
ECCC
TR96-005

Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Email: ftpmail@ftp.eccc.uni-trier.de with subject ’help eccc’

Lindström Quantifiers and Leaf Language Definability

Hans-Jörg Burtschick
Fachbereich Informatik

TU–Berlin
Franklinstr. 28/29
D-10587 Berlin

Heribert Vollmer
Theoretische Informatik
Universität Würzburg
Am Exerzierplatz 3
D-97072 Würzburg

Abstract

We show that examinations of the expressive power of logical formulae en-
riched by Lindström quantifiers over ordered finite structures have a well-studied
complexity-theoretic counterpart: the leaf language approach to define complex-
ity classes. Model classes of formulae with Lindström quantifiers are nothing else
than leaf language definable sets. Along the way we tighten the best up to now
known leaf language characterization of the classes of the polynomial time hier-
archy and give a new model-theoretic characterization of

���������	�
.

1 Introduction

Initiated by Fagin’s seminal paper [Fag74] characterizing
�� as the class of general-
ized spectra, there has been a long line of research in characterizing complexity classes
using notions from finite model theory (see the recent textbook [EF95]). In “classical”
complexity theory problems are classified by defining restrictions on different compu-
tational resources as e.g. space or time. Using in contrast to this the syntactic complex-
ity of a defining formula it is possible to measure the descriptive complexity of prob-
lems. By considering e.g. the complexity of quantifier prefixes of prenex formulae it is
possible to investigate the descriptive complexity in a unified way. Besides the well-
known existential and universal quantifiers recently the expressive power of a certain
kind of generalized quantifiers, the so called Lindström quantifiers, has been examined
(see [Lin66, Ste92, Got95] or Chapter 10 of the textbook [EF95]).

In the field of computational complexity characterizations of complexity classes by
so called leaf languages have been studied intensively. This approach was introduced
by Bovet, Crescenzi, and Silvestri in 1992 [BCS92] as a unified approach to define com-
plexity classes. Consider a polynomial-time nondeterministic Turing machine that
prints a value on every path of its computation on some given input � . By imposing
an order upon the machine’s nondeterministic choices (e.g. based on the way the Tur-
ing program is presented) there is a well-defined sequence of output symbols over all
of ’s paths, which are ordered based on the order of nondeterministic choices. We
call this sequence the leaf string of on input � . Given now a (leaf) language � , a
complexity class ������� ��� ��� is defined as follows: A set � is in ������� ��� ��� if and only

1

if there is a nondeterministic Turing machine which on input � produces a leaf string
which is in � if and only if ��� � .

Starting with the somewhat surprising result that the class ��� ������� can already be
characterized in this way using only regular leaf languages [HLS 	 93], a lot of charac-
terizations were given (see e.g. [JMT94, HVW95, HVW, CMTV95]), leading to a num-
ber of remarkable and unexpected normal forms for such classes as �
� ������� , � � , and� � ; and even circuit separations could be proved using leaf languages as a technical
vehicle.

It turns out, as we show here, that both concepts Lindström quantifiers and leaf lan-
guage definability are closely related: Leaf language defined complexity classes can
be characterized by second-order Lindström quantifiers that are followed by first-order
formulas, and vice versa for every formula of this form there is a leaf language and
a nondeterministic polynomially time-bounded Turing machine that define the corre-
sponding model class. Thus Lindström quantifiers and leaf language definability are
two points of view of essentially the same concept. Relying on both views one might
hope to get new insights into the expressive power of Lindström quantifiers on ordered
finite structures and properties of leaf language defined complexity classes.

We give some results in this direction in this paper: The polynomial time hierarchy
introduced by Stockmeyer in 1973 [Sto73] is one of the central concepts in complex-
ity theory. Thus of course there have been efforts to give leaf language characteriza-
tions of this hierarchy. In [HLS 	 93] it was shown that using ���� as leaf language
class, one obtains the union of all classes of the polynomial hierarchy, and using the�

-th level of the Brzozowski- (or dot-depth-) hierarchy [Str94] as leaf language class,
the boolean closure of the class ��� is obtained. In [JMT94, HVW] it was proved that
� ����� �	� � � -LOGTIME �������� . Using first-order definable leaf languages we prove a
tighter connection: We show that the

�
-th level from the polynomial time hierarchy

can be characterized using leaf languages which can be defined using first-order � �
formulae. As another example of how combination of model-theoretic and complex-
ity theoretic arguments can lead to new results, we show how to use a theorem from
[HLS 	 93] to derive a new model-theoretic characterization of �
� ������� .

These results are special cases of a general theorem which states that if a leaf lan-
guage is defined by a formula in prenex normal form starting with one Lindström quan-
tifier and followed by a sequence of universal and existential quantifiers, then the char-
acterized complexity class can be defined in a model-theoretic way by a second-order
formula with exactly the same quantifier structure. Thus we see that using methods
from finite model theory we are able to tighten existing complexity theoretic results.
We think that generally it is a good idea to specify leaf languages in a descriptive way.
Leaf language definability was invented to separate the computational aspect in the def-
inition of a class from the way the computation is evaluated. This evaluation scheme
should therefore be given in a way free from computational aspects whatsoever. This
goal is achieved using finite model theory to specify leaf languages.

2

2 Preliminaries

The definability of complexity classes via leaf languages was introduced in [BCS92,
HLS 	 93] (see also the recent textbook [Pap94]). Let be a polynomial time-bounded
nondeterministic Turing machine. Given an input � , such a machine produces on every
path a symbol from some finite alphabet � . Let ��� � � � be the string of the so produced
symbols (based on the natural order of paths of the machine). Then for ������� , we
define � ����� � � ��� �
	������������� � � � � ��� . The class ������� � � ��� is the class of all
languages � ����� � � ��� for all nondeterministic polynomial-time machines . Here, �
is the so called leaf language defining the class ������� � � ��� . If � is a class of languages,
then we define ������� � � � � ��	���������! � ����� ��� � � .

As it turned out (see [JMT94, HVW]), it sometimes plays a crucial role whether in
the above definition we allow arbitrary Turing machines or we require that the compu-
tation trees produced have a special shape (e.g. are balanced). As a matter of fact, we
will see that this distinction is meaningless in our context. It turns out that for those
subclasses " of regular languages we are going to consider, we can require without
loss of generality that all computation trees of Turing machines are full binary trees,
see [Her95]. The reason is that all those subclasses " of regular languages which are
of interest for the present paper are closed under padding, i.e., if # �$" , #%�&��� for
some alphabet � , then there is a letter ')(�*� and a language #�+��*" , #,+�� � �.-)�/'0� � �
such that for every word 1 �2��� , we have 1 ��# if and only if 1��2# + if and only
if 3 �54�6 � 1 �7�8#,+ , where 3 �54�6 � 1 � is the regular language ' ��9;: ' ��9=< ' ��>?>?> ' ��9/@ ' � for
1�� 9 : 9 < >?>?>A9 @ (see [JMT94]). Therefore, when we use the above defined notation
� ����� �	� > � we implicitly assume that we only deal with full binary trees.

In this paper, we consider classes that are characterized via first-order definable leaf
languages. Especially, we deal with the following classes of formulae:

A � � -formula (B � -formula) is a formula in prenex normal form with
�

consecu-
tive blocks of quantifiers, where in each block all quantifiers are of the same type, ad-
jacent blocks contain quantifiers of opposite type, and the first block is of existential
type (universal type resp.). Let � � -FO (B � -FO, � � -SO, and B � -SO) be the set of first-
order � � -formulae (first-order B � -formulae, second-order � � -formulae, and second-
order B � -formulae resp.).

For a formula C we denote the class of finite ordered structures that are models of
C by D*EF4 � C � . As abbreviations, we use � ����GD)EF4 � � � -FO � , B ����GD)EF4 � B � -FO � ,
� :� �HD)E=4 � � � -SO � , and B :� �8D*EF4 � B � -SO � .

Since we are interested in characterizations of complexity classes, we consider in
this paper only ordered finite structures, which are structures over signatures that do not
contain constant or function symbols but a symbol I for a linear order on the universe.
We do not use the successor relation.

We use an encoding J of strings into ordered finite structures defined in the usual
way. Let # be a finite set of symbols and K � LNMOE5P � � #Q� �SR . The images of J are or-
dered finite structures over the signature TVU�� �XW :ZY?[?[?[\Y W U Y I�� with unary predicatesW :ZY?[?[?[ZY W U . For a fixed enumeration of the symbols in # , let 9=] be the ^ -th symbol in
. If the � -th element in the string 1 �*# � is 9/] , then

W�_ � � � �a` in J � 1 � , iff the b -th
bit in the binary encoding of ^ is ` , for all c)debfdgK and ` �h�\i Y cj� . Note, that J

3

is one-one and if � #Q� is a power of two, the J is an isomorphism. Since the latter case
sometimes plays a special role, we denote a finite set of symbols by #�� , iff � #��!� ��� � .
If � is a language, then we write J � � � for � J � 1 � � 1 � � � . If � is a class of languages,
then J � ��� �
	��� ��J � � �7� � � �Q� .

Furthermore we sometimes have to encode finite ordered structures into strings.
Since J is one-one, J�� : is a function, too. We define an encoding � from finite or-
dered structures into strings to be J � : but additionally extended to map relations of
arity greater than one into strings. Analogously to the above we write � � D*EF4 � C � � for
the set ��� �
	 � � 	 � ��C � and � � � �� � (� � B ���� , � � � :� � , and � � B :���) for the classes that
are characterized by the corresponding logics.

Sometimes we do not mention the encodings J and � explicitly if the meaning will
be clear from the context. That is, instead of writing J � � �
� D)E=4 � C � , � ����� � � � � � �� � �
or J �
�� � � � :: , we simply write � � D*EF4 � C � , ������� ��� � �� � , and
 �2� � :: , having in
mind that we compare objects of different types.

In a seminal paper Fagin [Fag74] connected the complexity of computations with
the syntactic complexity of logical languages. He showed the following: Let be
a nondeterministic polynomial time Turing machine that recognizes a language over
some alphabet # . Following the above discussion we assume that on every input, ’s
computation tree is a full binary tree. Fagin constructed an existential second-order
formula �7� that describes the computation of . The formula � � is of the form����� � � � � where

� � is a first-order formula that has no free first-order variables and
that additionally contains the free second-order variables

�
. The arities and the number

of the second-order variables are determined by the construction, see [Fag74].

Proposition 2.1 ([Fag74]) J �
�� � � � :: and
�� ��� � � :: � .
Let us consider a nondeterministic Turing machine that is � � time-bounded and that

produces a full binary computation tree for all inputs. It is possible to represent a path
in a computation tree of depth � � using a string � � �\i Y cj� @�� . We enumerate the paths� �] � :��0]
�;<�� � using the lexicographical ordering on �\i Y cj� @ � . Analogously, we can enu-

merate the assignments
� ���] � :��0]
�;< � � of a

�
-ary second-order variable

�
using the lex-

icographical ordering on characteristic sequences. In this paper we want to use a direct
correspondence between the paths �] in the computation tree and the assignments

���]
of
�

:

Proposition 2.2 Let be a � � time-bounded NTM as above. There exists a � : -SO
formula of the form

� � ����� � � � Y � � , such that for all inputs 1 of length � and for all

c d ^ d�� @ � , we have that accepts 1 on path �] iff
� J � 1 � Y � �"!$#&%] �7� � � �'� � � � � .

Proof. We slightly modify the construction in [Fag74] by introducing a
�

-ary second-
order predicate

� ! � % such that its assignment represents the nondeterministic choice
for each step of the computation. That is, for each assignment

� �
the assignments�'�: Y �(�< Y?[?[?[ZY �(�) of

�
are uniquely determined. ❑

4

3 Results

In order to extend the limited capabilities of first-order predicate logic it has been tried
to enhance its expressibility power by adding different sorts of operators or quantifiers.
The in our opinion most systematic and formally most elegant approach to this is to
consider so called Lindström quantifiers.

Consider the classical first-order existential quantifier applied to some quantifier-
free formula � with free variable � , i.e., consider the formula ��� � ��� � � � . Given
an ordered structure

	
, we can associate a binary (i.e., i - c) sequence 9�� with � by

evaluating � for every possible value of � from � � and then adding i for false and c for
true to 9�� . To be more formal: If � is assigned to � then 9�� � ��� �&c iff � � � � evaluates
to true. The formula � evaluates to true in

	
if the above defined sequence 9�� is such

that it has at least one position with the value c . It is immediate to give a condition for
sequences corresponding to a universal quantifier (all positions must be c), or for the�
	

quantifier (exactly one position must be c), or for the modular quantifiers
��� � (the

number of c positions must be equivalent to i mod
�

).

Thus, it is very natural to define generalized quantifiers by considering arbitrary
conditions on binary sequences (which we will call logical acceptance types). Let us
give a formal definition.

Let be a set of � -tuples of finite binary sequences, i.e., consists of tuples� 9;:ZY?[?[?[ZY 9�� � where for every ^ (c d2^ d��), 9] is a mapping from �/c Y?[?[?[\Y � � to �\i Y cj�
for some

�
. We call such a a logical acceptance type. The set of all � -tuples of finite

binary sequences will in the following be denoted by � � ��� .
Then we denote the Lindström quantifier given by by ��� . By ��� � � -FO we de-

note the set of formulae built as follows: If � :ZY?[?[?[!Y � � are � � -FO formulae, each over� free variables � � � � : Y?[?[?[ZY � � � , then � � ��� � : � � � Y?[?[?[\Y � � � � ��� is a � � � � -FO for-
mula. The semantics of such a formula is defined as follows: Let

	
be a finite struc-

ture over the corresponding signature. Then
	 � ����� ��� � : � � � Y?[?[?[!Y � � � � ��� if the tuple� 9;:ZY?[?[?[ZY 9�� � is in , where the sequences 9] are defined as follows: For c d � de��� � �) ,

9] � ��� �&c if and only if
	 � ���] � � � where � is the rank of � on the order of � -tuples over	

(c d ^ d �). ���jB � -FO is defined analogously. We write � �� � �� for D)EF4 � �!� � � -FO �
and � �� B �� for D)E=4 � ��� B � -FO � .

Given a Lindström quantifier ��� , define " 	� to be the set of first-order formulae in
prenex normal form that starts with one quantifier �#� followed by arbitrary first-order
formulae (this notation is from [Got95]). Observe that for every C �$" 	� there is a� �&%
 such that C is logically equivalent to a ��� � � -FO formula.

Considering the set of sequences where at least one value is c (all values are c ,
exactly one value is c , the number of c values is equivalent to i module some

�
,

resp.), we see that the usual quantifiers mentioned above are special cases of the just
given definition. Similarly, can encode any property, say of a graph-theoretic na-
ture, to capture e.g. the transitive closure operator or the Hamiltonian path operator (see
[Imm87, Ste92]).

We remark that our definition resembles very much the definition of group quanti-
fiers from [BIS90]. Our definition slightly differs w. r. t. two details from the one given

5

in [EF95, Got95]: First, we only consider Lindström quantifiers defined by ordered
structures. Since we are interested in characterizations of complexity classes this is no
actual restriction. Second, in the definition from [EF95] the formulae �] may differ in
the number of free variables. However, for every Lindström quantifier in the sense of
[EF95] it’s possible to construct an equivalent ��� . To get an overview of what is known
about predicate logic with generalized quantifiers, see the excellent report [Got95] or
Chapter 10 of the recent textbook [EF95].

Addressing again the group quantifiers from [BIS90] we see that it is possible to
view logical acceptance types as languages: Consider for concreteness the group ���
of all permutations on five positions. ��� consists of 120 elements. Thus the elements
of ��� can be encoded in binary by 7-bit sequences. Let now ���� be the following set
of 7-tuples of binary sequences: If

� 9�:ZY?[?[?[ZY 9	� � is such a tuple with every sequence
defined on �/c Y?[?[?[\Y ` � (for some ` � %
), then for every ^ , c d ^ d ` , the 7-bit
string 9;: � ^ � 9=< � ^ � >?>?>�9	� � ^ � encodes an element from ��� which we denote by # � ^ � . Now� 9 : Y?[?[?[ZY 9 � � �� �
� if and only if # � c ��� # � ���� >?>?> � # � ` � � � � , where � denotes
multiplication is ��� and

� � is the identity permutation. Let ���
� be the quantifier defined
by �� � . Then ��� � is a group quantifier in the sense of [BIS90].

The way we encoded the word problem for ��� by a suitable � ���� can of course be
considered generally: If � � � � � is a set of � -tuples of binary sequences, then every
such tuple with sequences defined over �/c Y?[?[?[!Y ` � defines a word over # � (defined
in the Preliminaries) of length ` . Thus, every logical acceptance type � � � ��� is
essentially a language over # � .

To characterize the power of leaf languages defined with " 	� formulae, we de-
fine second-order Lindström quantifiers. Our definition will be inspired by an intuition
similar to the one for the first-order case given above: Given a second-order formula
� � ��� C � � � , we can again construct a binary sequence 9	� with one bit for every pos-
sible assignment of

�
in a given input structure

	
. � evaluates to true in

	
if there

is at least one c in 9�� . By allowing general conditions on such sequences we define
second-order Lindström quantifiers:

Let � � � � � be a logical acceptance type as above. By ��� � � -SO we denote the set
of formulas built as follows: If C :ZY?[?[?[ZY C � are � � -SO formulas, each over � free pred-

icates
� � � :ZY � < Y?[?[?[ZY �) , then ��� ��� C : � � � Y?[?[?[!Y C � � � ��� is a ��� � � -SO formula.

The semantics of such a formula is defined as follows: Let � be the sum of the arities
of all predicate symbols in

�
. Then we can identify one possible assignment of

�
over

a set � � with its characteristic sequence ���� which is a binary string of length ��� � �) .
Based on the lexicographic ordering of these strings, we define an ordering on assign-
ments of

�
. Let now

	
be a finite structure over the corresponding signature. Then	 � ��� � � � C : � � � Y?[?[?[\Y C) � � � � if the tuple

� 9 : Y?[?[?[\Y 9 � � is in , where the sequences 9]
are defined as follows: For c d � d���� "!#� $, 9/] � ��� � c if and only if

	 � �8C] � � � where
� is the rank of

�
in the above-sketched order of assignments of

�
(c d ^ d��). Anal-

ogously to the first order case, we also define ��� B � -SO, " 	� -SO, � :� � :� , and � :� B :� .
We use ��� -FO and �!� -SO as abbreviations for ��� � � -FO and ��� � � -SO, resp.

The definition of second-order generalized quantifiers yields the well-known spe-
cial cases: If we think of existential and universal quantifiers as special first-order Lind-

6

ström quantifiers, then the corresponding second-order Lindström quantifiers are ex-
actly the familiar second-order existential and universal quantifiers.

Following the proof of Fagin [Fag74] there is a correspondence between leaf lan-
guage definability and second-order Lindström quantifiers. Recall the formula

� �
from Proposition 2.2.

Proposition 3.1 Let be a nondeterministic polynomial time machine. Then we have

� ����� � � � �aD*EF4 � �!� � � � ��� � � � Y � ��� � .
Our next theorem generalizes this connection. As it turns out, in order for our gen-

eralization to hold the Lindström quantifier must have a particular property, which can
best be visualized in terms of the acceptance type . We say that ��� � � � is closed
under padding if there is a symbol ' �f# � such that for every word 1 �f# � we have
that 1 � if and only if 3 �54 6 � 1 � ��# � .
Theorem 3.2 Let be a logical acceptance type which is closed under padding. Then

� ����� � � " 	� � �HD*EF4 � " 	� -SO � [
The proof of this theorem essentially requires two constructions. Those construc-

tions reflect the definition of " 	� . In the first part (Theorem 3.3 below) we address quan-
tifier prefixes consisting only of a Lindström quantifier, and in the second part (Theo-
rem 3.4) we address � � prefixes. The proof of Theorem 3.2 then is a combination of
these two proofs.

Theorem 3.3 Let be a logical acceptance type which is closed under padding. Then
we have that � ����� �	� ��� -FO � �HD*EF4 � ��� -SO � .

Theorem 3.4 ������� ��� � ���� �HD*EF4 � � � -SO � .

Theorem 3.4 follows immediately from the following two lemmas:

Lemma 3.5 � ����� � � � �� � � � :� for all
��� c .

Proof. We construct for a given � � -FO-formula C���� and for a polynomially time-
bounded nondeterministic Turing machine a � � -SO formula C ��� and then show
for all 1 � � � that J � 1 �,� �8C ��� , iff accepts 1 with the leaf language that is defined
by C���� .

Let be a polynomially time-bounded nondeterministic Turing machine such that
the computation tree of is a full binary tree for all inputs. Let us first consider the
case, that � , the set of symbols that produces on every computation-path (see Sec-
tion 2), has two elements. We will discuss the other case at the end of construction.

Let
� � be the � : -SO-formula which formalizes the computation of as described

in the preliminaries.
� � contains the second-order variables

�
and

�
. An assignment

7

of
�

represents the nondeterministic choices and for a fixed assignment of
�

there
exists exactly one assignment of

�
that represents a computation path of . From� � � � Y � � we can obtain a formula
� ��� ���� � � Y � � that for all suitable finite ordered

structures
	

is true on
� � Y � � , iff

� �
represents a correct computation path of

w. r. t. the nondeterministic choices given by
� �

.

Let C���� be a first-order formula of the form
� � : � � <�[?[?[� � � � � ��� � � :ZY � < Y?[?[?[\Y � � �

over
�XW ! : % Y I�� . We construct a � :� formula C ��� by replacing the variables and atomic

predicates in
�
��� in the following way:

[
� �]] We replace all first-order variables �] in

�
��� by tuples of second-order vari-

ables
� �] Y �] � and thus transform the existential first-order quantifier that bounds

�] into a sequence of second-order quantifiers that bound
�] and

�] . To ensure
that an assignment of

�
represents a correct computation path, we replace

� �] � by� �] Y �] � � ��� ������] � �] Y �] �
	 ��� . In order to obtain a formula in prenex normalform, the

formulae
� �� ������] � �] Y �] � and

� ��� ������ _ � � _ Y � _ � have no variables in common, for all ^ (� b .
[
� �]] We replace the universal quantifier

� �]�� � by
� �] Y �] � � �� ������] � �]SY �] ��� � � .

[
W � �] �] We replace each occurrence of

W � �] � by the � :� -formula
� ���] � �] Y �] � which

we obtain by renaming the first-order variables in
� � � �] �] � such that for all ^7(�$b the

formulas
� ���] � �] Y �] � and

� ��� _ � � _ � _ � have no variables in common.

[
� �] I � _ �] We have to extend the ordering over first-order variables to an ordering

over the tuples
� Y � of second-order variables. This can be achieved by well-known

techniques.

For � � ��� � , we have to consider first-order formulae over signatures that have
` � LNM E5P � � � R unary predicates. As described in Section 2, it is possible to encode
the symbols of � in binary. For a fixed encoding it is possible to construct ` formulae� :���] � � Y �] � [?[?[��� ���] � �] Y �] � that realize this encoding.

To complete the proof, we have to show for all 1 � � � :
1 � ������� � � J � : � D*EF4 � C���� � � � , iff J � 1 ���)D*EF4 � C ��� �

Let � � 1 � � � ��� !$#&% Y � � !$#&%: Y � � !$#&%) Y�� � ! # % � be the following structure. ��� ! # %
is the set of assignments of

�
in J � 1 � , and

� � ! # %] is the set of those assign-
ments

� �"!$#&% such that there exist assignments
� �"!$#&% and

�] � evaluates to true on� J � 1 � Y � � ! # % Y � � ! # % � . ��� ! # % is the above described lexicographical ordering on
��� !$#&% . It follows from Proposition 2.2 that J � ��� � 1 � � and � � 1 � are isomorphic.

From the construction of C���� it follows that � � 1 � � � C���� , iff J � 1 �f� � C ��� .
Therefore, we have that

1 � � ����� ��� J � : � D)E=4 � C���� � � ����� J � ��� � 1 � � � �8C����
��� � � 1 � � � C ���
��� J � 1 � � �8C ��� [

❑

8

Lemma 3.6 � :� � � ����� � � � �� � for all
��� c .

Proof. Let C ��� be a � � -SO formula with ` second-order variables. We construct
a polynomially time-bounded NTM and a � � -FO formula C ��� defining a leaf-
language J�� : � D*EF4 � C���� � � � ��� , such that for all ordered finite structures

	
over

the corresponding signature:
	
�)D*EF4 � C���� � , iff � �
	 � � ������� � � J � : � D)E=4 � C���� � � �

On input � �
	 � the NTM determines nondeterministically the assignments of the
second-order variables. That is, on each computation path, writes the characteris-
tic sequence of one possible assignment on its worktapes. Using these characteristic
sequences, evaluates the first-order part of C���� .

For � : -SO formulas, the corresponding leaf language is defined by
� � W � � � , and

for B : -SO formulas the corresponding leaf language is defined by
� � W � � � .

For
� � c , we have to mark for all second-order variables �] (c d ^ dG`) the

paths that share the same assignments � �] in the following way: We define � to contain
the symbols � , � , and ^ for all ^ � �/c Y � Y?[?[?[!Y ` � . For all c)d%^ d%` produces
nondeterministically the characteristic sequence of an assignment of �] and an extra
bit �] .
(-) If the assignment is empty (the leftmost path) and �] is 0, then produces on all
subsequent branches the symbol ^ .
(-) If the assignment is the full relation (the rightmost path) and �] is 1, then produces
on all subsequent branches the symbol ^ .
(-) In all other cases, the bit �] is ignored and continues as described above. If the
evaluation yields true, then produces � , and � otherwise. It is easy to see that, if
there are two paths marked with ^ and all paths between are not marked with ^ , then all
the pathes between have the same assignment of �] � : in common, for c I ^ d ` .

As described in the preliminaries, the symbols of � (� � � �a`�� �) can be encoded
using LNMOE5P � `�� ���SR unary predicates. By boolean combinations of these, we construct
formulae that express that a path produces � , � , or ^ , for c de^,d ` . We abbreviate
these formulae by

W
� ,
W
	

, and
W] resp. The fomula � �XW � � � �� W
	 � � � � we abbreviate

by
W
�

��� � ��	
� � � .

For c d ^ I�` let � �?P�� E��] � � Y�� � be an abbreviation for the formulaW] � � �
	 W] � � � 	 ���] � �*d �] d � ��� W] � �] � � [
For

� �hc we construct inductively a sequence of formulae C � Y C � � : Y?[?[?[!Y C : . Then
the desired formula C ��� will be C : . Let C � � ��� �� � Y � � ��� � � � be the formula

� � �
� � �� �� � d � � d � � ��� � � 	��

W
�
��� � ��	

� � � � 	 W 	 � � � � � Y or

� � � � � �� �� � d � � d � � ��� � � 	��
W!�

��� � ��	
� � � � � � W 	 � � � � � Y

depending on the rightmost quantifier. For the ^ -th alternation
� c I�^ I � � , let us first

consider the case, that � _#" Y?[?[?[!Y � _�$ are existentially quantified and � _%" � : and � _�$: are
universally quantified. We define C] � ��� �� � Y � � ��� � � � to be the formula

� �] Y��5] � � �?P�� E�� _&$ � �] Y��5] �
	 � �� �� � d �] �
	 � �5] d � � ��� � � �
	 C] 	 :
� �]SY��5] � � [

9

Transforming this into prenex normal form we get a quantifier prefix starting with� �]SY��5] ��� _�$ � �] 	 :?Y��5] 	 : [?[?[.
Now consider the case that � _%" Y?[?[?[\Y � _&$ are universally quantified and � _#" � : , � _&$:

are existentially quantified. We define C] � ��� �� � Y � � ��� � � � to be the formula

� �] Y��5] ��� � �?P�� E�� _&$ � �] Y��5] �
	 � �� �� � d �] �
	 � �5] d � � ��� � � ����� C] 	 :
� �] Y��5] � � [

Transforming this into prenex normal form we get a quantifier prefix starting with� �]SY��5] � � _�$ � �] 	 :?Y��5] 	 : [?[?[.
Let � _ 	 : be the leftmost universally quantified second-order variable in C���� . We

define C���� �8C : to be the formula
� � :?Y��F:

�
� �?P��OE�� _ � �]SY��5] � 	 C] 	 :

� �] Y��5] � � . ❑

Proof. (of Theorem 3.3)
We use the ideas of the proofs of Lemmas 3.5 and 3.6. For the direction from left to
right, we are given a polynomial time machine and a leaf language which is defined
by the ��� -FO formula ��� ��� � : � � � Y?[?[?[!Y � � � � ��� . � � is the Fagin-formula describing
the behaviour of .

� � has free relational variables
�

and
�

. Every first-order for-
mula �] (c d ^ d �) is transformed into a second-order formula �] which is built from
�] as in the proof of Lemma 3.5 by replacing every first-order variable � _ by

� � _ Y � _ �
and using the Fagin formula instead of the input predicates. However, we have to con-
sider assignments for

�
which do not encode valid computations. These assignments

do not lead to symbols in the leaf word of machine , but they appear in the sequence
9�� corresponding to � . From a logical point of view, what we need here is the rela-
tivization (see [EFT94]) of the quantifier � � by the formula

� ��� ���� which ensures that
assignments of

�
encode valid computation paths. This can be solved as follows: Mod-

ify � such that if
�

does not encode a valid computation path in then the correspond-
ing letter in 9 � is the letter ' by which words in can be padded arbitrarily.

For the direction from right to left, suppose we are given a � � -SO formula

�!� ��� C : � � � Y?[?[?[!Y C � � � ��� . Construct a Turing machine which branches by guess-

ing assignments to the second-order variables and evaluates the first-order part in a
straightforward manner. Thus this machine can produce a leaf word which is ex-
actly the word corresponding to the sequences 9�� " Y?[?[?[ZY 9���� . If we now take as
leaf language � # � , then we see that accepts exactly models of the given
�!� -SO formula. The leaf language can trivially be defined by the �#� -FO formula
�!� � �XW : � � � Y?[?[?[jY W � � � � � . ❑

Proof. (of Theorem 3.2)
We show how to combine Theorem 3.4 and Theorem 3.3 to prove Theorem 3.2.

To show J � ������� � � � �� � �� � � � � :� � :� , we combine the proofs of Lemma 3.5
and Theorem 3.3 in the following way: Given a ��� � � -FO formula C of the form
�!� ��� � : � � � Y?[?[?[\Y � � � � ��� , we first transform the � � -FO formulae

� :�Y?[?[?[!Y � � into
� � -SO formulae as in the proof of Lemma 3.5. The Lindström quantifier then is trans-
formed as in the proof of Theorem 3.3.

For the opposite direction, we show � � � :� B :� ��� � ����� � � � �� B �� � . Let C �
�!� � � � : � � � Y?[?[?[!Y � � � � ��� be a �!� B � -SO formula and let the Turing machine be

10

constructed as in the proof of Lemma 3.6. Again, we have substrings of the leaf string
corresponding to assignments of

�
. Conceptually, we can evaluate the first-order for-

mulas that are constructed in the proof of Lemma 3.6 for each such substring. An input
is accepted if this evaluation yields true or false according to . But we have to over-
come the following technical difficulty: Every second-order variable bound by �#� is
transformed into two first-order variables. These are intended to denote the left and
right margin of a substring to be evaluated. The first-order formula that follows the
Lindström quantifier is evaluated for all pairs of assignments of those variables. If such
a pair does not denote the left and right margin of a substring (this is expressible using
a universal quantifier) then the evaluation of the first-order formula has to encode the
corresponding padding symbol in . That is, we again make use of the assumption that
 is closed under padding. The extra universal quantifier to check the margins can be
added to the first block of universal quantifierst of the B � -SO formulae. ❑

We now state some corollaries of our main result. Observe the proof of Theorem 3.3
shows that on the leaf language level we don’t need the full power of � � -FO. Actually,
just the leaf language itself is sufficient; thus we get the following very close corre-
spondence between leaf languages and logical acceptance types:

Corollary 3.7 ������� � � � �HD)E=4 � ��� -SO � .

Another corollary of our main result is the following leaf language characterization
of the classes of the polynomial time hierarchy:

Corollary 3.8 1. � ����� �	� � �� � � � :� � � � � .
2. ������� � � B �� � �HB :� �HB � � .

Proof. Immediately by Lemmas 3.5 and 3.6, their duals for B -classes, and Stock-
meyer’s model-theoretic characterization of the classes of the polynomial hierarchy
[Sto73]. ❑

Since � � -LOGTIME � � �� , the just given result tightens the up to now known
characterization � ����� � � � � -LOGTIME � � ���� .

Finally, we want to address an interesting special case: the class �
��� ���� . Bar-
rington, Immerman, and Straubing showed that first-order logic with group quantifiers
defines exactly the regular languages [BIS90]. Hertrampf et al. [HLS 	 93] who charac-
terized �
� ������� by regular leaf languages showed that in fact for this characterization
already one single regular language, the word problem for the group ��� , is sufficient.
Thus, this leaf language characterization yields the following:

Proposition 3.9 ��� ������� �HD)EF4 � ���
� -SO � .

11

4 Discussion

As we have seen, Lindström quantifiers which are a well studied logical concept have
a complexity theoretic counterpart: the so called leaf language definability, which has
been studied intensively in the recent past.

Second-order Lindström quantifiers define (in a model theoretic sense) exactly
those languages characterizable by leaf languages for polynomial time machines. If �#�
is a Lindström quantifier, then the logic � � -SO defines the complexity class � ����� � � � .
Thus it maybe possible that results about leaf languages contribute to the study of the
expressive power of second-order Lindström quantifiers on ordered finite structures,
and vice versa.

Of course, it would be nice to have a leaf language analogue for first-order Lind-
ström quantifiers. To be able to do this one will have to consider “leaf languages for
���

” instead of leaf languages for polynomial time. To be more precise, what is an ap-
propriate restriction of the computation model producing leaf words?

Gottlob in [Got95] showed that under some particular assumptions to , first-order
formulae with arbitrarily nested ��� and existential and universal quantifiers yield su-
perclasses of � (the logspace decidable sets). Thus, in the context of leaf language char-
acterizability, this results in superclasses of �
� ������� [HLS 	 93]. However, more de-
tailed characterizations seem to be an interesting point for future research—of course
also in the absence of the assumptions from [Got95].

Furthermore, one should consider leaf languages defined by second-order formu-
lae to investigate the structure of complexity classes above exponential time, e.g. the
exponential time hierarchy.

References

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define
complexity classes. Theoretical Computer Science, 104:263–283, 1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and H. Straubing. On unifor-
mity within
 � : . Journal of Computer and System Sciences, 41:274–306,
1990.

[CMTV95] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic

 � : computation. Technical report, Université de Montréal, 1995.

[EF95] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer, 2nd edition, 1994.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial time recogniz-
able sets. In R. Karp, editor, Complexity of Computations, pages 43–73,
1974.

12

[Got95] G. Gottlob. Relativized logspace and generalized quantifiers over finite
structures. Technical Report CD-TR-95/76, Institut for Information Sys-
tems, Vienna University of Technology, 1995. An extended abstract ap-
peared in the proceedings of the 10th Symposium on Logic in Computer
Science, 1995.

[Her95] U. Hertrampf. Regular leaf-languages and (non-) regular tree shapes.
Technical Report A-95-21, Institut für Mathematik und Informatik, Medi-
zinische Universität zu Lübeck, 1995.

[HLS 	 93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wag-
ner. On the power of polynomial time bit-reductions. In 8th Ann. Conf.
Structure in Complexity Theory, pages 200–207, 1993.

[HVW] U. Hertrampf, H. Vollmer, and K. W. Wagner. On balanced vs. unbalanced
computation trees. Mathematical Systems Theory. To appear.

[HVW95] U. Hertrampf, H. Vollmer, and K. W. Wagner. On the power of number-
theoretic operations with respect to counting. In 10th Ann. Conf. Structure
in Complexity Theory, pages 299–314, 1995.

[Imm87] N. Immerman. Languages that capture complexity classes. SIAM Journal
on Computing, 16:760–778, 1987.

[JMT94] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf lan-
guages. In 9th Ann. Conf. Structure in Complexity Theory, pages 242–254,
1994.

[Lin66] P. Lindström. First order predicate logic with generalized quantifiers.
Theoria, 32:186–195, 1966.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Ste92] I. A. Stewart. Using the Hamilton path operator to capture NP. Journal of
Computer and System Sciences, 45:127–151, 1992.

[Sto73] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1973.

[Str94] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, 1994.

13

