Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 008 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Learning Multivariate Polynomials from
Substitution and Equivalence Queries

F. Bergadano*, N.H. Bshouty™ and S. Varricchio®

*Universita di Torino
*tUniversity of Calgary
°Universita di L” Aquila

January 22, 1996

Abstract

It has been shown in previous recent work that multiplicity au-
tomata are predictable from multiplicity and equivalence queries. In
this paper we generalize related notions in a matrix representation and
obtain a basis for the solution of a number of open problems in learn-
ability theory. Membership queries are generalized to “substitution”
queries for learning non-boolean functions and provide the value of
the target function for a given input. In particular, using substitution
and equivalence queries, we prove the learnability of the boolean XOR
of terms, XOR decision trees, decision trees with integer variables and
less than conditions, multivariate polynomials over a finite field and
rational functions over a fixed finite field. We also provide results for
the case of infinite or large fields.

Keywords: Computational Learning Theory, Multivariate Polynomials, Learn-
ing over Large Fields, Multiplicity Automata, Decision Trees, Learning Boolean
Functions.

1 Introduction

In recent years many open problems for the learnability of classes from mem-
bership and equivalence queries have been solved. These classes include
CDNF [4] (polynomial size DNF that have polynomial size CNF), decision
trees [4, 2], binary multivariate polynomials [6] and disjoint DNF [6]. The
outstanding problem of the learnability of DNF is still an open one.

In this paper we use the technique of Bergadano and Varricchio for learn-
ing multiplicity automata as well as new modifications of their algorithm to
solve some other open problems introduced in [4, 6].

In [6] Shapire and Sellie proved the learnability of multilinear multivariate
polynomials from substitution and equivalence queries. This, in particular,
proves the learnability of the XOR of monotone terms from membership and
equivalence queries. Since then the learnability of the XOR of terms and
multivariate polynomial over any field were open. In this paper we solve
these two open problems and show,

e The class of the XOR of terms is learnable from membership and equiv-
alence queries.

e The class of multivariate polynomials is learnable from substitution
and equivalence queries.

We then investigate the learnability of decision trees over different bases (in
the nodes) and address some open problems introduced in [4]. We prove

e The class of boolean decision trees with the domain [n] = {1,...,n}
over the basis of z; € P for any P C [n] is learnable from membership
and equivalence queries.

This is a generalization of the learnability of decision trees and solves the
open problem introduced by Bshouty [4]. We then define a new measure
called the AU-dimension of a boolean function and show that

e The class of depth O(logn) decision tree over the basis of fuctions of
constant AU-dimension are learnable from membership and equivalence
queries.

Constant AU-dimension functions includes the class of terms and XOR of
variables. In particular we obtain the learnability of depth O(log n)-decision

trees over XOR, as defined by Kushilevitz and Mansour in [5], and depth
O(log n)-decision trees over terms defined by Bshouty [4]. Notice that the
latter is a generalization of the learnability of O(logn)-term DNF.

The approach we use in this paper is algebraic. We generalize related
notions in a matrix representation to show that certain matrix representable
functions have polynomial size multiplicity automata. Then we show that
the above classes have polynomial matrix representations and apply the
Bergadano-Varricchio algorithm [2] for them. We then show how to change
the Bergadano-Varricchio algorithm for learning multiplicity automata to an
algorithm that runs over a large field with a query time that is indepen-
dent of the field size. This improves the complexity of Bergadano-Verricchio
algorithm for finite fields and generalizes it to work over infinite fields.

Using our new algorithm we prove,

o The class of functions

Z pal(‘xl) o 'pan('rn)a

a€l

where p,, are polynomials of degree bounded by d, is learnable from
substitution and equivalence queries in polynomial time in d, the num-
ber of variables n and |Z|.

Finally we show that for large enough fields it is possible to achieve learn-
ability from membership queries only. We prove the following.

o If the field is infinite or finite of size greater than nd then the above
classes can be learned with a randomized polynomial time algorithm
from substitution queries only.

The paper is organized as follows. In section 2 we introduce the matrix
representation theory for multiplicity automata and define the AU-dimension
of a function. In section 3 we prove the results for multivariate polynomials
and in section 4 we prove the results for decision trees over various bases.

2 Matrix Representation of -Automata

Let K be a field and let A = {Aq,..., A,_1} C K™ ™ be r, m x m matrices
over the field K. Let Z* = U2, Z¢ where Z, is the ring of integer modulo

r. Let AU(Z,,K) be the set of all functions f : Z* — K where there exists
an integer m, a row vector A € K™, A column vector v € K™ and a set of
matrices 4 = {Ag,..., A,_1} C K™ such that

flat, ... as5) = A4, -+ Ay

for all (ay,...,as) € Z*. For a function f in AU(Z,,K) we write AUdim(f)
for the minimal possible m. The triple (X, A,~) is called an A U-basis for f.
For a function f : Z* — K we define f, : Z — K to be f.(z) = f(z) if
x € Z" and f,(z) =0 otherwise.
The following lemma is proven in [3] using the K-Automata representa-
tion. We give another proof of the theorem for completeness.

Lemma 1. [3]: Let f,g € AU(Z,,K) and ¢ € K. then
1. AUdim
2. AUdim(cg) = AUdim(g).

3. AUdim(f 4 ¢g) < AUdim(f) + AUdim(g).
4. AUdim(fg) < AUdim(f)AUdim(q).
5. AUdim(f,) < (n + 1)AUdim(f).

Proof. Let (A, {Ai},v4) and (Ag,{B;},v8) be an AU-basis for f and
g, respectively. Items (1) and (2) are trivial. For (3) take the basis

((Aa,AB), diag(Ai, Bi), (Y4, 7B)')-
For (4) take the basis

(A ® Ap, A; @ Biyva @vB)

where ®@ is the Kroneker product. For (5) take L @ A; where L is an (n +
1) x (n+ 1) matrix that contains zero in all entries except the entries ¢,7+ 1
fore=1,...,m—1.0

When r < |K| we can replace Z, by J C K where |J| = r. In that case
we write J = {a1,...,a,} and A ={A,,,...,As, }. Let ¥ T = K be a

function such that

Flag, ..o as) = Ay, - Ay

4

In this case we will write the class AU(Z,,K) as AU(J,K).

By Lemma 1 and by multiplying AUdim(f*) by n, we can change the
function to a function on n variables f = f*. Since A, can be regarded as a
function from J to K™*™ we can find a matrix A(x) with entries that are
of polynomial degree r — 1 in = that satisfies A(a;) = A,,. Such a matrix is
called a polynomial matriz of degree r — 1. Therefore

flae, ..o xn) = MA(z1) -+ A(zn)y.

To make our functions independent of A and v we prove the following.
Lemma 2. Let d be an integer. The set AU(J,K) with n variables and
AUdim = poly(n,m) is the set of all functions of the form

(Al(fﬂl) T An(lfn))l,l

where A;(z;) is a polynomial matrix of degree |J| — 1 and for a matrix B,
(B)1, is the 1,1 entry of B.

Proof: First notice that f(zy,...,2,) = AA(21) - A(x,)y can be writ-
ten as

flzy,.. o) = e(BA(zy))A(zg) - A(xp—1)(A(z,)C)e]
= ((BA(z1))A(22) -+ A(zn-1)(A(20)C))10

where e; = (1,0,0,---,0) and B and C are matrices that satisfies A\ = Bey
and v = Cé.

Now given a function of the form f(z1,...,2,) = (Ai(z1) -+ An(2n))11
we can write

flzy, .o zn) = M(zy) - Az,)y

where

‘41(1')

Anu(x)

Omxm Omxnm

¥ =(0pm,...,0,,€e1) and A =~'. Here 0,, is the p X ¢ zero matrix and 0, is
the column 0 vector of length ¢. This multiplies the AUdim by n + 1 so it is
still polynomial in n and m.O

We will write AUdim*(f) for the minimal m where there are m x m
polynomial matrices A;(z) such that f(z1,...,2,) = (A1(z1) - An(@n))11-
Notice that from the above lemma we have following.

Lemma 3.

AUdim(f) < (n + 1) AUdim*(f).

Similar to Lemma 1 we can also prove the following.

Lemma4. Let f,g € AU(J,K) and ¢ € K. then

1. AUdim*(c) =

2. AUdim*(cg) = AUdim"*(g).

3. AUdIim*(f + g) < AUdim*(f) + AUdim*(g).
(f

4. AUdim*(fg) < AUdim*(f)AUdim"*(g).

In the following lemma we show that if functions f and g depend on
distinct variables then we can get a better bound.

Lemma 5. Let f(z) and g(y) be two functions on two distinct set of
variables. Then

1. AUdim*(fg) < max(AUdim*(f), AUdim*(g)).

2.
AUdIim*(f + g)
< max(AUdim*(f), AUdim*(g)) AUdim*(f) # AUdim"(g)
AUdIim*(f)+ 1 AUdim*(f) = AUdim*(g)
Proof.

If f(z) = (Ai(x1) -+ An(2,))1,1 then we may assume that Aj(zq)--- An(z,)
contains f in the 1,1 entry and zero elsewhere. This is because we can
multiply both sides of Aj(zy)--- A,(x,) by the matrix that contains 1 in
the 1,1 entry and 0 in the other entries. We do the above for ¢g(y) =
(Bi(y1) -+ Bi(yi1))1.1- Now changing the sizes of A; and B; to the maximum
size (just add 0 to the new entries) and then putting them side by side will
give the function f(z)g(y).

Again, as above, we assume that after the multiplication only entry 1,1
is not zero. Suppose the size of A; is my X my and the size of B; is my X my.

If my < my then we extend A; to size my X my by adding zeros and adding
1 in the entry msy, my. Then we can add a permutation matrix P to make
9(y) = (PBi(y1) - - Bi(y1)P)my m,- Now multiplying both matrices will give
a matrix that contains f in entry 1,1 and ¢ in entry msy, ms and zero in the
other entries. Now it is easy to see that we can multiply both sides by some
matrix to obtain a matrix that contain f + ¢ in the 1,1 entry. If m; = m,
then we add another entry m; 4+ 1 to do the above trick.O

Using the above operations we can build nontrivial functions with small

AUdim.

3 Results

In [2], Bergadano and Varricchio proved the following.

Theorem 1. For any field K the set AU(J,K) is learnable from substi-
tution and equivalence queries in polynomial time in the number of variables
n, |J| and the AUdim of the target.

Every K-Automaton over an alphabet A corresponds to some function in
AU(T,K) (see [2] for details).

A K-monomial is p1(x1) - - - pn(z,) where each p; : K — K is any function. A
K-linear function is p1(z1) + -+ + pu(xn).
Claim 1: Let T; be X-monomials and L; be linear functions. Then

AUdim* (Z T) <s.
=1

AUdim* (H L) <2
=1

Proof. Use Lemma 5 and Lemma 4.0
Result 1: Let K be a finite field. The class of functions of the form

E OPaoy (xl) o pan(‘xn)a

a€l

where p; are any functions, is learnable from substitution and equivalence
queries in time polynomial in the number of variables, |I| and the size of the

field |K|.

Proof. Follows immediately from Claim 1, Lemma 1 and Theorem 1.
Also from Lemma 2 and Theorem 1.0

In particular we have.

Result 1.1: The class of the XOR of terms in the boolean domain is
learnable from membership and equivalence queries in polynomial time in
the number of variables and the number of terms.

This solves an open problem in [6].

Result 1.2: The class of Sat j-DNF is learnable from membership and
equivalence queries in polynomial time in n’, the number of variables and
the number of terms.

Proof. You can change any Sat j~-DNF with m terms to the XOR of m/
terms. Just write Ty V---V T, as (Ty+1)--- (T, + 1)+ 1 and multiply. Each
multiplication of 7 termsis 0. O

This improves the result in [3].

Result 1.3: The class of multivariate polynomials over a finite field is
learnable from substitution and equivalence queries in polynomial time in
the number of variables and the number of terms and the size of the field

This also solves an open problem in [6].

In the case of infinite field our learning algorithm is not polynomial. We
will change our algorithm to a polynomial time learning in the number of
variables, |I| and the maxzimal degree of the variables.

Result 2: The class of functions of the form

> oy (21) - pay (Tn),

a€l

where p,, are any polynomials, is learnable from substitution and equivalence
queries in time polynomial in the number of variables, |I| and the maximal
degree of p,, .

Proof. Learn the polynomial over the domain J C K for |J| = d + 1
where d is the maximal degree. Now notice that the equivalence query may
not return a counterexample from this domain but by using substitution
queries we can find a counterexample in this domain as follows. The hy-
pothesis can be written as a multivariate polynomial with maximal degree
d (for each variable). This is because the hypothesis in the algorithm is
h = XAA(zq) -+ A(x,)y where A(z) is degree d matrix. Therefore the max-
imal degree of each variable is d. Now let A be a hypothesis and f be the

target. Let a be a counterexample for h with entries not necessarily from 7.

Since f(a) # h(a) we must have

g = h(z1,a9,...,a,) — f(x1,02,...,a,) # 0.

Since g is of degree at most d there must be by € J such that g(by, as, ..., a,) #
0 and therefore (by, aq,. .., a,) is again a counterexample. We can use substi-
tution queries to find this b;. We now do the above for all the other entries.
This will give us a counterexample from J".0

For large or infinite fields we can learn from substitution queries only.
Functions of the form

E OPoy (xl) e pan(‘xn)a

a€l

where p; are polynomials of bounded degree d are learnable from substitution
queries only.

The idea of the algorithm is simple. Since the degree of the hypothesis
and the target is bounded by d we can simulate equivalence queries using
random membership queries.

Theorem 3. Let K be a field and d be an integer where |K| > nd. The

class of functions

E OPay ($1) e pan(‘xn)a

o€l
where p,, are any polynomials of degree at most d is learnable from substi-
tution queries in time polynomial in the number of variables, |I| and d.

Proof. We choose £ C K such that |£] = nd + 1. To answer equivalence
queries for h we randomly and uniformly choose ¥ € £ and use membership
queries to check if f(z) # h(z).

Since f — h has degree n we have, by Schwartz’s lemma in [7], that the
probability of f(z) —h(x) # 0 is greater than 1/(nd+ 1) which is enough for
polynomial learning.O

Result 4.All the above results are also true for the product of k =
O(log n) linear functions

f= 1:[(}71(131) + ot palEn))-

Proof. This is because, by Claim 1, AUdim*(f) = 2% = poly(n).0

9

4 Learning Decision Trees

The problem of learning decision trees from membership and equivalence
queries has been solved in [4] using the monotone theory. In this section
we show some learning results on more general classes of decision trees. In
particular we consider the following classes of decision trees:

1. Depth O(logn) decision trees over constant AUdim* functions, i.e., de-
cision trees of depth O(log n) where the nodes may contain any function
that have a constant AUdim*. This in particular gives a learning algo-
rithm for O(log n)-depth decision trees over XOR defined by Kushile-
vitz and Mansour in [5] and O(log n)-depth decision trees over terms

defined by Bshouty in [4].

2. Decision trees with integer variables and “less than” conditions in the
nodes. This solves the open problem in [4].

Decision trees over XOR were shown to be PAC learnable with member-
ship queries under the uniform distribution in [5]. Constant depth decision
trees over terms were shown to be learnable in [4]. Notice also that result 1
is a generalization of the learnability of O(log n)-term DNF.

Result 4.1 The set of depth O(log n) decision trees over constant AUdim*
functions are learnable with membership and equivalence queries in polyno-
mial time in the number of variables n.

Proof. Let f be a depth O(logn) decision tree over constant AUdim*
functions. Every leaf v in the decsion tree for f labeled with 1 defines a
function that is a product of (p{ +af)--- (p}, + af) where p{,...,p} are the
functions that we will encounter in the path from the root to this leaf and
of,...,a; are the labels of the edges we follow in this path. Then

f= > (PY + ai) -~ (pi, + o).
v labeled 1 in f

By Claim 1 and Lemma 3 the AUdim* is polynomial.O
Finally, we study decision trees over the integers [n] = {1,...,n} and any
condition x; € P in the nodes for any P C [n].

10

X3 <2

X, <5 X, <3
1,2,3,
45 1,2 345
- + X3 < 4 + C) C) <>
A 1 2,3 2,34,5
M © © ©
Fig. 1(a) - Decision Tree Fig. 1(a) - Non-ambiguous automaton

Result 4.2 Decision trees over the integers {1,...,n} and z; € P condi-
tions for any P C [n] are learnable with membership and equivalence queries.

Proof. We show how to change the tree to a multivariate polynomial of
the form -, c7 P, (21) -+ Pa,(25). Define Ij,cp) to be the polynomial that
takes values 0 for + € P and 1 for + € P. This polynomial has degree at
most n. Now it is easy to see that each positive leaf in the tree is a monomial
of the form []i_; Ij;,cp,) and the tree is the sum of those monomials.0

One example is the tree in figure 1. This tree can be written as

oy <s\ fwsetl) 2o >2) + Lol lla<aa<2) 2o >3] + foi el 2o <31 2o < 2)-

Also the tree can be regarded as non-ambiguous automata.
References

[1] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
In Information and Computation, 75:87-106, 1987.

11

2]

3]

F. Bergadano and S. Varricchio. Learning Behaviors of Automata from
Multiplicity and Equivalence Queries. In SIAM Journal on Computing,
To Appear.

F. Bergadano, D. Catalano, and S. Varricchio. Learning Sat-k-DNF
Formulas from Membership Queries. STOC, 1996.

N. Bshouty. Exact Learning via the Monotone Theory. In FOCS, 1991.

E. Kushilevitz and Y. Mansour. Learning Decision Trees using the
Fourier Spectrum. In Proceedings of the ACM Symposium on Theory
of Computing, 1991.

R. E. Shapire and L. M. Sellie. Learning Spparse Multivariate Polyno-
mials Over a Field with Queries and Counterexamples. In Proceedings
of the ACM Workshop on Computational Learning Theory, 1993.

J. T. Schwartz Fast polynomial algorithms for verification of polynomial

identities J. Assoc. Compt. Mach. 27 (1980) pp.701-707.

12

