Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

Comment 01 onFTP:ftp.eccc.uni-trier.de:/pub/eccc/ECCC TR96-007WWW:http://www.eccc.uni-trier.de/eccc/Email:ftpmail@ftp.eccc.uni-trier.de with subject 'help eccc'

Corrected proof of Lemma 4.

Lemma 4. Assume that $a_1, ..., a_n \in \mathbb{R}^n$ are linearly independent vectors, $d_1, ..., d_n \in L(a_1, ..., a_n)$ are also linearly independent and $||d_i|| \leq M$. Then there is a basis of $L(a_1, ..., a_n)$ consisting of vectors no longer than nM. Moreover if $a_i, d_i \in \mathbb{Z}^N$ for i = 1, ..., n then the required basis can be found in time polynomial in $\sum_{i=1}^n (size(a_i) + size(d_i))$

We prove the lemma by induction on n. The n = 1 case is trivial. Suppose that our assertion holds for lattices of dimension n-1. Let F be the hyperplane generated by d_1, \ldots, d_{n-1} and let $L' = L(a_1, \ldots, a_n) \cap F$. L' is an n-1-dimensional lattice, that is, it has a basis over the integers, (since it is a subgroup of a free Abelian group). According to our inductive assumption L' has a basis $b_1, ..., b_{n-1}$ with $\max_{i=1}^{n-1} ||b_i|| \neq (n-1)M$. Let $F' \neq F$ be a coset of F with $L(a_1, ..., a_n) \cap F' \neq \emptyset$ so that the distance of F and F' is minimal. Clearly this distance is not greater than the distance of d_n from F and therefore it is not greater than M. Let $u \in L(a_1, ..., a_n) \cap F'$. Let a' be the vector that we get from u by projecting it orthogonally to F. By expressing a' as a linear combination of the vectors $d_1, ..., d_{n-1}$, then rounding off the coefficients to the nearest integer we may write a' in the form of w + a'', where $w \in L'$ and $||a''|| \leq \sum_{i=1}^{n-1} ||d_i|| \leq (n-1)M$. $b_1, \ldots, b_{n-1}, u - w$ is a basis of $L = L(a_1, \ldots, a_n)$, since, according to the minimality of the distance of F' from F, $L(b_1, ..., b_{n-1}, u - w)$ contains all cosets of L' in L. Since the distance of F and F' is at most M we have that $||u - a'|| \le M$, therefore $||u - w|| \le (||u - a'||^2 + ||a''||^2)^{1/2} \le$ $(1+(n-1)^2)^{1/2}M < nM$ implies that every element of this basis is of length at most nM. The inequality $||u - w|| \le (n^2 - 2n)^{1/2}M < nM$ shows that even if we compute a' only approximately with a precision greater than, say, $\frac{1}{n^2}M$ the vector $u-w \in L$ that we get from this approximate value will be shorter than nM. Q.E.D.

Sketch of an alternative proof. There is another perhaps simpler proof. Namely we may define F as the subspace orthogonal to d_n and project $L(a_1, ..., a_n)$ onto F. The image L' is an n-1 dimensional lattice. Applying the inductive hypothesis (the images of $d_1, ..., d_{n-1}$ are linearly independent) we get a basis $b_1, ..., b_{n-1}$ of L'. Each b_i is contained in a coset D_i of the one dimensional subspace D generated by d_n . Let v_i be the closest point of $D_i \cap L(a_1, ..., a_n)$ to b_i . $v_1, ..., v_{n-1}, d_n$ is the required basis.