. Ragde and A. Wigderson, “Perfect Hashing, Graph Entropy and Circuit Com-
plexity”, Proc. of 5th Ann. Conf. on Structure in Complexily Theory, 1990, 91-99.

[20] P. Ragde and A. Wigderson. Linear-size constant-depth polylog-threshold circuits. Information
Processing Letters, 39 (1991), pp. 143-146.

[21] C.E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Tech. Journal,
28 (1949), pp. 59-98.

[22] U. Vishkin and A. Wigderson. Trade-offs between depth and width in parallel computation.
SIAM Journal on Computing., 14 (1985) pp. 303-314.

[23] A.C. Yao. Separating the polynomial -time hierarchy by oracles. Proc. of 26th FOCS, (1985),
pp- 1-10.

11

