
Revision 01 of
ECCC TR96-005

Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Email: ftpmail@ftp.eccc.uni-trier.de with subject ’help eccc’

Lindström Quantifiers and Leaf Language

Definability

Hans-Jörg Burtschick
Fachbereich Informatik

TU Berlin
Franklinstr. 28/29

D-10587 Berlin

Heribert Vollmer
Theoretische Informatik

Universität Würzburg
Am Exerzierplatz 3

D-97072 Würzburg

Abstract

We introduce second-order Lindstr öm quantifiers and examine analogies to

the concept of leaf language definability. The quantifier structure in a second-

order sentence defining a language and the quantifier structure in a first-order

sentence characterizing the appropriate leaf language correspond to one another.

Under some assumptions, leaf language definability and definability with second-

order Lindstr öm quantifiers may be seen as equivalent. Along the way we tighten

the best up to now known leaf language characterization of the classes of the

polynomial time hierarchy and give a new model-theoretic characterization of

PSPACE.

1 Introduction

Initiated by Fagin’s seminal paper [9] characterizing NP as the class of generalized

spectra, there has been a long line of research in characterizing complexity classes

using notions from finite model theory (see the recent textbook [8]). In classical com-

plexity theory problems are classified by defining restrictions on different computa-

tional resources as e.g. space or time. Using in contrast to this the syntactic complexity

of a defining formula it is possible to measure the descriptive complexity of problems,

e.g. by considering the complexity of quantifier prefixes of prenex formulae. Besides

the well-known existential and universal quantifiers recently the expressive power of

a certain kind of generalized quantifiers, the so called Lindstr̈om quantifiers, has been

examined [16]; for an overview see Chapter 10 of [8]. An extensive overview over the

literature can be found in [10].

In the field of computational complexity characterizations of complexity classes by

so called leaf languages have been studied intensively. This approach was introduced

1

by Bovet, Crescenzi, and Silvestri in 1992 [4] and independently by Vereshchagin in

[21] as a unified approach to define complexity classes. Consider a polynomial-time

nondeterministic Turing machine
�

that prints a value on every path of its compu-

tation on some given input � . These values are at the leaves of the (not necessarily

fully balanced) binary tree defined by the nondeterministic choices of
�

on input � .
An ordering of the tuples in the program of

�
determines, for each nondeterministic

choice node of the tree, which child is “left” and which is “right”. This in turn fixes a

left-to-right ordering of all the leaves. We call the corresponding sequence of values

the leaf string of
�

on input � . (The particular ordering of tuples in the program of

M does not matter.) Given now a (leaf) language � , a complexity class LeafP � ��� is

defined as follows: A set � is in LeafP � ��� if and only if there is a nondeterministic

Turing machine that on input � produces a leaf string which � such that �	�
� if and

only if ����� .
Starting with the somewhat surprising result that the class PSPACE can already be

characterized in this way using only regular leaf languages [12], a lot of characteriza-

tions were given [15, 13, 14, 6], leading to a number of remarkable and unexpected

normal forms for such classes as PSPACE (via bottleneck machines [12]), PP (via ma-

chines where accepting and rejecting computation paths form two clusters [14]), and

#P (where all relativizable closure properties were identified [13]). Even separations

of circuit classes could be proved using leaf languages as a technical vehicle: Allender

showed in [1], building on previous work by [6], that TC �� PP.

It turns out, as we show here, that both concepts—Lindstr öm quantifiers and leaf

language definability—are closely related: Leaf language defined complexity classes

can (under certain assumptions) be characterized by second-order Lindstr öm quanti-

fiers that are followed by first-order formulas, and vice versa for every formula of this

form there is a leaf language and a nondeterministic polynomially time-bounded Tur-

ing machine that define the corresponding model class. Thus Lindstr öm quantifiers

and leaf language definability are two points of view of essentially the same concept.

Relying on both views one might hope to get new insights into the expressive power

of Lindstr öm quantifiers on ordered finite structures and properties of leaf language

defined complexity classes.

We give some results in this direction in this paper: The polynomial time hierarchy

introduced by Stockmeyer in [18] is one of the central concepts in complexity theory.

Thus of course there have been efforts to give leaf language characterizations of this

hierarchy. In [12] it was shown that using AC as leaf language class, one obtains

the union of all classes of the polynomial hierarchy, and using the � -th level of the

Brzozowski- (or dot-depth-) hierarchy [19] as leaf language class, the boolean closure

of the class � p� is obtained. In [15] it was proved that LeafP � � � -LOGTIME ����� p� .

2

Using first-order definable leaf languages we prove a tighter connection: We show

that the � -th level from the polynomial time hierarchy can be characterized using leaf

languages that can be defined using first-order � � formulae. As another example of

how a combination of model-theoretic and complexity theoretic arguments can lead to

new results, we show how to use a theorem from [12] to derive a new model-theoretic

characterization of PSPACE.

These results are special cases of a general theorem which states that if a leaf

language is defined by a formula in prenex normal form starting with one Lindstr öm

quantifier and followed by a sequence of universal and existential quantifiers, then the

characterized complexity class can be defined in a model-theoretic way by a second-

order formula with exactly the same quantifier structure. Thus we see that using meth-

ods from finite model theory we are able to tighten existing complexity theoretic re-

sults. We think that generally it is a good idea to specify leaf languages in a descriptive

way. One purpose when considering leaf language definability is to separate the com-

putational aspect in the definition of a class from the way the computation (in form

of the computation tree constructed by a nondeterministic machine) is evaluated. This

evaluation scheme should therefore be given in a way free of computational aspects

whatsoever. This goal is achieved using finite model theory to specify leaf languages.

Other connections between leaf language definability and finite model theory are

established in [20]. He considers logical reducibilities [8] as e.g. first-order reducibility

and projection reducibility to succinct representations of languages. This concept of

succinct representations may be viewed as a special case of leaf language definability

(see also [3]). However, the results achieved in his paper are incomparable to ours.

2 Preliminaries

Leaf languages were introduced and used to define complexity classes in [4, 21, 12]

(see also the recent textbook [17]). Let
�

be a polynomial time-bounded nondeter-

ministic Turing machine. Given an input � , such a machine produces on every path a

symbol from some finite alphabet � . Let ��� � � � be the string of the so produced sym-

bols (based on the natural order of paths of the machine). Then for ������� , we define

Leaf � � ��� � def 	 ��

 ��� � � � � �� . The class LeafP � ��� is the class of all languages

Leaf � � ��� for all nondeterministic polynomial-time machines
�

. Here, � is the so

called leaf language defining the class LeafP � ��� . If � is a class of languages, then we

define LeafP � � � � def ������� LeafP � ��� .
As it turned out [15, 14], it plays a crucial role whether in the above definition

we allow arbitrary Turing machines or we require that the computation trees produced

have a special shape. For the case of full binary trees we use the notation FBTLeafP � � � ,
3

see [11]. Note, that with respect to the produced leaf string only the nondeterministic

branches, but not the length of the path is relevant. In the rest of the paper we will

use nondeterministic Turing machines
�

having the following property: Let � be the

smallest natural number such that
�

is �
�

time-bounded. Then all computation-paths

are exactly of length �
�
. This may be achieved in an unique way using left branches, if

the length of a path is smaller than �
�
. For every polynomial time-bounded nondeter-

ministic Turing machine
�

there exists a polynomial time-bounded nondeterministic

Turing machine
���

fulfilling the above property such that ��� � � � � ����� � � � for all

inputs � . Thus, when write LeafP � � � we use Turing machines as described above.

It can be seen that in a special case the distinction between full binary trees and the

general case is unnecessary. For this, given a language
� � ��� for some alphabet � ,

and a letter 1 �� � , define pad1
��� � to be the regular language 1 �
	�� 1 �
	� 1 ������� 1 �
	�� 1 �

for � ��	���	��������	�� ; and let pad1
� � � � def ��� ��� pad1

��� � . Say that a language class�
is closed under padding iff for

� � � also pad1
� � ��� � . Now it can be seen

that LeafP � � � � FBTLeafP � � � whenever
�

is closed under padding [15]. We remark

that generally all language classes defined by automata (finite automata, pushdown

automata, Turing machines) are closed under padding. This also applies, as we will

see later, to most of the subclasses of the regular languages we consider.

Later we will also allow different padding symbols. For this let � be an alphabet

such that ����� � � . Then pad ! ��� ��� � �#"$��� � is the language pad ! ��� � � def

� � 	��%� � 	�&� � �����%� � 	��'� � for � ��	���	��������	�� .
In this paper, we consider classes that are characterized via logically defined leaf

languages. Especially, we deal with the following classes of formulae:

FO is the class of all first-order formulae, SO is the class of all second-order formu-

lae. We use the notations � � and (� (� �� and (��) to denote the subclasses of FO (SO,

resp.) consisting of prenex formulae in � � form or (� form, see [8]. For a formula)
we denote the class of finite ordered structures that are models of

)
by Mod �) � .

Since we are interested in characterizations of complexity classes, we consider in this

paper only ordered finite structures, that is, structures over signatures that do not con-

tain constant or function symbols but do contain a symbol * for a linear order on the

universe. We do not use the successor relation.

We use an encoding + of strings into ordered finite structures defined in the usual

way [9] as follows: Let
�

be a finite set of symbols and , �.- log �0/ � / �21 . The images

of 3 are ordered finite structures over the signature 465 �879*;:=<���:?>�>�>�:=<�5A@ with unary

predicates <B�C:?>�>�>D:=<�5 . For a fixed enumeration of the symbols in
�

, let 	FE be the G -th
symbol in

�
. If the � -th element in the string � � � � is 	�E , then <'H � � � �JI in + ��� � ,

iff the K -th bit in the binary encoding of G is I , for all LNMOK�MP, and I �JQFRS:?L?T .
Note, that + is one-one and if / � / is a power of two, then + is a bijection. If � is a

4

language, then we write 3 � � � for 	 + ��� �

 � � � . If � is a class of languages, then

3 � � � � def 	 3 � � �

 ��� � .
Furthermore we sometimes have to encode finite ordered structures into strings.

Since + is one-one, +�� � is a function, too. We define an encoding � from finite or-

dered structures into strings that includes +�� � but also extends to map relations of

arity greater than one into strings. Analogously to the above we write
� � Mod �) � � for

the set 	 � ��� �

 � / �
) , and generally for a structure class � we write

� � � � for

	 � ��� �

 � ��� . (Following [9] we choose to use the symbols
�

and 3 for our

encodings though they are maybe not very intuitive.)

If
�

is a logic (as e.g. FO or SO) and � is a complexity class, then we say that�
captures � iff every property over (encodings of) structures decidable within � is

expressible by
�

sentences (i.e., 3 � � � � Mod � � �), and on the other hand for every

fixed
�

sentence
)

, determining whether � / �) can be done in � (i.e.,
� � Mod � � � � �

�). As an abbreviation we will most of the time simply write � � � .

If
�

is a logic, then LeafP � � � is the complexity class characterized by the leaf

language consisting of all words such that the corresponding structure is a model of

an
�

formula, in symbols:
� � LeafP � � � if there exist a

) � � and a polynomial

time-bounded nondeterministic Turing machine
�

such that for all � , � � � 	�

3 � ��� � � � � / �) .

In a seminal paper Fagin [9] connected the complexity of computations with the

syntactic complexity of logical languages. He showed the following: Let
�

be a non-

deterministic polynomial time Turing machine that recognizes a language over some

alphabet
�

. Let us assume that on every input,
�

’s computation tree is a full bi-

nary tree. Fagin constructed an existential second-order formula � � that describes

the computation of
�

. The formula � � is of the form ���� � � �� � where
� � is a

first-order formula that has no free first-order variables and that additionally contains

the free second-order variables
��
. The arities and the number of the second-order

variables are determined by the construction, see [9].

Theorem 2.1 [9]. NP � � �� , i.e. 3 � NP � � Mod � � �� � and
� � Mod � � �� � � � NP.

Let us consider a nondeterministic Turing machine that is �
�

time-bounded and

that produces a full binary computation tree for all inputs. It is possible to represent

a path in a computation tree of depth �
�

using a string � � Q9RS:?L?T ��� . We enumerate

the paths ��� E�� ��� E�� �� � using the lexicographical ordering on QFRS:?L?T � � . Analogously,

we can enumerate the assignments � ��� E � � � E�� �� � of a � -ary second-order variable
�

using the lexicographical ordering on characteristic sequences. In this paper we want

to use a direct correspondence between the paths � E in the computation tree and the

assignments
�!� E of

�
:

5

Proposition 2.2. Let
�

be a �
�

time-bounded nondeterministic Turing machine as

above. There exists a � �� formula of the form � ��)
Path
� � : �� ���) accept

� �� � , such that

for all inputs � of length � and for all L M G M�� � � , we have that
�

accepts � on

path � E iff � + ��� �%: ����� �
	E � / � ��)
Path
� � : �� ���) accept

� �� � . Here,
)

Path
� � : �� � expresses

that
��

encodes a path corresponding to nondeterministic guesses
�

, and
)

accept
� �� �

expresses that the path encoded by
��

is accepting.

Proof. (Sketch.) We slightly modify the construction in [9] by introducing a � -ary

second-order predicate
� � � 	 such that its assignment represents the nondeterministic

choice for each step of the computation. That is, for each assignment
� �

there exists

exactly one assignment
����

such that ��� : ��� : ��!� � / �) Path. ❑

3 Lindström Quantifiers

In order to extend the limited capabilities of first-order predicate logic it has been tried

to enhance its expressive power by adding different sorts of operators or quantifiers.

One systematic and formally elegant approach to this is to consider so called Lindström

quantifiers.

A first-order formula
)

with � free variables defines for every structure � the

relation
) � � def 	 �	�� �

�

 � / �

) � �	 � , see [8].

Now the idea underlying the definition of generalized quantifiers is the following:

Consider the classical first-order existential quantifier applied to some quantifier-free

formula � with free variable � , i.e., consider the formula �� � � � . Given an ordered

finite structure � , � / � ��� � � � iff � � �� � . Analogously we get � / ��� �� � � �
iff � � � � (

�
is the universe of �). [19] defines modular quantifiers as follows:�8/ � ����� � 	 ��� � � � iff / � � /���� � mod � � . Thus it is very natural to define generalized

quantifiers by considering arbitrary conditions on relations defined by formulae.

Every class of structures � � Struct � 4 � over a signature 4 � 79*;:=< ��:?>�>�>�: P � @
defines the first-order Lindstr öm quantifier � � as follows: Let

) �D:?>�>�>�:) � be first-

order formulae over signature �	� 79*;:�� � @ such that for L;M G M! the number of free

variables in
) E is equal to the arity of <�E . Then � � �����:?>�>�>�: ��"�$#) � � ���� �%:?>�>�>�:) � � ��"� �&% is

a � � FO formula. If � � Struct � � � , then

�O/ ��� � �����:?>�>�>�: ��'�(#) � � ��'� �%:?>�>�>�:) � � ��'� �&% iff � � :%* � :) � � :?>�>�>�:) � � � �)� >
We want to stress the following point: Since we only deal with ordered struc-

tures both � and the elements of � are ordered. In the just given equivalence� is related to structure � � :%* � :)!� � :?>�>�>�:)�� � � , i.e. a structure with the same uni-

verse. In the just given definition, we made the convention that here we assume

6

the order of
�

in both cases to be identical. To be more explicit, we define the

semantics of � � as follows: If � is an ordered structure � � ��� � :%* � � , then
��� � :%* � � / ��� � �����:?>�>�>�: ��'�(#) � � ���� �%:?>�>�>D:) � � ��'� �&% iff � � :%* � :) � � :?>�>�>�:) � � � � � .

Following [10] we also write � � � for � �� FO. Moreover let � �� � � (� �� (�) denote

the subclasses where all the formulae
) ��:?>�>�>�:) � are prenex � � ((�) formulae.

The just given definition is essentially the original definition given by Lindstr öm

[16], which the reader will also find in textbooks [7, 8] and formulated with slight

variations but equivalently in [10]. For our examinations, the following formulation

will be useful (observe that this only makes sense for ordered structures):

Given a first-order formula
)

with � free variables and a corresponding finite or-

dered structure � , this defines the binary string ����� of length �
�

(� � / � /), the so

called characteristic string of
) �

. Now given a sequence
) ��:?>�>�>D:) � of formulae with

� free variables each and a structure � , we similarly get the tuple � � � � � :?>�>�>�:��	�
� � � ,
where / � � � � / �O����� � / � � � � / ���

�
. Certainly, there is a one-one correspondence be-

tween such tuples and strings of length �
�

over a larger alphabet (in our case with � �
elements) as follows. Let

� � be such an alphabet. Fix an arbitrary enumeration of� � , i.e.
� ��� Q 	 :?	���:?>�>�>�:?	�

� � �=T . Then � � � � � :?>�>�>�:�� ��� � � corresponds to the string� � � B����� � � � , where for L M G#M �
�
,
� E � � � , � E �8	 � for that � whose length

binary representation (possibly with leading zeroes) is given by � � � ��# G % ������ ��� � # G�% . In

symbols: � � � � � � � �B:?>�>�>D:�� ��� � � � � � � B����� � � � .

This leads us to the following definition: A sequence #) ��:?>�>�>�:) � % is in first-order

word normal form, iff the
) E have the same number � of free variables. Next we show

that if we restrict � � � such that the FO part is required to be in first-order word normal

form we get no loss in expressive power.

Lemma 3.1. Let � � ��'��:?>�>�>�: ��"� #) � � ���� �%:?>�>�>�:) � � ��"� �&% be a � � FO formula over signa-

ture � . Let � � Struct � 4 � for arbitrary 4�� 79*;:=< �?:?>�>�>D: P � @ . Then there are a signa-

ture 4 � , a class of structures � � � Struct � 4 � � , and first-order formulae #) �E :?>�>�>�:) �� %
over � in word normal form such that Mod � � � ����&:?>�>�>�: ��'�(#) � � ���� �%:?>�>�>�:) � � ��'� �&% � �
Mod � � � � �� #) �� � �� �%:?>�>�>�:)��� � �� �&% � .
Proof. Let � be the maximal arity of predicate symbols <�E (L M G�M) in 4 . Define

4 � to consist of * for a linear order plus predicates of arity � each. Define � �
to consist of exactly those structures � � � � � :%*;:�� �� :?>�>�>�:�� �� � for which there is an� � � � :%*;:�� �
:?>�>�>�:�� � � � � such that for all L M G#M we have: � 	 ��:?>�>�>�:?	���� � �
� E 	�
 � RS:?>�>�>�:6RS:?	��D:?>�>�>�:?	���� � ��� �E (where �0E is the arity of < E , and R is a symbol for

the minimal element in
�

). For the characteristic strings this has the consequence that

���S�� ��� � �6R
� � � � � � � � � � . Now it is not too hard to build the formulae

) �E :?>�>�>�:) �� such that

for all L M G M , � 	���:?>�>�>�:?	���� � �) � E 	
 � RS:?>�>�>�:6RS:?	��D:?>�>�>�:?	���� � � �) �E � � . ❑

7

Thus the following definition of Lindstr̈om quantifiers over languages is equivalent

(w.r.t. expressive power) to the original definition of quantifiers over arbitrary structure

classes � :

Let #) ��:?>�>�>�:) � % be in first-order word normal form. Let � be an alphabet such that
/ � / M � � , and let ��� � � . Then �O/ � � � �� #) � � �� �%:?>�>�>�:) � � �� �&% iff ��� � � � � ��:?>�>�>�:��	� � � � �
� .

We remark that our definition of Lindstr öm quantifiers over languages resembles

very much the definition of group quantifiers from [2]. If
�

is the word problem of

some finite group, then ��� in our notation is exactly the group quantifier given by
�

.

To characterize the power of leaf languages defined with � � � formulae, we now

introduce second-order Lindstr öm quantifiers.

Given a formula
)

with free second-order variables < �?:?>�>�>�:=<�� and a structure� , define
) � � def 	 � � � � :?>�>�>�:�� � � �

 � /�) � � � � :?>�>�>D:�� � � � , and let � ��� � be the

corresponding characteristic string, the order of vectors of relations being the natural

one induced by the underlying order of the universe. If the arities of <��C:?>�>�>D:=<�� are
� ��:?>�>�>�: � � , resp., then the length of � �	� � is � ��
 � ������ � �
�� .

Let 4	� 79*;:C4 ��:?>�>�>D:C4�� @ be a signature, where 4 E � 7A< E � �?:?>�>�>�:=< E � � � @ for L M G M
 . Thus 4 is a signature consisting of a linear order plus a sequence of signatures

with only predicate symbols each. Let �6E�� H be the arity of <'E � H . A second-order structure

of signature 4 is a tuple � � � � :%* � :�� ��:?>�>�>�:�� � � , where for every L;MJG M , � E �
	 � � E � ��:?>�>�>�:�� E � � � �

 � E � H � � ����� � . Given now a signature � �P79*;:�� � @ and second-

order formulae
) � � �� � �%:?>�>�>�:) � � �� � � over � where for every LNMOG M the number

and arity of free predicates in
) E corresponds to 4 E . Let � be a class of second-order

structures over 4 . Then � �� �� ��:?>�>�>D: �� �
�) � � �� � �%:?>�>�>D:) � � �� � ��� is a � �� SO formula. If� � Struct � � � , then

� / � � �� �� ��:?>�>�>�: �� �
�) � � �� � �%:?>�>�>�:) � � �� � � � iff � � :%* � :) �� :?>�>�>�:) �� � � � >

Again we would like to stress that we assume the order on
�

to be the same on both

sides of the equivalence.

Again, we want to talk about second-order Lindstr öm quantifiers defined by lan-

guages. Thus we define analogously to the above: A sequence
�) � � �� � �%:?>�>�>�:) � � �� � ���

of second-order formulae is in second-order word normal form, if the
) ��:?>�>�>�:) �

have the same predicate symbols, i.e. in the above terminology 4 � � ����� � 4�� �
7A<���:?>�>�>�:=<�� @ . Let for L M G M I the arity of <'E be � E . Observe that in this case,
/ � � � �� / � ����� � / � ��� �� / � � �	
 � ������� � �
�� (for � � / � /), thus � � � � �� :?>�>�>�:�� �	� �� � corre-

sponds to a word of the same length over an alphabet of cardinality � � . As before, we

can assume second-order word normal form without loss of generality:

8

Lemma 3.2. Let � �� �� �&:?>�>�>�: �� �
�) � � �� � �%:?>�>�>�:) � � �� � ��� be a � �� SO formula over

signature � . Let � be a class of second-order structures over some signa-

ture 4 � 79*;:C4 ��:?>�>�>�:C4 � @ where 4 E � 7A< E � �?:?>�>�>�:=< E � � � @ for L M G M
 . Then there are a second-order structure � � over a suitable signature 4 �

and formulae #) �E :?>�>�>D:) �� % over � in second-order word normal form such that

Mod � � �� �� ��:?>�>�>�: �� �
�) � � �� � �%:?>�>�>D:) � � �� � ��� � � Mod � � �� � �� �) �� � �� �%:?>�>�>�:) �� � �� ��� � .

Proof. The proof is similar to the proof of Lemma 3.1. Define 4 � � 79*;:C4 �� :?>�>�>�:C4 �� @
such that for L�M G M each 4 �E contains I predicate symbols, where I is the maximal

number of predicate symbols in any 4SH , L�M K�M . The � th predicate symbol in any

4 �E is of arity � � , where � � is the maximal arity of all � the predicate symbols in any 4 H ,
L M K M . � � consists of those second-order structures � � � � :%* � :�� �� :?>�>�>�:�� �� �
for which there is an � � � � :%* � :�� ��:?>�>�>�:�� � � in � such that for L M G M we

have � �E � def 	 � � �E � � :?>�>�>�:�� �E�� � � :=� :?>�>�>D:=� �

 � � E � ��:?>�>�>�:�� E�� � � � � � E . Here I E is the

number of predicate symbols in 4 E , and � �E � H is obtained from � E � H as in Lemma 3.1.

Now it is a not too hard exercise to define formulae
) �E :?>�>�>�:)��� such that the following

holds: � � :%* � :) �� :?>�>�>D:) �� � � � 	�
 � � :%* � : �) �� � � :?>�>�>D: �) �� � � � � � � which

implies the statement of the lemma. ❑

Let
�) � � �� � �%:?>�>�>�:) � � �� � � � be a sequence of second-order formulae in second-

order word normal form as above. Given now a language � � � � with
/ � / M � � , the second-order Lindstr öm quantifier given by � is defined by � / �
� ��

�� �) � � �� ��:?>�>�>D:) � � �� � ��� iff ��� � � � � �� :?>�>�>�:�� �	� �� �
� � . Lemma 3.2 shows that

second-order Lindstr öm quantifiers given by languages are equivalent (w.r.t. express-

ibility power) to those given by arbitrary second-order structures.

Similarly to the above, � �� � �� (� �� (��) denotes those subclasses of � �� SO, where

all the formulae
) ��:?>�>�>�:) � are prenex � �� ((��) formulae. For a class of languages �

we use the notation � � with the obvious meaning, e.g. � � FO denotes the union of all

� � FO over all � � � .

4 Padding

In the sequel we will use logically defined leaf languages. As already pointed out in

the preliminaries, padding sometimes plays a crucial role in the leaf context. Thus

we will consider besides padding on languages defined earlier also padding on model

classes. From the definition of logically defined leaf languages in Sect. 2 it is clear that

we are mainly interested in structures which are images of the + encoding.

9

Let the encoding � � � � QFRS:?L?T � � ��� � QFRS:?L?T � � � be such that � � ��� ��:?>�>�>�: � � � �
��� � � ��:?>�>�>�: � � � � � ����� ��� � � � :?>�>�>�: � � � � � , where / � � / � ����� � / � � / � � and � E � H is the

K th symbol of � E for L�M G M , L M K�M � .

Let 4 � 79*;:=<���:?>�>�>�:=< �%@ , where all predicate symbols <'E (L M G M) are of

the same arity. For a structure � � � � :����D:?>�>�>�:�� � � � Struct � 4 � let � � ��� ��� def

� � � � � � :?>�>�>�:�� � � � .
The idea behind padding on structures is that we want to insert a padding symbol

in a tuple of characteristic strings, i.e. in � � ��� � . For this end, we have to extend our

alphabet QFRS:?L?T � by a padding symbol. Actually, what we do is we take as new alphabet

QFRS:?L?T � � � and all symbols in � � def 	 � L :?	���:?>�>�>D:?	'� �

 	���:?>�>�>�:?	'� � QFRS:?L?T may be

used as padding symbols. More formally:

Let 4�� � def 79*;:=<�� :=<��C:?>�>�>D:=< �%@ , where <�� is of the same arity as the other

predicate symbols. Define pad ��� � � Struct � 4 � � as follows: pad ��� � � def 	 � �

� � � � ��� � ��� pad ! � � � ��� � � . (Here pad ! refers to padding on strings as defined in

Sect. 2.) If � is a model class, then pad � � � � def � � � � pad ��� � . If � is a class of

model classes, then pad � � � � def 	 pad � � �

 � � � .
We say a logic

�
is closed under padding iff the corresponding class of model

classes is, i.e. if pad � Mod � � � � � Mod � � � .
In [5] some logics closed under padding and some not closed under padding are

identified. The in our context relevant results are the following.

Proposition 4.1. 1. For � � L , � � and (� are closed under padding.

2. If � is closed under padding, then � � � � and � � (� are closed under padding

for all � � R .

Proof. (Sketch.) The principal idea is that one has to relativize the occurring quan-

tifiers, e.g. instead of “for all positions � ” we now have “for all position � such that

the � th letter is not a padding symbol.” This certainly does not affect the linear or-

der. Concerning the other relations, the such obtained formula does exactly what is

required, i.e. it models the padded version of the original model. More details can be

found in [5]. ❑

5 Main Results

Before we come to our main result we examine leaf language characterizations of the

classes of the polynomial time hierarchy.

10

Lemma 5.1. LeafP � � � � � � �� for all � � L .

In [15], LeafP � � � -LOGTIME � � � p� was proved. Thus, since � � �
� � -LOGTIME and � �� � � p� [18], our lemma follows, but we give a new proof here,

since we want to generalize it later.

Proof. For a given � � -formula
)����

and a polynomially time-bounded nondetermin-

istic Turing machine
�

, we construct a � �� formula
)����

and then show for all � � � �
that

+ ��� � / �)���� iff � � LeafP �)���� �=>

Let
�

be a polynomially time-bounded nondeterministic Turing machine. Let us

first consider the case, that � , namely the set of symbols that
�

produces on every

computation-path (see Sect. 2), has two elements. We will discuss the other case at the

end of the construction.

Let
) � � � ��)

Path
� � : �� � �) accept

� �� � be the � �� -formula which formalizes the

computation of
�

as described in Sect. 2, Proposition 2.2. An assignment of
�

rep-

resents the nondeterministic choices. For a fixed assignment of
�

there exists exactly

one assignment of
��

that represents a computation path of
�

. For all suitable finite

ordered structures � the formula
)

Path
� � : �� � is true on ��� : � � : �� � � , iff

�� �
represents

a correct computation path w. r. t. the nondeterministic choices given by
� �

.

Let
)����

be the � � -formula over � < � � 	 :%* � of the form

 ���� � ����>�>�> � � �� � ����� � ��'��: ����:?>�>�>�: �� � �=>
We construct a � �� -formula

)����
by replacing the variables and atomic predicates in�����

in the following way:

[��E] We replace all first-order variables �FE in �����
for G � � down to G ��L by tuples of

second-order variables � � E : �� E � and thus transform the existential first-order quantifier

that binds ��E into a sequence of second-order quantifiers that bind
� E and

�� E . To ensure

that an assignment of
��

represents a correct computation path, we replace � E � E by

 � E� �� E) Path
� � E : �� E � � � E . In order to obtain a formula in prenex normal form, we

rename the variables in
)

Path such that
)

Path and
� E have no variables in common.

[� ��E] We replace the universal quantifier � �9E � E by � � E � �� E) Path
� � E : �� E � � � E . Again

we rename the variables in
)

Path such that
)

Path and
� E have no variables in common.

[< � ��E �] We replace each occurrence of < � � E � by the � �� -formula
)

accept � E �
�� E � , which

we obtain from
)

accept
� �� � by a suitable renaming of the variables.

11

[� ��E;*�� H �] We have to extend the ordering that is given in the ordered structure to

assignments of
� : �� . This can be achieved by well-known techniques.

As described in Sect. 2, it is possible to encode the symbols of � in binary. For / � /��
� , we have to consider first-order formulae over signatures that have I � - log / � / 1
unary predicates <B�C:?>�>�>D:=<�� . We replace each <�H � ��E � by a formula

) H � E � �� E � . For each
� � � we obtain from

)
accept � E �

�� E � a formula
���E � �� E � which is true, iff

�
produces �

on the represented path. The formula
) H � E � �� E � is a disjunction of the formulae

���E � �� E �
for those � � � , such that the K -th bit in the binary encoding of � is 1.

To see that � � LeafP �)���� � , iff + ��� � � Mod �)���� � , for all � � � � , observe that

there is a one-one correspondence between the elements in the universe of + � � � ��� � �
(the positions of the symbols in the leaf string) and the assignments of

� ��� �
	 .
❑

Lemma 5.2. � �� � LeafP � � � � for all � � L .

Since even DLOGTIME �� FO, this lemma (in contrast to Lemma 5.1) does not

follow from LeafP � � � -LOGTIME ��� � p� proved in [15], but in fact strengthens their

result.

Proof. Let
)����

be a � �� formula with I second-order variables � ��:?>�>�>D:�� � . We

construct a polynomially time-bounded NTM
�

and a � � formula
)����

defining a

leaf-language 3 � � � Mod �)���� � � ��� � , such that for all ordered finite structures � over

the corresponding signature: � � Mod �)���� � iff � ��� � � LeafP �)���� �
On input � ��� � the NTM

�
determines nondeterministically the assignments of

the second-order variables from � � to � � . That is, on each computation path,
�

writes the characteristic sequence of one possible assignment on its work tapes. Using

these characteristic sequences,
�

evaluates the first-order part of
) ���

. We use two

leaf symbols R and L to denote the result of the evaluation.

For � �� formulas, the corresponding leaf language is defined by � < � � � , and for

(�� formulas the corresponding leaf language is defined by � � < � � � .
For � � L , we have to mark for all second-order variables � E (L M G#M I) the

paths that share the same assignment of � � E as shown in Fig. 1.

We introduce �;� � I	� L � new leaf symbols �&��:?>�>�>�: � � � � and � ��:?>�>�>D: � � � � . The

symbols of of the leaf string � between �6E and � E correspond to all those paths that

share the same assignment for � E .
As described in the preliminaries, the symbols of � can be encoded using - log / � / 1

unary predicates. By boolean combinations of these, we construct formulae that ex-

press that a path produces R , L , �6E , or � E for L M G M I
� L . We abbreviate these

12

��0E � E

��E

��E � �

Figure 1: Construction of machine
�

formulae by
�
 ,

� � , � ��� E , and
� � � E resp. The formula � � � � � �

� � � � � � � will be

abbreviated by
�

marked
� � � .

For L�M G�* I let Region E � � : � � be an abbreviation for the formula

� � * � � � � ��� E � � �"� � � � E � � � � � ��E � � M ��E�M � � � � � � � � E � ��E � � � � � E � ��E � �=>

For � � L we construct inductively a sequence of formulae
) � :?>�>�>�:) �:)���� . Let) � � � left � � � ��: � right � � � � � be the formula

 � � � � left � � � � M �
� M
� right � � � � � �

� � � � � �%:
if the rightmost quantifier is existential and

� � � � � left � � � � M
�
� M
� left � � � � ��� �

marked
� � � � � � � � � � � �%:

otherwise. For the G -th quantifier block � ��* G * � � L � let us first consider the case,

that the quantifier block itself consists of existential quantifiers and that the quantifier

block to the right consists of universal quantifiers. Let �0H be the rightmost variable in

the G -th quantifier block. We define
) E � � left � E � ��: � right � E � � � to be the formula

 � left � E � right � E�� � left � E � � M
� left � EB* � right � E�M
� right � E � � � Region H � � left � E : � right � E ���
�) E � � � � left � E : � right � E �=>

Transforming this into prenex normal form we get a quantifier prefix starting with

 � left � E � right � E � ��H � � left � E � � � � right � E � � >�>�> . Let us now consider the case, that the G -
th quantifier block � L * G * � � L � consists of universal quantifiers and that the

quantifier blocks to the left and to the right consist of existential quantifiers. Let � H be

13

the rightmost variable in the G -th quantifier block. We define
) E � � left � E � ��: � right � E � � � to

be the formula

 � left � E � right � E � � left � E � � M
� left � EB* � right � E�M
� right � E � � � Region H � � left � E : � right � E � �
�) E � � � � left � E : � right � E �=>

Transforming this into prenex normal form we get a quantifier prefix starting with

� � left � E � � right � E ��H � left � E � �� � right � E � � >�>�> .
Let � H be the rightmost variable in the first quantifier block. If � � is existentially

quantified then let
) ���

be the formula

 � left � �� � right � � Region H � � left � ��: � right � � � �) � � left � ��: � right � � �%:
otherwise let

)����
be

� � left � � � � right � � Region H � � left � ��: � right � � � �) � � left � ��: � right � � �=>
❑

From Lemma 5.1 and Lemma 5.2 we get the following leaf language characteriza-

tion of the classes of the polynomial time hierarchy:

Theorem 5.3. LeafP � � � � � � �� for all � � L .

A close inspection of the proof in [9] shows that there is a direct correspondence

between computation-paths and assignments of the existentially quantified second-

order variables. Thus, using second-order Lindstr öm quantifiers we can describe the

concept of leaf language definability in terms of model-theoretic notions. Note, that

we do not require the computation tree to be a full binary tree.

Proposition 5.4. Let � � � � be a language, let be a number such that � � � / � / ,
and let

�
be a nondeterministic polynomial time machine as described in Sect. 2

(i.e. with all paths of the same length). Then there exists a formula ��)
Path
� � : �� � and

a sequence of formulae
)

leaf � � �
�� �%:?>�>�>�:) leaf � � �

�� � such that

Leaf
� � ��� � Mod � � � � � ���)

Path
� � : �� � �) leaf � � �

�� �%:?>�>�>D: ���)
Path
� � : �� � �) leaf � � �

�� � � � >

Proof. Let � ��B)
Path
� � : �� ���) accept

� �� � be the formula, which is described in Propo-

sition 2.2. For each computation path of
�

on input � there exists exactly one assign-

ment
� ����� 	 such that

� + � � �%: � ��� � 	 � / � ��)
Path
� �� �=>

14

For 	�8L we modify the formula
)

accept
� �� � such that it is true, iff

�
produces the

leaf symbol � � . We denote the resulting formula by
)

leaf � � �
�� � . In the corresponding

encoding of � � � � � the unary predicate is true, iff � � is produced. Thus, we have

��� Leaf
� � ��� iff ��� Mod � � � � � ��)

Path
� � : �� � �) 5���� � � �� ��� � >

For � L we construct the formulae
)

leaf � � �
�� �%:?>�>�>�:) leaf � � �

�� � from
)

accept
� �� � accord-

ing to the encoding ��� (see Sect. 3): For all 	 � � let
)

� be a formula that is true

for � + � � �%: � ����� 	 : � ��� � 	 � , iff
�

produces the leaf-symbol 	 on the path that corresponds

to � � ��� � 	 : � ����� 	 � . Each formula
)

leaf � E �
�� � now consists of a disjunction of all

)
� � � �� �

such that the G -th bit in the binary representation of K is one. ❑

Corollary 5.5. Let � be a class of languages.

LeafP � � � �!� �� � ��

The second-order Lindstr öm quantifier in the above proposition is applied to � �� -
formulae in order to rule out those assignments of

��
that do not correspond to compu-

tation paths of
�

. For language classes � that are closed under padding (see Sect. 4)

we can get rid of the second-order existential quantifier. We map those assignments of��
that do not correctly represent a computation path of

�
to the padding symbol.

Lemma 5.6. Let � be a class of languages that is closed under padding. Then

LeafP � � � ��� �� � � >

Proof. (�): Let
�

be a nondeterministic Turing machine, � � � , and) � � �� �%:?>�>�>D:) � � �� � be formulae as described in Proposition 5.4 such that Leaf � � ��� �
Mod ��� � � � ��) � � �� �%:?>�>�>D: ���) � � �� � � . We modify this formula such that the Lind-

str öm quantifier bounds
��
, also. As mentioned above, we map those assignments

of
��

that do not correctly represent an computation path of
�

to the padding sym-

bol. According to Sect. 4, we have to extend the sequence
) � � �� �%:?>�>�>D:) � � �� � by an

additional formula
)
� � �� � . Then for all assignments

�� � the corresponding symbol

in ��� � � �	� �� :�� � � �� :?>�>�>�:�� ��� �� � is a padding symbol, iff
)
� � �� � is true for the assign-

ment
�� � . The formula �) Path

� � : �� � is true, iff for given assignments
� � : �� � the

assignment
�� �

does not correctly represent a computation path of
�

with respect to

the nondeterministic choices represented by
� �

. We therefore use �) Path
� � : �� � to

indicate the padding symbol. Thus we have

Leaf
� � ��� � Mod � � pad � �'	 � :

�� � �) Path
� � : �� �%:) � � � : �� �%:?>�>�>�:) � � � : �� ��� >

15

(
�

): For proving this inclusion we do not need the fact that � is closed under padding.

For given � � � and � � �� #) � � �� :?>�>�>�:) � � �� �&% we can construct a polynomial-time non-

deterministic Turing machine
�

which nondeterministically guesses the assignments

of
��

and afterwards evaluates the formulae
) � � �� :?>�>�>�:) � � �� � deterministically. The

resulting bit string is used to determine the correct leaf symbol according to � � . ❑

Combining our leaf language characterizations of the classes of the polynomial

time hierarchy (Theorem 5.3) with the just given lemma, we next examine leaf lan-

guages defined by first-order formulae starting with a Lindstr öm quantifier.

Lemma 5.7. Let � be a language. Then we have for all � � L :
LeafP � � � � � � �!� �pad � �"	 � ��

Proof. We combine Lemma 5.1 and Lemma 5.6 to prove this lemma.

Let � � � and � � �� #) � � �� �%:?>�>�>�:) � � �� �&% be a � � � � -formula. As in the proof of

Theorem 5.1 we may think of universes having computation paths of
�

as elements.

We transform the first-order formulae into second-order formulae as in the proof of

Theorem 5.1. In addition we transform the free variables
���� ����:?>�>�>�: ��� into second-

order variables
�� � � �&: �� � : >�>�> : � � : �� � . But as in the proof of Lemma 5.6, we have

to consider those assignments for any
� E : �� E that do not represent a computation path

of
�

. To map those assignments to padding symbols we add a formula
)
� � �� � �

�

��� E�� � �
)

Path
� � E : �� E � . We get:

Leaf
� � ��� � Mod � � pad � �"	

�� �) � � �� �%:) � � �� �%:?>�>�>D:) � � �� ���D>
❑

Lemma 5.8. Let � be a language. Then we have for all � � L :
� �� � �� � LeafP � � pad � �"	 � � �

Proof. To prove this lemma we combine Lemma 5.2 and Lemma 5.6.

For given � � � and formula � � �� � #)���� � � � �� �%:?>�>�>�:)���� � � � �� �&% � � � �� � ��
we construct a polynomial-time Turing machine

�
and a � � � � -formula

� pad � �"	 �� #) � � �� �%:)���� � � � �� �%:?>�>�>�:)���� � � � �� �&% such that

Mod ��� � �� #)���� � � � �� �%:?>�>�>�:)���� � � � �� �&% � �
Leaf � � � pad � �"	 �� #) � � �� �%:)�� � � � � �� �%:?>�>�>�:)�� � � � � �� �&% � .

Similar to the proof of Lemma 5.6 the Turing machine
�

guesses nondeterminis-

tically all assignments of
��
. There is a substring of the resulting leaf string for each

16

assignment of
��
. These substrings start (on the left) with ���� and end (on the right)

with � �� . The first-order Lindstr öm quantifier bounds two variables �left and � right. The

assignments should point to the left and right boundary of some substring. We map

assignments that do not correctly represent such boundaries to padding symbols as in

the proof of Lemma 5.6. Let
� � � � � be a formula that is true iff the symbol at position

� in the leaf string is � . We then construct the formula
)
� � � left : � right � that indicates

the padding symbol as follows:

)
� � � left : � right � � � � � � left * � * � right � � � � ���� � � � � � � �� � � � ��� � � � � left * � right �

We construct for each formula
) ��� � E � �� � a Turing machine

� E as in the proof of

Lemma 5.1.
�

simulates machines
� ��:?>�>�>�: � � for each assignment of

��
as shown

in Fig. 2.

���	 ���
	
��	 �

� �

�

� �

��

	��
� � ��

Figure 2: Construction of machine
�

We now construct for each formula
)���� � E � �� � a first order formula

) ��� � E � �� � .
As in the proof of Lemma 5.1 we construct inductively a sequence of formulae) � � E :?>�>�>D:) � E :)���� � E . The construction of

) � � E :?>�>�>�:) � E is identical to the construc-

tion given in the proof of 5.1. Let � H � E be the rightmost variable in the first quantifier

block of
)���� � E and Region H � E � � : � � be the formula given in the proof of Theorem 5.1

that is true, iff the assignment of � and � point to the left and right boundary of the

substring that corresponds to some assignment of �SH � E . By the definition of � �� � �� we

may assume w. l. o. g. that � H � E is existentially quantified. Let
) ��� � E � � left : � right � be the

17

formula

 � � � � �� � left � �� � right � � � � left * ��� � * � left � � * � right � � * � � � * � right � �� � � � ��� � � � � � � � � � � � �
Region H � E � � left � ��: � right � � � �) � E � � left � ��: � right � � �

❑

The main theorem now follows from Lemma 5.7 and Lemma 5.8.

Theorem 5.9. Let � be a class of languages that is closed under padding. Then we

have for all � � L :
LeafP � � � � � � ��� �� � ��

We cannot get a similar result for � � (�� -formulae since the formula
)
� � � left : � right �

used in the proof of Lemma 5.8 is existentially quantified. However the following

certainly holds:

Corollary 5.10. Let � be a class of languages that is closed under padding. Then we

have for all � � � :

LeafP � � � (� � ��� �� (��

Finally, we want to address an interesting special case: the class PSPACE. Bar-

rington, Immerman, and Straubing showed that first-order logic with group quantifiers

defines exactly the regular languages [2]. Hertrampf et al. [12] who characterized

PSPACE by regular leaf languages showed that in fact for this characterization already

one single regular language, the word problem for the group ��� , is sufficient. Thus,

this leaf language characterization yields the following:

Corollary 5.11. PSPACE ��� ���� � �

6 Discussion

As we have seen, Lindstr öm quantifiers which are a well studied logical concept have

a complexity theoretic counterpart: the so called leaf language definability, which has

been studied intensively in the recent past.

Second-order Lindstr öm quantifiers define (in a model theoretic sense) exactly

those languages characterizable by leaf languages for polynomial time machines.

If � �� is a Lindstr öm quantifier, then the logic � �� � � defines the complexity class

18

LeafP � � � . Thus it may be possible that results about leaf languages contribute to the

study of the expressive power of second-order Lindstr öm quantifiers on ordered finite

structures, and vice versa.

Of course, it would be nice to have a leaf language analogue for first-order Lind-

str öm quantifiers. To be able to do this one will have to consider “leaf languages for

FO” instead of leaf languages for polynomial time. To be more precise, what is an

appropriate restriction of the computation model producing leaf words?

Gottlob in [10] showed that under some particular assumptions to � , first-order for-

mulae with arbitrarily nested � � and existential and universal quantifiers yield super-

classes of L (the logspace decidable sets). Certainly, formulae with nested quantifiers

should be examined along the lines of this paper, i.e. when used to define leaf lan-

guages.

Furthermore, one should consider leaf languages defined by second-order formu-

lae to investigate the structure of complexity classes above exponential time, e.g. the

exponential time hierarchy.

Acknowledgment. We thank David Barrington for suggesting the examination of

logically defined leaf languages as an interesting topic.

References

[1] E. Allender. A note on uniform circuit lower bounds for the counting hierar-

chy. In Proceedings 2nd International Computing and Combinatorics Confer-

ence (COCOON), volume 1090 of Springer Lecture Notes in Computer Science,

pages 127–135, 1996.

[2] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within

NC � . Journal of Computer and System Sciences, 41:274–306, 1990.

[3] B. Borchert and A. Lozano. Succinct circuit representations and leaf language

classes are basically the same concept. Information Processing Letters, 58:211–

215, 2996.

[4] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define com-

plexity classes. Theoretical Computer Science, 104:263–283, 1992.

[5] H. J. Burtschick. Berechnungs- und Beschreibungskomplexität von Zähl-

funktionen und Lindströmquantoren. PhD thesis, Fachbereich Informatik, TU-

Berlin, 1996.

19

[6] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC �
computation. In Proceedings 11th Computational Complexity, pages 12–21,

1996. To appear in Journal of Computer and System Sciences.

[7] H.-D. Ebbinghaus. Extended logics: The general framework. In J. Barwise

and S. Feferman, editors, Model-Theoretic Logics, Perspectives in Mathematical

Logic, chapter II, pages 25–76. Springer Verlag, 1985.

[8] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[9] R. Fagin. Generalized first-order spectra and polynomial time recognizable sets.

In R. Karp, editor, Complexity of Computations, pages 43–73, 1974.

[10] G. Gottlob. Relativized logspace and generalized quantifiers over finite struc-

tures. Technical Report CD-TR-95/76, Institut for Information Systems, Vienna

University of Technology, 1995. An extended abstract appeared in the proceed-

ings of the 10th Symposium on Logic in Computer Science, 1995.

[11] U. Hertrampf. Regular leaf-languages and (non-) regular tree shapes. Technical

Report A-95-21, Institut f ür Mathematik und Informatik, Medizinische Univer-

sit ät zu L übeck, 1995.

[12] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On

the power of polynomial time bit-reductions. In Proceedings 8th Structure in

Complexity Theory, pages 200–207, 1993.

[13] U. Hertrampf, H. Vollmer, and K. W. Wagner. On the power of number-theoretic

operations with respect to counting. In Proceedings 10th Structure in Complexity

Theory, pages 299–314, 1995.

[14] U. Hertrampf, H. Vollmer, and K. W. Wagner. On balanced vs. unbalanced com-

putation trees. Mathematical Systems Theory, 29:411–421, 1996.

[15] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages.

Information and Computation, 129:21–33, 1996.

[16] P. Lindstr öm. First order predicate logic with generalized quantifiers. Theoria,

32:186–195, 1966.

[17] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[18] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,

3:1–22, 1973.

[19] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.

Birkh äuser, 1994.

20

[20] H. Veith. Succinct representation, leaf languages, and projection reductions. In

Proceedings 11th Conference on Computational Complexity Theory, pages 118–

126, 1996.

[21] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-

mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993.

In Russian.

21

