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ABSTRACT. We give a random class of lattices in Z" so that, if there is a
probabilistic polynomial time algorithm which finds a short vector in a random lattice
with a probability of at least % then there is also a probabilistic polynomial time
algorithm which solves the following three lattice problems in every lattice in Z™ with
a probability exponentially close to one. (1) Find the length of a shortest nonzero
vector in an n-dimensional lattice, approximately, up to a polynomial factor. (2) Find
the shortest nonzero vector in an n-dimensional lattice I where the shortest vector v
is unique in the sense that any other vector whose length is at most n°||v|| is parallel
to v, where c is a sufficiently large absolute constant. (3) Find a basis b1, ..., b, in the
n-dimensional lattice L whose length, defined as max?_, ||b;||, is the smallest possible

up to a polynomial factor.

A large number of the existing techniques of cryptography include the generation
of a specific instance of a problem in NP (together with a solution) which for some
reason is thought to be difficult to solve. As an example we may think about factor-
ization. Here a party of a cryptographic protocol is supposed to provide a composite
number m so that the factorization of m is known to her but she has some serious
reason to believe that nobody else will be able to factor m. The most compelling
reason for such a belief would be a mathematical proof of the fact that the prime fac-
tors of m cannot be found in less then &k step in some realistic model of computation,
where k is a very large number. For the moment we do not have any proof of this
type, neither for specific numerical values of m and k, nor in some assymptotic sense.

In spite of the lack of mathematical proofs, in two cases at least, we may expect
that a problem will be difficult to solve. One is the class of N P-complete problems.
Here we may say that if there is a problem at all which is difficult to solve, then
an N P-complete problem will provide such an example. The other case is, if the
problem is a very famous question (e.g. prime factorization), which for a long time
were unsuccesfully attacked by the most able scientists. In both cases it is reasonable
to expect that the problem is difficult to solve. Unfortunately the expression “difficult

to solve” means difficult to solve in the worst case. If our task is to provide a specific
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instance of the problem, these general principles do not provide any guidence about
how to create one.

It has been realized a long time ago that a possible solution would be to find
a set of randomly generated problems and show that if there is an algorithm which
finds a solution of a random instance with a positive probability, then there is also
an algorithm which solves one of the famous unsolved problems in the worst case.
%, € or %, because

taking many instances of the problem and asking for a solution for each of them,

(It does not really matter whether this “positive probability” is

we may create a new problem so that even if it can be solved with an exponentially
small positive probability then the “famous” worst case problem can be solved with
a probability exponentially close to one.)

In this paper we give such a class of random problems. In fact we give a random
problem: find a short vector in a certain class of random lattices (whose elements can
be generated together with a short vector in them), whose solution in the mentioned
sense would imply the solution of a group of related “famous” problems in the worst

case. We mention here three of these worst-case problems:

(P1) Find the length of a shortest nonzero vector in a n dimensional lattice,

approximately, up to a polynomial factor.

(P2) Find the shortest nonzero vector in an n dimensional lattice L where the
shortest vector v is unique in the sense that any other vector whose length is at most

n¢||v|| is parallel to v, where c is a sufficiently large absolute constant.

(P3) Find a basis by, ..., by, in the n-dimensional lattice L whose length, defined as
max}_, ||b;||, is the smallest possible up to a polynomial factor.

Remarks. 1. (P2) can be given in a more general form. If a lattice L C Z™ is
given, then find all sublattices L' =V N L (by giving a basis in them), where V is a
d-dimensional subspace of Z™ so that min{d,n — d} is smaller than a constant and
V N L has a basis vy, ...,vq4 so that for all w € L\V, nc* max?_, ||v;]| < |jw|, where
cq > 0 is sufficiently large with respect to d, but does not depend on anything else.

2. The random problem can be also formulated as a linear simultaneous Dio-
phantine approximation problem.

3. Although (P1) is not in NP (we are not able to check whether our estimate
is good), still, our algorithm will give a one-sided certificate. Namely we may get a
certificate which shows that there is no shorter vector than the lower bound in our
estimate. (This certificate will be a basis with small length in the dual lattice.) In

problem (P3) we get an estimate on the minimal basis length of the lattice. Since
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we get it together with a basis, we have a cerificate for the upper bound. We get no
certificate on the lower bound.

4. There are problems, e.g. find the discrete logarithm of a number modulo p
or decide wether a number is quadratic residue modulo m = pqg, where it is known
that for any fixed choice of p resp. m the worst case problem can be easily reduced
to the average case problem. For the choice of p resp. m however, there is no known
method wich would guarantee that we get a problem as hard as the worst case.

Notation. R is the field of real numbers, Z is the ring of integers, R" is the
Euclidean space of n-dimensional real vectors with the usual Euclidean norm ||a|. Z™
is the set of vectors in R™ with integer coordinates.

Definitions. 1. If ay,...,a, are linearly independent vectors in an R™, then we
say that the set {>._; k;a;|k1, ..., k, are integers } is a lattice in R™. We will denote
this lattice by L(a1,...,an). The set ai,...,a, is called a basis of the lattice. The
determinant of a lattice L will be the absolute value of the determinant whose rows
are the vectors ai,...,a,. sh(L) will be the length of a shortest nonzero vector in L,
and bl(L) the length of the shortest basis as defined in (P3)

Historical remarks. We give here only a few facts to show that the mentioned
lattice problems are sufficiently “famous” for our purposes. The question of finding
a short vector in a lattice was already formulated by Dirichlet in 1842 in the form
of simultaneous Diophantine approximation problems. Although the lattices where
these Diophatine problems can be formulated in terms of finding a short vector or
estimating the length of a short vector, form only a special class of lattices in R™ the
random class that we will define later is an element of this special class. Moreover
Dirichlet’s theorem about the existence of a good approximation, as we will see is
very relevant to our topic. His theorem is actually an upper bound on sh(L). His
proof is non-constructive.

Minkowski’s theorem about convex, central symmetric bodies (published in 1896)
is also an esitmate about the length of the shortest non-zero vector (with repsect to a
norm defined by the convex body). In the case of Euclidean norm, when the convex
body is a sphere, it gives the upper bound sh(L) < cn%(det L)% where det L is the
determinant of the lattice. This inequality and its consequences play an important
role in our proof. Minkowski’s proof is also nonconstructive. Minkowski’s theory of
successive minima formulates (as the two extreme cases) the problem of finding the
length of a shortest vector and the length of the shortest basis (in the sense given in
our problems).

A K. Lenstra, HW. Lenstra and L. Lovasz gave a deterministic polynomial time

algorithm (the basis reduction or L?® algorithm) which finds a vector in each lattice
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L C R™ whose length is at most 2HT_15h(L). C.P. Schnorr proved that the factor 2"T
can be replaced by (1 + €)™ for any fixed € > 0. These algorithms naturally give an
esitmate on sh(L) up to a factor of 275 resp. (1+¢€)™. The L? algorithm was used in
successfull attacks on different knapsack cryptosystems. (Cf. Adleman [Ad], Lagarias
and Odlyzko [LaOd], Brickell [Br]). Lattices, where the shortest vector is unique in a
sense similar to that of (P2), play an important role (see [LaOd]). (The polynomial
factor of (P2) is substituted by an exponential one.)

The definition of the random class. Since a lattice is an infinite set we have to fix
a finite representation of the lattices in the random class, that can serve as an input
for our algorithm. The lattices of the random class will consist of vectors with integer
coordinates. Moreover these lattices will be defined modulo ¢ (where ¢ will be an
integer depending only on n), in the sense that if two vectors are congruent modulo ¢
then either both of them or neither of them belong to the lattice. Finally the lattices
of the random class will be defined as the set of all sequences of integers of length
m, (m will depend only on n) which are orthogonal to a given sequence of vectors
Uiy ooy Um € Z™ modulo q. More precisely if v = (uq, ..., um) where u; € Z™ then
let A(v,q) be the lattice of all sequences of integers hi, ...., hm so that > v hu; =0
(mod gq) where the mod g congruence of two vectors means that all of their coordinates
are congruent. Every lattice in our random class will be of the form A(v, g) for some
v and for a single fixed g (depending only on n).

Our definition of the random class will depend on the choice of two absolute
constant ¢; and c3. If n is given let m = [cinlogn| and ¢ = [n°?]. For each n we
will give a single random variable X so that A = A(},q) is a lattice with dimension
m. (The existence of a polynomial time algorithm which finds a short vector in A
will imply the existence of such an algorithm which solves the mentioned problems in
every lattice L C R™.)

First we define an “idealized” version )\ of A, whom we can define in a simpler
way. The disadvantage of )\’ is that we do not know how to generate A\’ together with
short vector in A()\',q). Then we define X (in a somewhat more complicated way) so
that we can generate it together with a short vector in A(}, g) and we will also have
that P(A # )') is exponentially small. This last inequality implies that if we prove
our theorem for A()', g) then it will automatically hold for A(},q) too.

Let \' = (v1,...,v;m) where vy, ..., vy, are chosen independently and with uniform
distribution from the set of all vectors (z1,...,z,) where z1,...,z, are integers and
0 < z; < g. To find a short vector in the lattice A()\',q) is equivalent of finding a
solution for a linear simultaneous Diophantine approximation problem. Dirichlet’s

theorem implies that if ¢; is sufficiently large with respect to co then there is always
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a vector shorter than n. (The proof of Dirichlet’s theorem is not constructive, it is
based on the Pigeonhole Principle applied to a set of exponential size.)

Definition of A. We randomize the vectors vy, ...,v,,—1 independently and with
uniform distribution on the set of all vectors (z1,...,z,) € Z", with 0 < z; < q.
Independently of this randomization we also randomize a 0, 1-sequence 81, ...,dm—1
where the numbers ¢§; are chosen independently and with uniform distribution from
{0,1}. We define v, by vm = — E?;_ll §;v; (mod ¢) with the additional constraint
that every component of v, is an integer in the interval [0,g—1]. Let A = (v1, ..., Um).
(If we want to emphasize the dependence of A on n, c1, ¢y then we will write Ay, ¢, ¢,-)
We prove that the distribution of X is exponentially close to the uniform distribution
in the sense that ZaeA |P(A = a) — |A]7Y| < 27", where A is the set of possible
values of A\. This will imply that the random variable A\’ with the given distribution
can be chosen in a way that P(\' # ) is exponentially small.

With this definition our theorem will be formulated in the following way: “if
there is an algorithm which finds a short vector in A(}, g) given X as an input, then
etc.” That is, we allow the algorithm whose existense is assumed in the theorem to
use .

The representation of the lattice vectors. To give an exact formulation of
our results we have to fix some representation of the lattice vectors in problems
(P1),(P2),(P3). As we have seen already, the vectors in the random lattice A have
integer coordinates, that is, they are in Z™. We will formulate problems (P1), (P2),
(P3) in terms of vectors in Z™ as well. (Another possible approach would be to have
lattice vectors in R™ given by oracles. In that case it is natural (and possible) to give
the random class in terms of vectors whose components are random real numbers.
The modulo g arithmetic can be substituted by arithmetic modulo 1.) The simplest
approach is to assume that the lattices in Z™ are presented with a basis where each
coordinate of each vector is an integer given by a polynomial (in n) number of bits.
However our results remain valid even if the numbers are longer. Naturally in this
case the input size is not n (the dimension of the lattice) but the total number of bits
in the presentation of the lattice, so our algorithm will be polynomial in this number.

Definitions. 1. If v is a shortest nonzero vector in the lattice L C R™, and o > 1,
we say that v is a-unique if for any w € L, |w|| < af|v|| implies that v and w are
parallel.

2. If k is an integer then size(k) will denote the number of bits in the binary rep-
resentation of k, (size(0) = 1). If v = (z1,...,zn) € Z™ then size(v) = >, size(z;).
Our definition implies that for all v € Z™, size(v) > n.
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Theorem 1 . There are absolute constants c1,ca, c3 so that the following holds.
Suppose that there is a probabilistic polynomial time algorithm A which given a value
of the random variable \,, ., ., as an input, with a probability of at least 1/2 outputs a
vector of A(Ap ¢, ¢y, [n°?]) of length at most n. Then, there is a probabilistic algorithm
B with the following properties. If the linearly independent vectors a1, ...,an, € Z™ are
given as an input, then B, in time polynomial in ¢ = Y., size(a;), gives the outputs
z,u, (di,...,dyn) so that, with a probability of greater than 1 —277, the following three

requirements are met:

(1.1) if v is a shortest non-zero vector in L(a1,...,ay) then z < ||[v|| < nz
(1.2)  if v is an n°®-unique shortest nonzero vector in L(a1,...,a,) then u = v or
U= —v

(1.3) di,...,dy is a basis with max]- ||d;|| < n®bl(L).

Remarks. 1. The probability 1/2 in the assumption about .A can be replaced by
n~°. This will increase the running time of B by a factor of at most n® but does not
affect the constants c1,co and c3.

2. If we assume that A produces a vector of length at most n® for some ¢’ > 1
then the theorem remains true but ¢y, cy and c¢3 will depend on ¢’

Sketch of the proof. (We give a detailed the proof in the attached appendix.)
We show first that there is an algorithm B so that (1.3) holds. By (1.3) we have an
estimate H on the minimal basis length up to a polynomial factor. It is a consequence
of Minkowski’s upper bound on sh(L) that H~! is an estimate (up to a polynomial
factor) on sh(L*), where L* is the dual lattice of L C R™. (The dual lattice is the
lattice of all linear functionals on R™ that take integer values on every vectors of L.
Each element of L* is identified, in the natural way, with an element of the Euclidean
space R™.) Therefore by estimating the minimal basis length of L* we get also an
estimate on sh((L*)*) = sh(L).

We will construct an algorithm which produces the output with property (1.2) by
using an algorithm which satisfies (1.3). In this step we will not use the assumption
about our random class directly. Therefore, the critical part of the proof is the proof
of (1.3).

First we note that it is easy to see that from a set of n linearly independent
vectors r1,...,7, € L we can construct in polynomial time a basis of s1,...,8, of L so
that max? , ||s;|| < nmax?_, ||r;||. Therefore it is enough to construct a set of linearly
independent elements of L so that each of them is shorter than n°*~!bl(L).

Assume now that we have a lattice L C Z™ and assume that we have a set

of linearly independent elements ai,...,a, € L so that max? ; ||a;|| = M. If M <
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n°~1bl(L) then we have already found a basis with the required properties. Assume
that M > n~1bl(L). We will construct another set of linearly independent elements,
bi,...,bn € L so that max}_, ||b;| < % Iterating this procedure we find a linearly

independent set of elements df,...,d}, with max™ ,||d}| < n°~!'bl(L) in less than
log, M < 20 steps.
Starting from the set aj,...,a,, we construct a set of linearly independent el-

ements in L, fi,..., fn so that max™, | fi]| < n*M and the parallelepiped W =
P(fi,...; fn) defined by the vectors fi,..., fr is very close to a cube. Closeness will
mean that the distance of each vertex of P(f1, ..., fn) from the vertices of a fixed cube
will be at most nM and as a consequence the volume, the width and the surface area
of W will be about the same as that of a cube of similar size. This will imply that
if we cover the space with the cells of the lattice determined by a short basis, then
most of the cells intersecting W will be compltetely in its interior. (The number of
exceptional cells is polynomially small compared to the total.) As a consequence we
get that all of the parallelepipeds u + W where u is an arbitrary element of R™ have
about the same number of lattice points. The error again will be polynomially small
fraction of the total. These remain true even if we consider all of the parallelepipeds
u + %W where ¢ = [n°?] and c3 is sufficiently large with respect to c3. This fact
will ensure that if we pick a lattice point at random from a set D of almost disjoint
parallelepipeds of type u + %W, then the distribution induced on D is very close to
the uniform distribution. (We will consider to parallelepiped almost disjoint if their
interiors are disjoint.)

Now we cut W into ¢™ small parallelepipeds each of the form (>)_; %fz) + %W,
where 0 < ¢; < ¢, 7 =1,...,n 1s a sequence of integers. We take a random sequence
of lattice points &1, ...,&m, m = [cinlogn] from the parallelepiped W = P(fi, ..., frn)

independently and with (almost) uniform distribution. (Such a random sequence can

be generated in the following way. Let b1,...,b, be a basis. We take random sums
s = Y, a;b; with random integer coefficients o; € [0,7], where T is a very large
integer, and then we reduce s into a point in W modulo (f1, ..., fn).)

Assume that ¢; € (D00, %fl) + %W. Let v; = <t§j), ...,t;j)>. We will consider
the sequence vi,...,v,, as a value of the random variable X. (The distribution of
v1, ..., Um 1s not identical to that of A, still we will prove that it is so close to it that

this identification does not change our conclusions.) Applying algorithm A to the
input v1,...,v, we get a vector (hi,...,hn) € Z™ so that with a probability of at

least 1/2 its length is at most n and E?:l hjv; = 0. We claim that with a positive
1(9)

probability v = E?:l hi€; # 0 and [jul| < %. Indeed if n; = S5, =—fi then
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u =2 hi€; =327 hi(€5 — m5))+(205=1 hyms). 251 hjv; = 0 implies that the
second term is 0. We may get an estimate on the first term using that | E?zl h?| <n
and since {; and 7; are in the same parallelepiped 7; 4 %W we have that ||{; —n;| <
nn3M% < n*n~c2M. Therefore we get ||ul| < n*n~2Mn? = n®~°2M if c¢3 > 7 this
implies that ||ul| < %

We prove that u # 0 with a positive probability by performing the randomization
of the vectors {; in a different way. First we randomize the sequence of vectors
V1, ..., Um. Lhis will uniquely determine both the numbers A, ..., h,, and the vectors
n;. Now we have to randomize the vectors {; —n;. Assume that we have randomized
them for j = 1,...,m — 1, and assume that h,, # 0. The distribution of {; — 7n; is
almost uniform in %W. Since u — (€m — m) =n; + E;n:_ll h;€; is already fixed, we get
that with high probability u is not 0. By the same argument we also get that with
high probability u is not in any fixed hyperplane. Therefore if we are getting many
(say n?) independent values of u then with high probability there will be n linearly
independent among them and so we have constructed n linearly independent elements
in L each of length at most M/2.

(1.3)—+(1.2). Let Ly = L* be the dual lattice of L. We show that if L has an
n°-unique shortest vector then Ly has an n — 1-dimensional sublattice L' = Ly N F
where F' is an n — 1 dimensional subspace, so that the distances between the cosets
of F' intersecting Lq are at least n°bl(L’). We prove that it is possible to compute a
basis of L', and using that, a shortest vector v in L. (v will be orthogonal to L'.)

Although we give a deterministic algorithm for finding L’ (using the algorithm
of (1.3) as a black box), it is easier to sketch the idea of a probabilistic one. Assume
that we take points of Ly at random from a parallelepiped whose center is 0 and
whose diameter is at most nclbI(L'), where ¢’ is large with respect to c¢. (An inductive
argument shows that we are able to construct such a parallelepiped.) If we take
enough, but still a polynomial number, of random points then at least two of them
will be in the same coset of L’. With high probability they will be distinct. Therefore
taking all of the differences of the random lattice points we get, among them, a non-
zero lattice vector uy in L' = Lo N F. The most important part of this proof is to
show that we are able to decide whether a vector is an L', that is, we are able to
select the vector uy from the set of differences. If this can be done, then by repeating
this procedure many times we will get a sequence ui,...,u2,. The independence of
the vectors u; implies that there will be n linearly independent among them.

To decide whether w is in L’ we consider the lattice L; generated by the vectors
of Ly and the vector %u, where t > n® is a prime number. (It is easy to see that this
is indeed a lattice.) Using (1.3) we estimate bl(Lg) and bl(L1). If the estimates do
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not differ more than allowed by the error, then u is in L’. If the estimate decreases
more than that, then u ¢ L’. This follows from the fact that in the case of u € L',
L1 will be covered by the cosets of F' intersecting Lo, and so bl(L1) will be at least
the distance of these cosets. In the case u ¢ L' there will be new cosets of F' which
intersect L but not Ly. Between two consecutive cosets intersecting Lo there will be
t — 1 intersecting only L;. We get a short basis of L; from a short basis of L' and a
lattice vector of minimal length connecting two consecutive cosets of F' intersecting

L.
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APPENDIX

Generating Hard Instances of Lattice Problems
M. Ajtai
IBM Almaden Research Center
650 Harry Road, San Jose, CA, 95120

e-mail: ajtai@almaden.ibm.com

We give here the proof of the theorem formulated in the abstract in a detailed
but preliminary form. We will prove the theorem for the random variable )\’ instead
of X\. As we will show the corollary of lemma 1 implies that P(A = )') > 1—-27°" for
some absolute constant c, therefore if we have an algortihm which solves the random
problem defined by A\’ with probability p then we also have a algorithm which solved
the problem defined by )\ with probability p — 27¢*. (Although we formulate our
theorem for p = 1/2 the proof is actually the same for any p € [n_"’, 1- n_cl].)
We formulate the statement of the theorem again in lemmata 11,12,14 with a slight
notational difference.

Notation. R is the field of real numbers, Z is the ring of integers, R" is the
Euclidean space of n dimensional real vectors with the inner porduct a - b and the

1/2 7™ is the set of vectors in R™ with integer coordinates,

Euclidean norm ||a|| = (a-a)
we frequently will consider it as a Z-module.

Definitions. 1. If a1, ..., a, are linearly independent vectors in an n dimensional
Euclidean space F, then we say that the set {> ., k;a;|k1, ..., kn are integers } is a
lattice in E. We will denote this lattice by L(ai,...,a,). The set ay,...,a, is called a
basis of the lattice. The determinant of a lattice L, det L will be the absolute value
of the determinant whose rows are the coordinates of the vectors aj, ..., a, in some
orthonormal basis of F.

2. If k is an integer then size(k) will denote the number of bits in the binary rep-
resentation of k, (size(0) = 1). If v = (z1,...,z,) € Z™ then size(v) = Y., size(z;).
Our definition implies that for all v € Z™, size(v) > n.

Some of the technical lemmata of the proof are probably known, but we have not
yet located an appropriate reference. We give the complete proof for these statements.
(Lemmata 1, 2, 4, 8, 9, 10 belong to this category.)

11



The following lemma and its corollary implies that if A’ is the random variables
defined in the abstract, then for a suitable choice of A (with the distribution defined
there) we have P(Ap ¢, co = Aner,ez) = 1 — 27" where ¢ > 0 depends only on ¢; and

Co.

Lemma 1. There exists a ¢ > 0 so that if A is a finite Abelian group with n
elements and k is a positive integer and b = (b1, ..., by) is a sequence of length k whose
elements are chosen independently and with uniform distribution from A, then with
a probability of at least 1 — 27 the following holds:

Assume that b is fixed and we randomize a 0,1-sequence é1,...0, where the

numbers §; are chosen independetly and with uniform distribution from {0,1}. For

each a € A let p, = P(a = Ele 8;b;)). Then
(a‘) ZaeA(pa, — |A|_1)2 S 2_2610 and
(b))  Y.calpa—IlAI7 < [A]327F,

Corollary. There is a ¢’ > 0 so that the following holds. Suppose that
bi,...,bk,01,...,0r are mutally independent random variables with the distributions
given in the lemma. Then there is a random variable n with uniform distribution on

A so that the random variables by, ..., bx,n are mutually independent and

P(n= 21;1 8ib;) >1 — |A|1/22—c’k.

First we show how can we use the corllary to prove our claim about X\ and ).
We apply the corollary with A — Z"/(q), k — m = [cinlogn], b; — v;, §; — &,
where ¢, n, v;, 6; were given in the definition of X\. Let X = (vy,...,vpm_1,—7).
By the assumption of the corollary )\’ has the required uniform distribution on A.
(We may always take the smallest nonnegative residues mod ¢.) By the corollary

Pcyen = Moo o) > 1—|A[Y227F 4| = ¢ < n®™ <2718 " Therefore if c; is

n,C1,C2
sufficiently large with respect to ¢y and c then we have P(\, ¢, c, = A, ) > 27,

n,C1,C2

As a first step in the proof of the lemma we prove the following.

Lemma 2. There are absolute constants 0 < ¢; < 1, 0 < ¢c3 < 1 so that if
A is a finite Abelian group, f is a real-valued function on A and ) _, f(a) = 0,

then the following holds. For any b € A we have ) f(a)* > EaeA(wy'

Moreover if we pick a random element b of A with uniform distribution then

Pler Y pea fla)? > 30 o0 (HOEeED)2y 5 ¢y,
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Proof. Our first inequality can be written in the form of

(1) 3 CaeaF(@) + Xoea fla+)?) > 3o, ,(Heitflath)2,

This holds since for any fixed a and b the difference of the two sides is %( fla) —
f(a+8))* > 0. This also implies that if e.g. f(a) > 0 and f(a) > 2f(a + b) then
the differnce of the two sides is at least %(f(;))Q = f(l?z. We will use this in the

proof of the second inequality which can be written in the form. P(5-(>2,c4 fla)® +
Yacafla+d)?) > 3, (M2 2E)2) 5 ¢

We will show that there are constants 0 < c3 < 1,0<¢cs <1,0<¢5 <1 and
sets D C A, F' C A so that for each a € D, b € F' we have
(2)  S(f(a)® + fla+b)?) > (Leltflettly
morevover |F| > c4|A| and ) 4 f(a)? > cs Yaca f(a)?. This together with the
inequality 1(f(a)? + f(a + b)?) > ({et/(e40)2 " which holds for all a,b € A will
imply our statement. Indeed |F| > c4|A| implies that it is enough to prove the
inequality with the condition b € F. We claim that for each fixed b € F' we have
L (Yaeaf(@)P + 3 ,cafla+0)?) > ZaeA(W)? This is a consequence of
the fact that for each a ¢ D we have (1) and for the ramaining ones we have (ei).

Let P = {a € Alf(a) > 0}. We may assume that eg. > .p fla)?* >
EaEA\P f(a)?. As we have seen inequality (2) holds if f(a¢) > 0 and f(a) > 2f(a+b).
(This includes the f(b) < 0 case too.) Let ¢ > 0 be a small constant. If
|A\P| > ¢|A| then with D = P, FF = A\P our conditions are satisfied. As-
sume now that |A\P| < e|A|. This implies that if M = |A|™1 Yoacp fla) =
| A1 Yaca\p —f(a), then 37 4\ p f(a)? > € ?|A||M?|. We claim that the sets
D = {a|f(a) > 4M}, F = {a € A|f(a) < 2M} meet our requirements. Indeed
Sop fla)? >3 5 f(a)? — EP\D f(a)? and ZP\D f(a)?* < 16|A|M2. If € > 0 is suffi-
ciently small, this implies that Y. f(a)® > ¢5 >, 4 f(a)?. E(A\F)mP f(a) < |A||M|
implies that [(A\F) N P| < |A| and so |F| > |5 — €||A]. Q.E.D.(Lemma 2)

Proof of lemma 1. By the Cauchy-Scwarz inequality, (b) follows from (a) so
we will prove only (a). Suppose that we randomize both b; and §; independently.
Let fi(a) = |AI71 — P(a = Eizl 8;b;) and let H(7) = EaEA fi(a)g. We prove that
H(i) < H(t+ 1) forall i =1,...,k, H(1) < 2 and with a probability greater than
2—c’k
(3) there are at least ¢’k numbers ¢ € [1,k] so that H(z + 1) < ¢1 H(7),

where ¢’ > 0, ¢ > 0 and 0 < ¢; < 1 are absolute constants. This would imply
that if we randomize b4, ..., b only, then with a probability of at least 1 — 25 we
get a sequence by, ..., bg so that for the randomization of é1, ..., with a probability
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of at least 1 — 2= 5% we get a sequence so that with (3). This clearly will imply the
assertion of the lemma.

Assume now that bq,...,5;, é1,...,d; has been randomized. Lemma 2 implies that
for the randomization of b,11,d;41 the probability of H(: + 1) < ¢"H(z) is at least
ca where ¢ > 0 is an absolute constant. Therefore Chernoff’s inequality implies our
statement. Q.E.D.(Lemma 1)

Proof of the corollary. We define 7 separately on each subset of the probability
space where b1, ..., by take some fixed value. Assume that these fixed b1, ..., b do not
staisfy condition (b) of lemma 1. In this case let n be an arbitrary random variable
with uniform distribution. Suppose now that (b) holds Let ¢ = Zle 8;b;. For each
a € Alet B, be the event ( = a. We choose a B, C B, for all a € A so that either
P(B)) = |A|™! or P(B) = P(B,) < |A|™!. Let n be a random variable with uniform
distribution on A so that B! implies n = a. by, ..., br are mutually independent since
with any condition on by,...,bx, n is uniform on A. If we randomize b, ..., by first
then the probability that (b) does not hold is smaller the 27°F therefore we may
assume that 7 is defined in the second way. In this case however (b) implies that
P(¢ #1n) < |A|327°. Q.E.D.(Corollary)

Definition. 1. If by,...,b, € R™ then P(by,...,b,) will denote the parallelepiped
{200 7ibil0 <y <13

2. The minimal height (or width) of P(by,...,b,) will be the minimum of the
heights belonging to the various faces of P(by, ..., b,).

Lemma 3. Suppose that ay,...,a, are vectors in R™ and max]  ||a;|]| <
M. Then there are linearly independent elements by, ...,b, € L(ai,...,a,) so that
max™_, ||b;]] < (n® + %n)M and the volume of P(b1,...,b,) is between %(nSM)" and
2(n® M)™, its surface area is at most 6n(n®M)™! and its minimal height is at least
%nSM. Moreoverif a,...,a, € Z™ then by, ..., b, can be computed in time polynomial

in Y0 size(a;).

Proof. The assumption about the lengths of the basis vectors a; imply that for
each vector v there is a v’ € L(ay, ..., an) so that ||v—v'|| < %Mn Indeed we may get
such a v’ by expressing v as a linear combination of the vectors a; with real coefficients
end then rounding off each coefficient to the closest integer. Assume now that fi,..., fn
are pairwise orthogonal n-dimensional vectors with length exactly n®M. For each
i =1,...,nlet b; be alattice vector so that || f;—b;|| < %nM (Clearly this construction
which only involves the solution of a linear system of equations and rounding can

be completed in polynomial time.) Let @ = P(fi,..., fn), @ = P(b1,...,b,). The
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distance of each vertex of @' from the corresponding vertex of @ is at most %n2M.
Therefore if we enlarge the cube @ from its center by a factor of 1 + % then it
will contain Q'. @y will denote the enlarged cube. In a similar way if we reduce it
into a cube @ by the same factor than it will be contained in Q'. volume(Q;) <
volume(Q') < volume(Qg) and the inequalities % < 1+ %)_" and (1 + %)" <
2 imply our assertion about the volume. @1 C P(b1,...,b,) therefore P(by,...,b,)
contains a sphere of radius at least l(77,3M(1 — L)) > %n?’M and so the minimal

2 2n
height of P(by,...,b,) is at least 2p3M. We get the upper bound on the surface

area by estimating the area of eac131 face using the upper bound (n? + %n)M on the
lengths of their edge vectors. These yields the upper bound 2n(n® + %n)"_lM"_l =
2n(n®M)" 71 (1 + 525)""! < 6n(n*M)""'. Q.E.D.(Lemma 3)

Definitions. 1. Suppose that n,m and ¢ are positive integers. Let V, m 4 be
the set of all sequences v, ..., v, so that each v; is an n dimensional vector whose
coeflicients are nonnegative integers in the interval [0, g). If s € V then we will denote
by A(s,q) = A(s) the set of all sequences of integers hyq, ..., hm so that each coordinate
of the n-dimensional vector E:’;l h;v; is divisible by ¢. For any choice of s € Vy, m 4
the set A(s) is a lattice in R™.

2. Zn m,q will be a random variable which takes its values with uniform distribu-
tion from V, s 4. This definition implies that A(Z, m, 4, ¢) is a random variable which
takes its values on certain lattices in R™. With the notation of the extended abstract

Merres = Znfenlog n],[ne2] -

Lemma 4. Assume that ai,...,a, € R"™ are linearly independent vectors,
di,...,dn € L(a1,...,an) are also linearly independent and ||d;|| < M. Then there
is a basis of L(a,...,an) consisting of vectors no longer than nM. Moreover if a;,d;
are integers for + = 1,...,n then the required basis can be found in time polynomial

in Y5 (size(a;) + size(d;))

We prove the lemma by induction on n. The n = 1 case is trivial. Suppose
that our assertion holds for lattices of dimension n — 1. Let F' be the hyperplane
generated by ai,...,an—1 and let L' = L(aq,...,a,) N F. Since ay,...,a, are linearly
independent we have L' = L(a1,...,an—1). According to our inductive assumption L'
has a basis di,...,d,_1 with max?z_ll |di|| # (n — 1)M. Clearly di,...,dn—1,an is a
basis of L. Let a’ be the vector that we get from a, by projecting it orthogonally to
F. By expressing a' as a linear combination of the vectors dy, ..., d,, then rounding

off the coefficients to the nearest integer we may write a in the form of w + a”, where

w € L(dy,...,dn—1) and ||a"| < Z?z_ll |di]| < (n —1)M. Therefore di,...,d;,an — w
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is a basis of L(a1,...,a,) and ||a, — w|| < (||(an — &'||* + ||a’ — 'u)||2)1/2 <(|lan])* +
||CL”||)1/2 <1+ (n-— 1)2)1/2M <nM implies that every element of this basis is of
length at most (n —1)M. The inequality |a, —w| < (n? —2n)Y/2M < nM shows that
even if we compute a’ only approximately with a precision greater than, say, #M
the vector a, — w € L that we get from this approximate value will be shorter than
(n—1)M. Q.E.D.(4)

We need the following lemma to show that if a parallelepiped W is not very
skewed and it is large with respect to bl(L) (e.g. the one constructed in lemma 3),
then the number of lattice points in all of the parallelepipeds 6+ W, b € R™ is about
the same and is roughly proportional to the volume of the parallelepiped. Moreover
for any fixed hyperplane F' the number of lattice points in F'N (b+ W) is small with
respect to the number of lattice points in b + W.

Lemma 5. Assume that L = L(ai,...,a,) is a lattice in R™, where |a;| < M,
i =1,..,n and ¢1,...,9n are linearly independent vectors in R™ (not necessarily in
L) and b € R™. Let kg resp. ki be the number of lattice points in the closed set
b+ P(gi1,..-,9n) resp. in its interior. Let H be the minimal height, let V be the
volume and let S be the surface area of P(g1,...,gn)). Then

(a) (det L)~1(1 — 2¥2)nV < k; < (det L) (1 + 24™)"V, j = 0,1
(b) If F is a hyperplane then the number of lattice points in F'N (b+ P(g1, .-, 9n))
is at most 2SMn(1 + 2]\/IT")"_l(det L)_l.

Proof. (a) Let W = b+ P(g1,...,9n), let W' be the set that we get from W by
2Mn

enlarging it from its center by a factor of 1 + =37 and W" be the set that we get
from it by reducing it by 1 — WT" Let B be the set of all parallelepipeds of the form
v + P(a1,...,an), where v is a lattice point and (v + P(a1,...,ar) N W is non-empty.
The definitions of W', W" imply that every element of B is contained in W' and
every element of B intersecting W' is contained in W. Therefore we get the upper
bounds from the fact that the number of elements of B contained in W' can be at
most volume(W')/ det(L). We get the lower bound on kg in the following way. Let D
be the set of those elements of B that intersect W". Clearly |D| < kg. The definition
of W" implies that the elements of D cover W" so |D| > volume(W")(det L)~!. To
get the lower bound on kj, we may repeat our argument for each ¢ > 0 with W/
instead of W" where we get W/ by reducing W with a factor of 1 — 2242 — ¢, This
way the elements of the set D will be in the interior of W. Taking the limit for all of

the resulting lower bounds for k1 we get (a).
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(b). Let G be the set of those elements of B which intersect F'. The defintion
of W' implies that the distance of FAW' from F N W is at least Mn. (Any pair of
points from them are separated by a pair of corresponding parallel faces of W and
W' whose distance is at least Mn.) Therefore if 7 is the orthogonal projection of R™
to Fand T € G then n(T) is in F'N W'. Consequently each T' € G is contained in
the body that consist of all points z with 7z € W' N F' whose distance from F' is at
most Mn. The volume of this body is 2area(W' N F)Mn and area(W’'N F) is at most
the surface area of W' which implies our inequality.Q.E.D.(Lemma 5 )

Definition. If a1, ..., @, € R™ are linearly independent vectors then P~ (ay, ..., as)
will denote the set {> ., v:b:]0 <75 < 1}

Lemma 6. Assume that L = L(a1,...,a,) is a lattice in R™, ||a;|| < M for
i=1,...,n, by,...,b, are linearly independent elements of L, ||b;|| <Y fori=1,...,n,
V is the volume, S is the surface area and H is the minimial height of P(b1,...,b,), g

is a positive integer and the following inequalities hold
(i) %<
(ii)) 5SMn<V.

Suppose further that ¢ is a random variable that takes its values with uniform
distribution on the set R of lattice points of P~ (b1, ...,b,). Then there are random
variables {,n with £ = (+n so that ( has uniform distribution on E = {3} k;bi|x; €
{0, i, e %},i =1,...,n}, and for each fixed t € E the conditional distribution of 7
with the condition ( =t meets the following requirements:

(a) P eP (3br,..,1b.)(=t)>1- %

Y n

(b) for any fixed hyperplane F' in R™, P(n € F|( =1t) < 1/2

Proof. Let T be the set of all sequences t1, ...,t, so that ¢; € {0,1,...,q — 1} and
for each t = (t1,...,tn) € T let W, = 73(%61, . %bn) + E?:l %bi. Lemma 5 gives the
following estimate on w; the number of lattice points in W;:

(det L) 7 (1 — 22V < wy < (det L)71(1 + 2m)ny,

Inequality (i) implies that 1 — 31? <(1- QMT")" <1< (14 QMT")" <1+ 31?
and so
(4) (1— 3%)(det L)'V <wy < (14 555)(det L)1V

Let a = [(1 — 355)(det L)™'V] and for each ¢t € X let W/ be an arbitrary but

fixed subset of W; with exactly o elements. For the defintion of ( we will use another

random variable p which is independent of ¢ and has uniform distribution on E.
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Suppose that both ¢ and p has been randomized. If ¢ € UteT W/ then there is a
unique ¢ = (t1,...,t,) € T with £ € W]. In this case let { = >, tq—ibi. If £ is outside
of J,er W/ then let ¢ = p. Since |W/| does not depend on t and ¢, p are independent,
we have that ( has uniform distribution on E.

(a) (4) and the definition of « implies that the probability of £ € (J,cp Wy is
greater than 1 — # In this case the definition of ( implies that if £ € W; then then
Wy = (+P(3b1,..., 3bn), and son =€ = C € P(;b1, s gbn).

(b) According to (a) it is enough to show that P(n € F|{ =¢,& = () < % — #
By Lemma 5 and inequalities (i),(ii), the number of lattice points on FNW, C FNW,
is at most 2V/(det L)~!. Therefore the definition of o = [W;| and the fact that with

the condition £ = (, ( is uniform on W; implies (b). Q.E.D.(Lemma 6)

Lemma 7. Assume that ay,...,a, € R™ are linearly independent. Then, for each
b € R", there is a unique b’ € P~ (a1, ...,a,) so that b —b' € L(ay,...,a,) moreover,
if b€ Z™ and a;,€ Z™, 1 = 1,...,n then b’ can be computed in polynomial time in

size(b) + E?zl size(a;)

Proof. We express b as a linear combination of the vectors a; then take the integral
part of the coefficients. Assume that we get the vector v =Y., ra;. b’ = b — v will
satisfy our requirement. The uniqueness of b’ is trivial. Q.E.D.(Lemma 7)

Definition. Assume that ay, ..., a,,b are as in lemma 6. We will denote the unique

b described in the lemma by bmod ay,...,a,)

Lemma 8. For all ¢; > 0 there is a ¢o > 0 so that the following holds. Assume
that di,...,d, are linearly independent vectors in Z™, o > n and aq,...,a, € L =
L(dy,...,dy) is a set of linearly independent vectors as well, with max™_, |la;|| < 2°°
and max], ||d;|| < 2°° | Suppose further that ui,...,jun are independent random
variables which take their values with uniform distribution on the integers in the
interval [0,2°°°]. Let x = >or, tid;i)(mod as,...,an)- Then the distribution of x on
the points of LN P~ (a1, ...,ay) is almost uniform in the following sense:

if for each v € P~ (a1,...,an), py = P(x = v) and k is the number of lattice
points in P~ (a1, ...,a,), then

ZvE'P‘(al,...,an) |p'“ - F| <27

Proof. We will need the following observations in the proof. For each real number
alet Wy = P~ (adi,...,ad,). Since di,...,d, is a basis of L we have that if o is a

18



positive integer then the number of lattice points in W, is a™. Since the volume of
Wi is at least 1, (the value of a nonzero determinant with integer entries) and the
area of any face of it is at most [].—; ||di|| we have that the minimal height H of W;
is at least ([[i_, d:)™! > 2-o "

=1
Let t = [c°2]. Let X' be the set of all parallelepipeds J of the form J = u +
P~ (a1,...,an) with w € L and J N W; # 0. Let X be the set of all sets J € X' with

sc1+1
J C Wy. If we enlarge W; from its center by a factor of y = 1 4+ 22 t;. then the

resulting set W' will contain every element of X’. By lemma 5 the number of lattice

points in W' — W is at most (det L)_l((l + %)”W"t" —(1- %)"t”) If ¢y is

cl
sufficiently large with respect to ¢; then this is at most 9= Tlyn,

Let 7 be the unique element of X' containing x. The elements of X are disjoint,
0 v = (S yex P(x = olr € J)P(7 € 1)) + Px € Vir ¢ UX)P(r ¢ UX). The
distribution of  is uniform on P~ (ay,...,a,) with the condition x € J for each fixed
J € X therefore the first term is %Lf# which does not depend on v.

The second term is at most P(7 ¢ |JX). This is smaller than the number of
lattice points in |J X'\ |JX divided by ¢™ that is smaller than 27" Since the
number of lattice points in P~ (a1, ..., a,) is at most volume(ay, ..., a,)(det L)™' <
27" this implies our statement.Q.E.D.(Lemma 8)

Definitions. 1. cps will denote a fixed positive real number so that for all n =
1,2,... and for all lattice L in R™ there exists av € L, v # 0 with [|v|| < cMn%(det L)%.
Minkowski’s theorem about closed, convex, central-symmetric bodies applied to a
sphere implies the existence of such a constant.

2. If L is a lattice in R™ then unit(L) will denote the number (det L)%

3. Suppose that L is a lattice in R™ and H is a k-dimensional subspace of R"
so that L' = H N L is a (k-dimensional) lattice in H. The factor lattice L/L’ will be
the lattice that we get from L by orthogonally projecting it onto H-. (We have to
prove that L/L' is indeed a lattice, that is, it has a basis consisting of n — k elements
(over the integers). We may pick a basis a1, ...,an for L so that aj,...,a; is in L’
(the assumption that H N L is a k-dimensional lattice implies the existence of such a

basis). If 7 is the orthogonal projection of R™ onto H- then 7majy1, ..., ma, will be
the required basis of L/L'.)

Lemma 9 . Suppose that L is a lattice in R™ and K > 0. Then either L has a
factor lattice Ly with unit(L;) > K or Ly has a basis whose each vector is not longer

than ey K Y0, i3
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Proof. It is enough to prove the lemma for K = 1 since we may replace L by
%L. We prove the lemma by induction on n. For n = 1, unit(L) is the length of a
shortest vector and so cps > 1, therefore our statement trivially holds.

Assume now that the lemma holds for n — 1. If unit(L) > 1, then our statement
holds with Ly = L. Suppose that unit(L) < 1, then by Minkowski’s theorem there
isawv €L, v # 0 so that ||v|| < epynt/?unit(L) <emnl/?. Let W be the subspace
orthogonal to v. Let L, be the one dimensional lattice generated by v and L; be the
factor lattice L/L,. According to the inductive assumption either L; has a factor
lattice L7 with unit(L}) > 1 or Ly has a basis B’ with vector lengths no longer
then cpy Z:-;_ll i1/2. In the former case we are done since a factor lattice of Lj is
also a factor lattice of L. In the latter case we may construct a basis B of L in the
following way. B will contain v and for each element b’ € B we take an element b
of L so that b — b # 0 is in the one dimensional vectorspace generated by v and
|b — b'|| is minimal with this condition. We may pick such a b from those elements

1

whose image is b’ under the orthogonal projection of L onto v—. Moreover we may

asssume that ||b — b'|| < ||v||. Therefore the length of each element of B is at most
ol + car S5 i1/2 < car S0, 12

Definitions. 1. With each v € R™ we associate a linear functional ¢, on R,
defined by ¢,(u) = v - u, for all w € R™, where - is the inner product defined on R™
in the usual way.

2. Let L be a lattice in R™. We define a subset L* C R™ in the following way:
v € L* iff the functional ¢, takes integer values on every element of L. It is easy to
see that L* is a lattice in R™. If a4, ..., a, is basis of L then the set of those functionals
which take the value 1 on exactly one a; and the value 0 on all of the others form a
basis of L*. This is called the dual basis of ay,...,a,). This construction also shows
that (det L)(det L*) = 1 and so unit(L)unit(L*) = 1.

3. If L is a lattice in R™, then sh(L) will denote the length of the shortest non-
zero vector in L and bl(L) will be the smallest real number K so that L has a basis
ai, ..., an with max? | ||a;|| = K.

Lemma 10. If L is a lattice in R™ then
1 < sh(L*)bI(L) < 3ynt/2 300 il/2 < en?

, where c is an absolute constant.

Proof of the lower bound. Assume that v € L*, ||v|| = sh(L*) and a4, ...,a, is a
basis of L with max™ , ||a;|| = bl(L). Since v is an n — 1-dimensional subspace, there
is an a; so that a; and v are not orthogonal and so a; - v # 0. By the defintion of L*,
a; - v is an integer and therefore |a; - v| > 1 and so ||a;||||v|| > 1 and bl(L)sh(L*) > 1.
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Proof of the upper bound. For the proof we need the following trivial observation:
the dual space of the factorspace (L/L') is a subspace of L*. Indeed assume that
u € (L/L")*. Then u is a vector in R™, it is orthogonal to L’ and for each v € L/L’,
u-v is an integer. Let w € L be arbitrary. By the definition of L /L', w can be written
in the form of v + v’, where v € L/L' and v’ is in the real vectorspace generated by
L'. Therefore u-w =u-v+u-v' =u-v is an integer and so u € L*.

Suppose that cpr K Y0, i3 = bl(L). Then by Lemma 9 for any K’ < K, K' > 0
there is a factor lattice Ly of L so that unit(L;) > K'. Assume that the dimension of
L; is m < n. Since unit(L})unit(L;) = 1, we have unit(L]) < % and so Minkowski’s
theorem implies that there is a non-zero vector v € L so that ||v|| < cum %mlﬁ. As
we have seen L} C L*, therefore sh(L*)bl(L) < %cMnl/QcM Sy */2. This holds
for any K' < K, which implies our upper bound. Q.E.D.(Lemma 10)

Lemma 11 . There are absolute constants ci,c2 with the following property.
Suppose that there is a probabilistic polynomial time algorithm A which given a
value of the random variable Zy, (¢, n1og n],[n=2] @S input with a probability of at least
1/2 outputs a vector of A(Zy ¢, nlogn] [n=]) Of length at most n. Then there is a
probabilistic algorithm B which given the linearly independent vectors aj,...,a, €
Z™ C R™ as input will output an integer z in time polynomial in o = Y _, size(a;)
so that if v is the shortest non-zero vector in L(as,...,a,) then with a probability

greater than 1 — 277 we have z < [|v|| < n®sz.

Remarks. 1. The probability 1/2 in the theorem can be replaced by n=¢. This
will increase the running time of B by a factor of at most n° but does not affect the

constants ¢; and c,.

Lemma 12. There are absolute constants ¢y, ca, c3 with the following property.
Suppose that there is a probabilistic polynomial time algorithm which given a value of
the random variable Z., [c, n10g n],[n>] @S input with a probability of at least 1/2 outputs
a vector of A(Zn,[clnlog n],[ncz]) of length at most n. Then there is a probabilistic
algorithm which given the linearly independent vectors ay,...,a, € Z™ C R™ as input
will output a basis by, ...,b, of L(a1,...,a,) in time polynomial in o =Y .., size(a;)
so that if dy,...,d, is an arbitrary set of linearly independent vectors in L(a, ..., an)

then with a probability greater than 1 —27° we have max*_; ||b;|| < n®® max]-, ||d;|.
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Lemma 13 . There are absolute constants ci,co with the following property.
Suppose that there is a probabilistic polynomial time algorithm A which given a value
of the random variable Z, [c, n1og n],[ne=] @ input with a probability of at least 1/2 out-
puts a vector of A(Zy [c,nlog n],[ne2]) Of length at most n. Then there is a probabilistic
algorithm which given two sets of linearly independent vectors ay,...,a, € Z™ C R",
U, ..., Un € L(a1,...,a,) as input will output n linearly independent vector by, ..., b,
of L(a1,...,as) in time polynomial in o = Y., (size(a;) + size(u;)) so that with a
probability of greater than 1 — 277, either by, ..., b, meets the requirement of lemma

12 or max, [jb:]| < & maxi, [lui).

Proof. First we describe the algorithm.

Using lemma 3 with a; — u; and M — max?_, ||u;|| we construct a set of linearly
independent vectors vy, ...,v, € L(a1, ..., an) so that max? , ||v;|| < (n3 + %n)M and
for the volume V, surface area S and minimal height H of P(v1, ...,v,) we have certain
bounds. Now we take a random point of L(ay, ..., a, ) with almost uniform distribution
in W = P~ (v1,...,vs). More precisely lemma 8 guarantees that we can compute in
polynomial time the value of a random variable x which takes its values from R, the
set of lattice points in W and has the property >, p |P(x = v) — %| < 277" We
may write x in the form of Y-, B;v; where 0 < 3; < 1. By solving a system of linear
equations we may find the rational numbers §; in polynomial time. Let ¢ = [n2] and
t; =[gBi],1=1,..,nand o = (t1,...,tn). Repeating this procedure with independent
values of x we get a sequence of values x;,0;, j = 1,...,m, where m = [cinlogn|. Let
Ly be the lattice of m dimensional integer vectors (hi, ..., hm) so that ¢| Y 1w, hio;.
Now we apply our probabilistic algorithm A, whose existence was assumed, with the
lattice L; and in polynomial time we either get a vector s; € L; with [[s1| < n? or
we recognize that the algorithm failed to produce the required result. In this case
let s; =0 € R™. In either case s; = (21, ..., 2m) is a sequence of integers. Next we
find the vector f1 = >, z;x; and g1 = (f1)(mod v1,...,v,)- (That is g1 is the unique
element of P~ (v1,...,v,) with f1 —g1 € L(v1,...,v,)). We repeat this whole procedure
3n times and get a sequence of vectors g1, ...,g3,. Let G be the set of those vectors
gi, 2 = 1,...,3n which are nonzero and are shorter than (n3 + %n)M% < % We try
to select n linearly independent vectors from (. If we succeed then the set of these
vectors by, ..., by, is the output. If we do not succeed then we apply the algorithm given
in lemma 4 with d; — u; and we get a basis by, ..., b, with max?_, ||b;| <nmax]_; ||u;|-
In this case the sequence b4, ...,b, defined in this shorter alternative way will be the

output.
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Now we prove the correctness of our algorithm. If for any basis dy,...,d, of
L(ay,...,an) we have max?_, ||u;|| < max®_; n®*t1||d;|| then the vectors by, ..., b, de-
fined by the short alternative way using lemma tv (described at the very end of
the algorithm) satisfy the requirements of the lemma. Therefore we may assume in
the following that there is a basis di,...,d, € L(ai,...,an) so that max ; ||u;| >
iy nee .

When we sart the algorithm we have n linearly independent vector wui, ..., un
in the lattice L(ai,...,an). We try to construct from them an other set of vectors
whose maximal norm is smaller by a factor of two. To start our construction we
replace uy, ..., u, by an other set of vectors vy, ...,v, which are not essentially longer
(only by about a factor of n®) but whose prallelepiped P(vi,...,v,) is as close to
a cube as possible. Lemma 3 with a; — wu; gives such a construction. Therefore
we get a set of vectors vi,...,v, € L(ai,...,an) so that if max] ; ||u;|| = M then
max?, ||v;|| < (n® + 3n)M and if V is the volume, S is the surface area and H is
the minimal height of P (v, ...,v,) then %(nSM)" <V <2(n*M)", S < 6n(ndM)"?
and H > %n?’M. The role of these inequalities will be that they guarantee that if we
take parallelepipeds z + P(v1, ..., v,) for different elements z € R™ then the number
of lattice points in them will be about the same in the sense that the differnces will
be small relative to the total number of lattice points. Another consequence of the
inequalities that there will be realtively few lattice points in a parallelepiped of this
type which lies on any single fixed hyperplane. These properties do not necessarily
hold if the the parallelepiped is either small relative to the maximal length of any basis
of the lattice, or it is very much distorted e.g. one of its heights is very small. Actually
we will need these properties in the case of parallelepipeds of the form 7:’(%’01, e %vn)
where ¢ = [n2].

For the next step we need the following observation. Lemma 8 gives a random
variable x which has only an almost uniform distribution on the set R. However
in our proof we may assume that the distribution of y is actually uniform. Indeed

we know that > - |P(x = v) — |17|| < 27" . This means that there is a random

variable x’ so that x' has uniform distribution and P(x # x') < 9-n" Therefore we
may assume that we work with x' and with high probability its value is the same as
x. This will lead only to a 2_"’51 failure rate in the algorithm. (Even if the failure
rate would be higher we may decrease it exponentially by repeating the algorithm).
Assume now that the vectors gi,...,g; has been already constructed for some
0 < j < c4n and we now start the conrstructcion of g;11. Let G; be a maximal

subset of linearly independent vectors of {gi,...,g;} with the property that for all
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g € G we have g # 0 and ||g|| < (n® + %n)M% Let F' be a hyperplane in R"
containing G;. We will prove that (for the randomizations involved in the selection
of gj+1 only and considering F' as fixed), we have

(5)  Plgjsr ¢ F and [|gjsall < (n® + In)M2) 2 1 - 22 > L,

First we notice that (5) implies the lemma. Indeed (5) and Chernoff’s inequality
imply that the set G as defined in the algorithm will contain n elements.

Now we prove (5). First we prove that
6) Pllgpll < (n+In)M2) 21— 2.

We apply lemma 6 with by — v1,...,b, — v, and £ — x. (As we have explained
above we may assume that x has uniform distribution on the set of lattice points in
P~ (v1,..,n)). According to lemma 6, x can be written in the form of { + 7 where
( i1s uniform on F and we also know something about the conditional distribution of
1. We claim that if we repeat this process and get the sequences (i, ..., (m, 71, -+, Mm
then with a probability of at least 1 — %,

(7) ¢ =01,lm = om and ||ni]] < n%(n3 + %M)% fori=1,...,m.

Indeed, (a) of lemma 6 implies that for all ¢ = 1,...,m with a probability of
at least 1 — nl—z, we have (; = o; and the vector 7, is inside the parallelepipedon
,P(%'Ul, o %vn) and so the upper bound on the vectors vy, ..., v, imply the required
upper bound on 7;. The vector z = (z1, ..., z,) is no longer than n. We show that

(7) implies that ||g;|| < (n® + %n)M% Indeed by (7) the definition of f; we have
=0 zixe = (O z:6) — > zms =(3 z04) — >, zim;. We know that either z = 0
or we get z as the output of A. In either case we have ||z|| < n and q| ), zio;.
The latter relation and the definition of o implies that .-, z;(; € L(v1,...,v,) and
$0 g5 = (fj)(mod vy,...,vn) = — Sorizim < (nd+ %n)M% which completes the proof
of (6).

We continue the proof of (5) by showing that
(8) Plgjr1¢F) =523

As we have seen the probability of o1 = (1,...,0m = (m is at least 1 — 5.
Therefore it is enough to show that if we change our algorithm so that instead of o,
1 =1,...,m we use (;, ¢ = 1,...,m in the defintion of the vector hi,..., h,, and so in
the defintion of z, f;41 and g;4+1 then (8) holds if we change the right-hand side into

1 m

3 n

We may randomize all of the random variables x1, ..., xm by first randomizing
(1y-.-yCm and then 71, ...,nm. Since the definition of the number h; depend only on (;
(and not on 7;), the values (1, ..., (, already determine whether algorithm A succeeds

in finding a short vector. The probability (for the randomization of (i, ..., {m only)
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that it does not succeed is at most 1/2. Therefore it is sufficient to show that for any
possible values (1), ... t(™) of the sequence (i, ..., Cm, if 1 =t ... ¢ = t(™ implies

that if A finds a short vector then
(9)  Plgjer ¢ FlGr =1, (M =1lm) > 5 — 2.
Assume now that ¢; = ¢ ... ¢(™) = t(™) for such a sequence t(!), ..., +{(™). Since

A finds a short vector we have z # 0. Let p be the smallest positive integer with z, # 0.
We consider p as a random variable, it determined by (; and by the randomization
included in A. Now we randomize 7,. (b) of Lemma 6 implies for any fixed r we have
P(n, € F|¢ = t L cm) = gm) = r) < 1/2 Since this is true for any choice of r
we have (9). Q.E.D.(Lemma 13)

Proof of lemma 12. Assume that max|a;|| = M. If we apply the algo-

rithm whose existence is stated in lemma 4 then we either get the required out-

(1) (1)
1

put immediately or get a linearly independent system wj’,...,us,’ in polynomial

(

time with max? , ||ui1)|| < Y Tterating this procedure we get a sequence of lin-

gj),...,u%j) so that max} ; ||uE])|| < 2%).

log, M < 77 | size(a;) we get the output after a polynomial number of iterations,

Since

early independent sets of vectors u

that is in polynomial time. Q.E.D.(Lemma 12)

Proof of lemma 11. Let L* be the dual lattice of L = L(aq,...,an). We can
get a basis of L be taking the dual of the basis (ai,...,a,) that is a set of vectors
dy,...,d, so that for all 1 < 4,57 < n a;-d; = §;;. The coordinates of the vectors
di,...,d, € R™ are rationals since they are the unique solution of a linear system of
equations with rational coeflicients. Since the number of unknowns in this system is
n? we get that the number of bits in the value of determinant of the system remains
below a polynomial bound (in the size of our input). Therefore all of the coordinates
in the vectors d; ¢ = 1,...,n can be written as fractions whith the same common
denominator » where size(r) is polynomial in the size of the input. (The numerators
are also of polynomial lengths.)

Consequently we may apply the algortihm lemma 12 to the vectors rdy, ...,rd, €
R™. The ouptut of this algorithm determines bl(L(rdy,...,rd,)) and so
bl(L(ds,...,dr)) upto a factor of n®. According to Lemma 10 this gives the re-
quired estimate on the length of a shortest vector in (L(ds,...,dn))* = L(a1,-...,an).
Q.E.D.(Lemma 11)

Lemma 14. Assume that ci,cy,c3 are the constants given in lemma 13. Then

there is an absolute constant ¢ with the following property. Suppose that there is
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a probabilistic polynomial time algorithm which given a value of the random vari-
able Z, ¢, nlogn] [nc2] @S input with a probability of at least 1/2 outputs a vector of
A(Zn,[clnlog n],[ncz]) of length at most n. Then there are probabilistic algorithms B,
By with the following properties:

(a) assume that a1, ...,a, € Z™ and v € L(ai,...,a,), v # 0 and for all w € L we
have that if w is not in the subspace generated by v then ||w| > n®(v).

Then given ay,...,an as input, B will output a vector ¥ in time polynomial in
o =Y., size(a;) so that with a probability greater than 1 —27%, ¢ is either v or —v.

(b) assume that ai,...,a, € Z™ and there is a basis g1, ...,gn of L(a1,...,an) so
that max?z_ll llgi|| < M and the distance of g,, from the hyperplane F' generated by
g1, .-y gn—1 1s at least n°M.

Then, given ai, ..., a, as input, By finds a basis dy, ...,d,—1 of FN L(a1,...,ay,) in
time polynomial in o = ) ,._, nsize(a;) and with a probability of at least 1 —277.

Proof. (b). Let K = max], ||a;||]. By Lemma 12 we may assume that K <
nbl(L). If D is the distance of g, from D, then bl(L) < D + (n — 1)M and so
K < n®D for some absolute constant cs. (We will assume that ¢ is sufficiently
large with respect to cs.) According to Lemma 4 it is enough to find n — 1 linearly
independent elements di,...,d,—1 in F'. We choose the elements dy £k = 1,...,n — 1 by
recursion on k with the additional property that ||di|| < 2n°*T°D. Assume that the
linearly independent elements dy,...,d; € F, ||d;|| < 2nK has been already selected
for some 0 < k < n — 2 (that is, we include the {di,...,dr} =0 case). We may
pick a basis dy,...,dk, b1, ...,bp_ of L(ai,...,an) so that {b1,...,bn_x} C {a1,...,an}.
Let N = n®%*D. We consider the set Yy of all linear combinations E;:lk Orbrk,
where §;, 5 = 1,...,n — k are integers with 0 < 8; < N. The assumption that
di,...;dk,b1,....,bn_ 1s a basis implies that if F} is the vectorspace generated by
di,...,dr over R, then all of the elements of Yy are in different cosets of F}. Clearly
Vx| > |N|"7% > (n®++3D)"~*. For each u € Yy we have ||u]| < (n — k)N. Therefore
Yy is contained in a sphere S with radius (n — k)N. Since the distance between the
neighboring cosets of F' (which has nonempty intersection with L) is D we have that
the number of cosets of F' which intersects SN L is at most 1+2(n—k)ND_1 < In2tes,
Since Yy > ndt¢ if we start to list the points of Yy in some arbitrary order, then we
will not run out of points in the first 2n2T°+ steps and actually among these points
there will be two that are in the same coset of F'. Suppose that y1,...,y,, s = n?tc
are the list of these points and for some k # [ yp —y; € F. (Later we will show
that we can actually decide in polynomial time whether a v € L is also an element
in F if size(v) is polynomial in the input.) We claim that dyy1 = yx — y; meets our
requirement. Indeed diy1 € F and since yx and y; are in different cosets of Fj we
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have dy11 ¢ Fy and so dy,...,dk,dg+1 are linearly independent. By the defintion of
Yn we have ||dpt1]] < 2(n — k)N < 2n% 3D,

Finally we show how is it possible to decide whether a v € L(ay, ..., a5 ) is also an
element of F', provided that size(v) < U where U is polynomial in the size of the input.
Let ¢ be a prime in the interval = [2V,2U+!] where c3 is the constant given in lemma
11. (We can find such a number ¢ so that with a probability exponentially close to 1
it meets this requirements.) We may assume that U > n° and 2V > 2nND~!. Let
w = %v. We consider the Z-module A generated by the vectors ay,...,a,,w. Since
tA C Z™, A, as a Z-module, can be generated by n elements so it is a lattice. By
lemma 4 we can give an estimate z4 on bl(A4) = %bl(tA) in polynomial time with an
error not greater then a factor n°® (in the sense of lemma 4). We may get a similar
esitmate zy, for bl(L). We claim that if v € F' then z1/z4 < n¢ and if v ¢ F then
25, /za > n°s.

Indeed, if v € F' and D is the distance of the hyperlane F' from g, then
(10) D <bl(A) < D+nM
Since D > n°M where c is sufficiently large with respect to cg, this implies z1, /24 <
ncs.

Assume now that v ¢ F' and that e.g. v and g, are in the same halfspace
determined by the hyperplane F'. Since g1, ..., gn is a basis of L and {g¢1,...,gn—1} C F,
we may write each vector 1w, 1 = 1,...,¢ in the form z; + 7,u where 0 < 7; < 1 and
z; € jgn + F for some positive integer j. Since v € kg, + F for some integer k. The
choice of U and ¢ imply that ¢ > k and so the primality of ¢ implies that 7; > 0 for
1 =1,...,t — 1 and trivially 7 = 0. Since 7; is the fractional part of 777 this implies
that 71 = s/t for some integer s and therefore thereis a 7,0 < j < t with 7; = % Let
zj € k'gn + F and let u be the point that we get from jw by orthogonally projecting
it on k'g, + F. Clearly |jv — u|| < %D. Since ||gi|| < M, i = 1,...,n — 1, there
isay € k'g, + F so that ||u — y|[[nM. g1,...,gn—1,jw — y are linearly independent
vectors in A, ||jw — y|| < nM + %D, llgil| < M for ¢ = 1,...,n — 1 therefore lemma
4 implies that bl(4) < n’M + 2D. This togehter with (10) and ¢ > n2¢s imply that
z,/za > n°. Q.E.D.(b)

The only probabilistic step involved in this proof was the choice of the prime t.
Even this can be avoided if we perform the described test for all ¢ = r"cl, r=1,.., ne’.
If v ¢ F for at least one value of ¢, (when k is not divisible by t) the test will show
this fact.

(a). Let L* be the dual lattice of L(a,...,a,). We will show that L* satisfies

the assumption of (b) with a suitable choice of g1,...,g9n € L*. First we note that
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the assumption about the element v implies that if L, is the one dimensional lattice
generated by v then

(11)  the factor lattice L/L, has no shorter non-zero vector than (n° — 1)||v||

Let v = v1,v2,..., vy be a basis of L, let ki, ..., h, be the corresponding dual basis
of L* and let g, = hy. This definition of g, implies that v - g, = 1. Let F be the
hyperplane orthogonal to v. v - g, = 1 implies that the distance of g, from F' is
|lv||7t. We claim that F' N L* = L(ha,..., h,) has a basis whose elements are shorter
then n_°l||v||_1. Indeed, this lattice is the dual of L/L, therefore lemma 10 and
property (11) implies our claim. Let g1, ...,gn—1 be an arbitrary basis of F'N L* with
elements no longer than n™¢ ||v||~!. This way (b) is satisfied with M = n_"’||v||_1.
Therefore using the algorithm whose existence was stated in (b) we are able to find
a basis u1,...,un—1 for F N L* in polynomial time, if a1,...,a, given as an input.
The computational problem that the vectors in the dual space may have non-integer
coeflicient, can be handled in the same way as in the proof of lemma 11. We may pick
a un so that uy,...,u, is a basis of L*. Let d, ..., d, be the dual basis in L. We claim
that dy is v or —v. Indeed d; is orthogonal to u1, ..., un—1 therefore it is parallel to v.
Since v is a shortest vector in L we have dy = kv for some integer k. k must be 1 or
—1 otherwise L(ds,...,d,) could not contain v. Q.E.D.(Lemma 14)

The following lemma is not necessary for the proof of our main result. It shows
that the random lattice has a short basis with high probability. (To make the proof
simpler we prove it only the case when g is odd, but it is easy to modify the proof for
an arbitrary q. The smallest prime p which is not a divisor of ¢ may take the role of
the number 2.)

Lemma 15 . For each positive integer v and € > 0 there is a ¢ > 0 so that if n
is a positive integer and g > n° is an odd positive integer then the probability of the

following event is at least 1 — n™":

A(Zp [cnlog n],q) has a basis di, ..., dn so that ||d;]| < n? foralli=1,..,n

Proof. Assume that c is sufficiently large with respect to the constant ¢ of lemma
1 and let m = cnlogn. We define d; in the following way. We will write d; in the
form of d; = <h§i), ,hﬁ,?) Let hgi) = 1. Now we apply lemma 1 with & = m — 1
and (b1,...,bk) — (v1,...,0i—1, Vi, ..., Vit1). According to lemma 1 with a probability
of at least 1 — 27¢(™~1) the sequence v; has the following property: if we take the
numbers§; € {0,1} independently and with uniform distribution then the distribution
of Elgjgm,j;éi v; is almost uniform on (Z/(q))™, where Z/(q) is the ring of residue
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classes mod ¢. (We apply lemma 1 so that A is the additive group of this structure).
According to the lemma there is a choice for the sequence §; so that El<j<m £V =

—45 (mod g). (Since g is odd ¥ is uniquely defined mod ¢). Let hg-i) = 2§ for all
j=1,...,1— 1,2+ 1,...,m. The element b; defined by this sequence is certainly in
A(Z,, m,q) since our definition implies that E;nzl hg-i)vj =0, (mod g). The definition
also implies that ||b;]| < (4m—|—1)1/2. We claim that the m vectors by, ..., b,, are linearly
independent in R™. This is an immediate consequence of the fact that their matrix
is the unit matrix (mod 2) and therefore their determinant cannot be 0. Finally
according to Lemma 4 the existence of a linearly independent system of dimension m
and of length at most M = (4m + 1)1/2 implies the existence of a basis in the lattice

whose vectors have length at most nM. Q.E.D.(Lemma 15)
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