Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 006 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Succinct Circuit Representations and Leaf
Language Classes are Basically the same Concept™

Bernd Borchert!
Universitat Heidelberg

Antoni Lozano?
Universitat Politecnica de Catalunya

Abstract

This note connects two topics of Complexity Theory: The topic of
succinct circuit representationsinitiated by Galperin and Wigderson [11],
and the topic of leaf languages initiated by Bovet et al. [6]. It will be
shown for any language that its succinct version is polynomial-time many-
one complete for the leaf language class determined by it. Furthermore
it will be shown that if one uses for the succinct version formulas or
branching programs instead of circuits then one will get complete problems
for ALOGTIME leaf language classes and logspace leaf language classes,
respectively.

Keywords: Computational complexity; leaf languages; succinct representations;
polynomial-time many-one completeness.

1 Introduction

Consider the following well-known results concerning nondeterministic polynomial-
time Turing machines, polynomial-time many-one reducibility <P, and Boolean
circuits:

*This result was observed in April 95 when the first author visited the site of the second
author, supported by the EC Human Capital and Mobility project Col.oReT CHRX-CT93-
0415. The first report appeared in July 95 as Logik Forschungsbericht Nr.17 of the University
of Heidelberg. The first presentation was given in September 95 at the Annual Meeting of the
German Mathematical Society (DMV) in Ulm.

tIm Neuenheimer Feld 294, 69120 Heidelberg, Germany, email: bb@math.uni-heidelberg.de

{Departament 1..S.1., Pau QGargallo 5, FE08028 Barcelona, Catalonia, email:
lozano@Isi.upc.es (correspondence author)

e Let NP (PP, C=P, @P, 1-NP) be the class of languages for which there is
a nondeterministic polynomial-time Turing machine which accepts if and
only if there exists an accepting computation path (there is a majority of
accepting computation paths, exactly half of the computation paths are
accepting, there is an odd number of accepting computation paths, there
is exactly one accepting path). The set of circuits for which there exists a
satisfying assignment (there is a majority of satisfying assignment, exactly
half of the assignments are satisfying, there is an odd number of satisfying
assignments, there is exactly one satisfying assignment) is <P -complete

for the class NP (PP, C=P, @P, 1-NP).

The common pattern in the results above is obvious: satisfying assignments
for circuits and accepting computation paths for nondeterministic polynomial-
time Turing machines seem to correspond. And not only the results are alike but
also the proofs: once you know a proof of one of these results you immediately
see how the others are proven. So it is no surprise that there is a general rule
behind this from which all the results above can be concluded as corollaries. This
general rule will be formulated as our main result. It states a strong relation
between classes defined by leaf languages (all the classes above are defined by
leaf languages) and succinct circuit representations (all the circuit problems
above are succinct versions). More specifically, it will be shown for any given
language A that its succinct version is <P -complete for the class determined by
A as a leaf language.

In Section 2 and Section 3 we will motivate and define the two concepts of
succinct circuit versions and leaf language classes, respectively. The main result
with its corollaries will be stated in Section 4. This result will in Section 5 be
generalized to function classes. Formulas and branching programs are alternate
ways to describe Boolean functions, in Section 6 we will look at succinct versions
defined by them.

H. Veith in his paper [21] independently and simultanously found our main
result in an even stronger form: he shows completeness with respect to some
stronger reducibility from Finite Model Theory. The advantages of our note
are the following: (1) it does not use the language of Finite Model Theory,
remember that the two concepts of leaf language classes and succinct circuit
representations are neither from Finite Model Theory, (2) it concentrates on
the main result and shows that it is easily proven by standard methods, and
(3) it generalizes the result to function classes and treats the topic of succinct
versions obtained by formulas and branching programs.

2 Succinct circuit representations

The topic of succinct circuit representations was initiated by Galperin and
Wigderson [11]. The idea is the following. Instead of representing a graph

having 2" nodes by its adjacency matrix, it is represented by a circuit with two
length-n vectors of variables: An assignment to a vector encodes a node, and
for each assignment to the two vectors the circuit determines whether there is
an edge from one node to the other. If the graph is kind of regular then there
may be a circuit which is logarithmically smaller than the adjacency matrix.
Therefore it 1s no surprise that the computational complexity of several graph
problems increases significantly if the succinct circuit representation is used, see
for example [11, 23, 19, 17, 2]. Balcdzar et al. [2] showed that the concept can
easily be generalized from graph problems to general word problems. This idea
will be adopted in this note.

For a standard definition of circuits see for example [1]. Tt is assumed that
there is a linear order < on the variables occuring in circuits. Let a circuit
c(x1,...,2,) with n occuring variables #1 < ... < z, be given, it describes in a
natural way a word result(c) of length 27: Its ith letter is the value of the ith
assignment, where assignments are ordered lexicographically. In other words,
result(c) is the result column of the truth table representation of ¢. Here are
two examples: for the circuit ¢ = e¢(x1, 2) = 21 A 2 the word result(c) equals
0001, for the circuit d = d(z1, 29, 23) = -1 V (22 A ~23) the word result(d)
equals 11110010.

Definition 1 (uncut succinct version) The uncut succinct version Sy (A) of
a language A is the set of circuits ¢ such that result(c) € A.

Of course, S, (A) only depends on the words of A whose length is a power of
2. Below it will become clear why we use the attribute uncut. We can consider
Su(A) to be a computational problem by identifying a circuit with its usual
encoding as a word (if a word does not encode a circuit then result(z) is —
arbitrarily — defined to be the length-1 word 0).

Examples. Let A; be the language consisting of the words which contain at
least one letter 1. Then S, (A;) equals the set of circuits which have a satisfy-
ing assignment, in other words, S, (A1) equals the classical circuit satisfiability
problem SAT which is <P -complete for NP [15]. As another example, let A
be the language consisting of the words which contain more 1’s than 0’s. Then
Su(As2) equals the set of circuits which have more satisfying assignments than
non-satisfying assignments. S, (As) is known to be complete for the class PP.
The reader may easily justify that also the other circuit problems mentioned
in the examples in the introduction are uncut succinct versions of obvious lan-
guages Az, A4, A5. It should be mentioned that all these examples languages
Aq,..., Ay are of a very restricted kind: membership in the language depends
for a word only on the number of 1’s in it.

In order to let a succinct version also be determined by words with a length
not a power of 2 we have the following definition: Fix some usual pairing function
(...) and consider a coded pair {¢,m) of a circuit ¢ = c(21,...,2,) and a

number m € IN in binary. Let result(c, m) be the length-m prefix of result(c).
Note that this implies result(c) = result(e,2"). Here is an example: for the
circuit ¢ = e(z1,22) = 21 A 22 from above, result(c,0) = ¢, result(e, 1) = 0,
result(c, 2) = 00, result(c, 3) = 000, and result(e, m) = 0001 for every m > 4.

Definition 2 (succinct version) The succinct version S(A) of a language A
is the set of pairs (¢, m) such that result(c,m) € A.

Example. Let A; like in the example above be the language consisting of the
words which contain at least one letter 1. Then S(A1) equals the set of coded
pairs (¢, m) such that the circuit ¢ has a satisfying assignment among its first m
assignments. This version of the satisfiablity problem is also well-known to be
NP-complete. In fact, for all the languages A1, ..., A5 from the examples above
we have that the succinct version S(A;) has the same <P -difficulty as the uncut
succinct version Sy (A;). This is not true in general, for example if a language
is not recursive but is recursive on the words whose length is a power of 2.

Remark. The definition of S(A) is nearly the same concept as the definition
of the succinct version sA in Balcazar et al. [2], whereas here the length of
the described word belongs to the problem input and is not indicated by some
additional output bit of the circuit. In their paper [2] and also in the original
paper [11] it is implicitly assumed that the circuit is consistent in its length-
indicating output bit, 1. e. has the following property: If any assignment i
evaluates the length-indicating output bit to 0, then also every lexicographically
larger assignment evaluates it to 0. But the problem whether a given circuit
is consistent is co-NP-complete: The problem is obviously in co-NP, and the
co-NP-complete tautology problem can be reduced to it by the reduction which
checks for a circuit ¢ if ¢(0,...,0) = 1 and maps ¢ to —c in that case, and to
some fixed non-consistent circuit (for example 21 A 22) otherwise. Therefore, in
the sense of [11, 2], given a circuit ¢ with two outputs, there is no efficient way
of checking if the circuit describes a graph (resp. word) at all, unless P = NP.

3 Leaf language classes

The topic of leaf languages as a way to unify the definition of complexity classes
was started by Bovet, Crescenzi, and Silvestri [5, 6], and later by Vereshchagin
[22]. They show that many well-known complexity classes in the polynomial-
time setting can be determined by just one language. Several following investi-
gations refined this approach, see for example [12, 3, 4, 13, 14].

Consider nondeterministic polynomial-time Turing machines as described in
[1]. Here we have the additional requirement that for every input every path
of the resulting nondeterministic computation has the same number of non-
deterministic branchings. In other words, on every input a nondeterministic

polynomial-time Turing machine produces a balanced complete binary compu-
tation tree whose leaves are marked with 0 for rejecting and 1 for accepting.
For such a machine M and an input z let yield(M, z) be the word consisting of
the bits at the leaves (in lexicographic order of the paths) of the computation
tree produced by M on input z. Note that the length of the word yield(M, z)
is a power of 2 because the computation trees are by our convention balanced
and complete.

Definition 3 (uncut leaf language class) For a language A let the uncut
leaf language class C,(A) be the class consisting of the languages L for which
there exists a nondeterministic polynomial-time Turing machine M such that

r €L < yield(M,z) € A.

Example. Let A; be the language consisting of all words which contain at
least one letter 1. Then it is easy to verify that C,(A1) = NP : alanguage L is in
Cu(A1) if and only if there is machine M such that x € I <= yield(M, z) € Ay,
in other words, 2 € I, <= M running on input z has an accepting computation
path. But this is the original definition of Karp [15] for L being in NP. Likewise,
Just by their original definition, the classes PP, C=P, @P, and 1-NP are uncut
leaf language classes characterized by the languages Aa, Az, A4, A5 from the
examples in the previous section.

The following definition of leaf language classes is the original one from Bovet

et al. [6], besides that they call C(A, A) what is called C(A) here.

Definition 4 (leaf language class) For a language A let the leaf language
class C(A) be the class consisting of the languages L such that there exist two
polynomial-time computable functions R : ¥* x N — {0,1} and | : ¥* — IN
(numbers are represented in binary) such that

z€l < R(z,0)R(z,1)...R(z,l(z)) € A.

It was shown in [12] that the above definition is equivalent to the following
one which explains why we called the leaf language classes Cy(A) of Definition
3 uncut.

Proposition 5 (Hertrampf et al. [12]) For a language A the leaf language
class C(A) is equal to the class consisting of the languages L such that there
ezxist a nondeterministic polynomial-time Turing machine M and a polynomual-
time computable function f : ¥* — IN (numbers are represented in binary) such
that

x € L <= the length-f(x) prefir of yield(M, z) is in A.

It can easily be seen that for the languages A1, ..., As it holds that Cy, (A4;) =
C(A;). This is generally not the case for every language, as can be seen by a

non-recursive language which is recursive on the words whose length is a power
of 2. But nevertheless the set of the uncut leaf language classes and the set of
the leaf language classes coincide and can be characterized the following way.

Theorem 6 (Bovet et al. [6], Borchert [3, 4]) The following sets are equal:
(1) The set of uncut leaf language classes Cy ().
(2) The set of leaf language classes C(+).
(3) The set of complexity classes which, with respect to <E -reducibility, have
a complete language and are closed downward.

4 The main result

The theorem connecting succinct circuit representations and leaf languages will
be stated, it may justify the title of this note.

Theorem 7 (main result) For any language A the following holds.

(1) The uncut succinct version Sy, (A) of A is <P -complete for the uncut leaf
language class C, (A).

(2) The succinct version S(A) of A is <P -complete for the leaf language
class C(A).

Proof. (1) First it is proven that for a fixed language A the language S, (A)
belongs to the class C, (A). We have to show that there exists a nondeterministic
polynomial-time Turing machine My such that for all words x it holds result(z) €
A < yield(Mg, z) € A. Define My the following way: For an input 2 which
does not encode a circuit terminate with a rejecting state. If the input encodes
a circuit ¢(z1, ..., z,) then branch nondeterministically into two computations,
the left one continuing with the circuit ¢(0, ..., z,), the other with ¢(1,..., z,).
Do this iteratively n times until also z, is replaced by a constant. Then each
of the 2”7 computation paths has a Boolean circuit in which all variables are
replaced by constants. Let the computation be accepting on that path if and
only if the circuit evaluates to 1. It is clear by the construction and the properties
of the lexicographic order that result(z) = yield(My,). Therefore result(z) €
A < yield(My, z) € A, i.e. S,(A) belongs to the class C, (A).

Now we show that each language in C,(A) is <E -reducible to S, (A). Let a
language I in C,(A) be given by the machine M i.e. z € L <= yield(M,z) €
A. Consider the following polynomial-time reduction function A. On input z,
first compute the depth d of the computation tree produced by M on input
z, this is possible by just simulating the leftmost path of the tree. After that,
consider the following function g, on inputs of length d: for an input y; ... y4 the
value of g, equals 1 if and only if machine M running on input z is accepting
on the path determined by y; ...ys. This function g, is computable in time
polynomial in d and therefore also in |#|. Now consider a circuit cz(y1,...,Yn)

such that ¢; does the same job as g, i.e. it holds ¢z (y1,...,¥n) = go(¥1 .. . Yn)
for all words ¥ ...y,. Such a circuit can be constructed in time polynomial in
the running time of g, and therefore in time polynomial in |z| (and is therefore
of polynomial size). For this construction see the book of Balcazar et al. [1] who
refer to a paper of Savage [20], but actually this construction is already used as
a key technique in the classical papers of Cook [9] and Karp [15], see also Ladner
[16]. The intended and important property of ¢, is that result(c,) = yield(M, z).
Finally, let h be the polynomial-time computable function which maps an input
ztocy. It holds € L <= yield(M,z) € A <= result(c;) € A <= ¢; €
Su(A), the last equivalence holds just by the definition of S, (A). Therefore, h
is a polynomial-time many-one reduction from L to Sy (A).

For part (2) we use the characterization of Proposition 5. The proof is just
an extension of the proof of part (1). First it is proven that the language S(A)
belongs to the class C(A), so we have to define a machine My and and a function
f in order to apply Proposition 5. For inputs (z, m) let My be the machine from
part (1) running on z , and let f be the function which maps (x, m) to m. My and
f witness that S(A) belongs to C(A) because (z,m) € S(A) <= the length-m
prefix of result(z) is in A <= the length- f((z, m)) prefix of yield(My, (x, m))
is in A. Finally we have to show that each language in C(A) is <P -reducible
to S(A). Let a language L in C(A) be given according to Proposition 5 by a
machine M and a function f such that z € L <= the length-f(z) prefix of
yield(M, z) is in A. Consider the polynomial-time computable function which
on input z it computes the pair {(cg, f(2)) where the circuit ¢, is defined like
in part (1) using the machine M. This function <P -reduces L to S(A) because
z € L <= the length-f(z) prefix of yield(M,z) is in A <= the length-f(z)
prefix of result(c;) is in A <= result(cg, f(2)) € A <= (cqa, f(2)) € S(A).

Note that all constructions in the proof are independent of A. O

Remark. H. Veith [21], using slightly different definitions, shows that the
<P -completeness can be extended to completeness with respect to stronger re-
ductions. This is possible by the observation that the construction of the circuit
¢z 1n the proof above is in fact much easier than just polynomial-time. Neverthe-
less we would like to present the result in the formulation above, considering it
to be the basic result concerning the relation of succinct circuit representations
and leaf languages, like for example <P -completeness (or <f-completeness) of
SAT for NP is the basic result and completeness results with respect to stronger
reducibilities are just refinements of that result.

Together with Theorem 6 the above theorem implies the following corollary.

Corollary 8 Each polynomial-time many-one degree contains an (uncut) suc-
cinct version.

Also it can be concluded that an inclusion problem among classes which
are (uncut) leaf language classes can be turned into a <E -problem among the
(uncut) succinct versions, and vice versa.

Corollary 9 For all languages A, B the following holds.
(1) Cu(A) € Cu(B) <= Su(A) <k, Su(B).
(2) C(A) CC(B) < S(A) <k, S(B).

5 A generalization from languages to functions

A language can be considered as a function from X* to the set {0,1}. Take
instead of {0, 1} any nonempty set S, and call a function from X* to S an S-
function. For example, let #SAT be the IN-function which maps an encoded
circuit to its number of satisfying assignments (and all other words which do
not encode a circuit to the number 0). As another example let GapSAT be
the Z-function which maps an encoded circuit to the difference of its satisfying
assignments and its non-satisfying assignments (and all other words which do
not encode a circuit to the number 0).

For S-funtions f, g the <P -reducibility relation is defined the same way as
on languages: f <P g <= there exists a polynomial-time computable function
h :¥* — ¥* such that f(z) = g(h(z)) for all words z.

Let the uncut succinct S-function version Sy(f) of an S-function f be the
S-function which maps an input ¢ to f(result(c)). This way, #SAT from above
is the uncut succinct IN-function version Sy (fz) of the IN-function fz which
maps a word to the number of 1’s in it. Likewise, GapSAT from above is the
uncut succinct Z-function version Sy (fq4) of the Z-function fq which maps a
word to the difference of 1’s and 0’s in it.

Also we can define the uncut leaf S-function class C,(f) just like in Defi-
nition 3: For an S-function f let the uncut leaf S-function class C,(f) be the
class consisting of the S-functions g for which there exists a nondeterministic
polynomial-time Turing machine M such that g(z) = f(yield(M, z)). Let for
example fx be given like above, then Cy(f#) equals the class #P. Likewise, for
the Z-function fg from above it holds Cy, (f4) = GapP, for the definition of GapP
see [10].

(Cut) succinct S-function versions and (cut) leaf S-function classes are de-
fined the analogous way. The following theorem is a generalization of Theorem
7 (consider S = {0, 1}), its proof is exactly the same.

Theorem 10 (generalization) For any nonempty set S and for any S-function
f it holds:

(1) The uncut succinct S-function version S,(f) is <E -complete for the
uncut S-function class Cy(f).

(2) The succinct S-function version S(f) is <B -complete for the leaf S-
function class C(f).

Besides the main theorem we have the following well-known results as corol-
laries.

Corollary 11 #SAT s <P -complete for #P. GapSAT s <P -complete for
GapP.

6 Succinct formula and branching program rep-
resentations

Formulas (which are circuits whose gates have fanout 1) and branching programs
(also called binary decision diagrams) are different ways of representing Boolean
functions, see the books of Wegener [24] and Meinel [18]. The following facts
may indicate that circuits relate to polynomial-time computations, that formu-
las relate to ALOGTIME computations, and that branching programs relate to
log-space computations: The problem of evaluating a circuit (formula, branch-
ing program) is P-complete [16] (ALOGTIME-complete [7, 8], L-complete [18]).
Another related result is that p-size-circuits = P /poly, p-size-formulas = ALOG-
TIME/poly (this can be concluded from [7, 8]), and p-size-branching-programs
= L/poly (see [18]). We will give another example of these correspondences.

Consider a formula f. The word result(f) is defined the same way as for
circuits: 1t is the result column of the truth table of the Boolean function rep-
resented by f, the word result(f, m) is its length-m prefix. The words result(b)
and result(b, m) are defined likewise for a branching program b. The succinct
formula version ST (A) of a language A is the set of coded pairs (f, m), where f
is a formula and m is a binary number, such that result(f, m) € A. The succinct
branching program version SPY (A) is defined likewise.

The next two definitions are the analoga of Definition 4. For a language A, let
C'°8%Pace(A) be the class consisting of the languages B such that there exist two
logspace computable functions R : ¥*xIN — {0, 1} and / : ¥* — IN (numbers
are represented in binary) such that z € B <= R(z,0)R(z,1)...R(z,l(z)) €
A. And let CAVOGTIME(4y be the class consisting of the languages B such that
there exist an ALOGTIME computable function R : ¥* x IN — {0, 1} and a
logtime computable reduction function / : ¥* — IN (numbers are represented

in binary) such that # € B <= R(z,0)R(z,1)...R(z,l(z)) € A.

Remark. For the two definitions above there does probably not exist a char-
acterization like Proposition 5 because one cannot guarantee within log-space
that a computation tree becomes balanced and complete, see [13, 14].

We have the following theorems concerning the succinct formula versions
and the succinet branching program versions.

Theorem 12 For any language A it holds:
(1) SBP(A) is <losspace_complete for Clo8Pace(A).

(2) SF(A) is <lo8time_complete for CALOGTIME(1),

The two proofs follow the proof of Theorem 7, besides that instead of the
methods regarding the evaluation and construction of circuits, the corresponding
methods for branching programs (see Meinel [18], Theorem 1.1, who refers to
unpublished papers by Cobham (1966) and Pudlak & Zak (1983)) and formulas

(see Buss [7, 8]), respectively, are used.

Acknowledgements

The authors are grateful to J. Balcdzar, S. Buss, and H. Veith for helpful com-
ments.

References

[1] J. L. Balcazar, J. Diaz, J. Gabarrd. Structural Complexity I, Springer Ver-
lag, 1988.

[2] J. L. Balcazar, A. Lozano, J. Tordn. The complexity of algorithmic prob-
lems on succinct instances, Computer Science, edited by R. Baeza-Yates
and U. Manber, Plenum Press, N.Y., 1992, pp. 351-377.

[3] B. Borchert. Predicate classes and promise classes, Proc. 9th Structure in
Complexity Theory Conference, 1994, pp. 235-241.

[4] B. Borchert. Predicate Classes, Promise Classes, and the Acceptance Power
of Regular Languages, Dissertation, Universitat Heidelberg, 1994.

[5] D. P. Bovet, P. Crescenzi, R. Silvestri. Complexity classes and sparse ora-
cles, Proc. 6th Structure in Complexity Theory Conference, 1991, pp. 102—
108.

[6] D. P. Bovet, P. Crescenzi, R. Silvestri. A uniform approach to define com-
plexity classes, Theoretical Computer Science 104, 1992, pp. 263-283.

[7] S. R. Buss. The Boolean formula value problem is in ALOGTIME,
Proc. ACM Symposium on the Theory of Computing (STOC), 1987,
pp- 123-131.

[8] S. R. Buss. Algorithms for Boolean formula evaluation and for tree-
contraction. In Proof Theory, Complexrity and Arithmetic, edited by
P. Clote and J. Krajicek, Oxford University Press, 1993, pp. 95-115.

[9] S. A. Cook. The complexity of theorem proving procedures, Proc. 3rd An-
nual ACM Symposium on the Theory of Computing (STOC), 1971, pp. 151-
158.

10

[10]

[11]

[12]

[23]

[24]

S. A. Fenner, L. J. Fortnow, S. A. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences 48, 1994, pp. 116-148.

H. Galperin, A. Wigderson. Succinct representations of graphs, Information

and Control 56, 1983, pp. 183-198.

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wagner.
On the power of polynomial time bit-computations, Proc. 8th Structure in
Complexity Theory Conference, 1993, pp. 200-207.

U. Hertrampf, H. Vollmer, K. W. Wagner. On balanced vs. unbalanced
computation trees, Technical Report No. 82, Institut fur Informatik, Uni-
versitat Wiirzburg, 1994.

B. Jenner, P. McKenzie, D. Thérien. Logspace and logtime leaf languages,
Proc. 9th Structure in Complexity Theory Conference, 1994, pp. 242-254.

R. Karp. Reducibility among combinatorial problems, Complezity of Com-
puter Computations, edited by R. E. Miller and J. W. Thatcher, Plenum
Press, N. Y., 1972, pp. 85-103.

R. Ladner. The circuit value problem is log space complete for P. SIGACT
News 7, 1975, pp. 18-20.

A. Lozano, J. L. Balcazar. The complexity of graph problems for succinctly
represented graphs, Proc. 15th Graph-Theoretic Concepts in Computer Sci-
ence, Springer LNCS 411, 1989, pp. 277-286.

C. Meinel. Modified Branching Programs and their Computational Power,
Springer LNCS 370, 1989.

C. H. Papadimitriou, M. Yannakakis. A note on succinct representations
of graphs, Information and Control 71, 1986, pp. 181-185.

J. E. Savage. Computational work and time of finite machines, Journal of

the ACM 19, 1972, pp. 660-674.

H. Veith. Succinct Representation and Leaf Languages, Technical Report
CD-TR 95/81, TU Wien, 1995 (this paper is available as ECCC report
TR95-048).

N. K. Vereshchagin. Relativizable and nonrelativizable theorems in the
polynomial theory of algorithms, Russian Acad. Sci. Izv. Math. 42, 1994,
pp- 261-298.

K. W. Wagner. The complexity of combinatorial problems with succinct
input representation, Acta Informatica 23, 1986, pp. 325-356.

I. Wegener. The Complerity of Boolean Functions, Teubner Verlag,
Stuttgart, 1987.

11

